2 Das Quadratische Reziprozitätsgesetz

Größe: px
Ab Seite anzeigen:

Download "2 Das Quadratische Reziprozitätsgesetz"

Transkript

1 Das Quadratische Rezirozitätsgesetz Anna Sökeland, Natalie Graßmuck Vorbemerkungen 3 mod 13, d.h. modulo 13 ist 3 ein Quadrat. Definition : Sei eine Primzahl. x F y F mit ist Quadrat modulo, wenn x y 1 Frage : Welche ganze Zahlen sind modulo Quadrate? Das Quadratische Rezirozitätsgesetz.1 Quadrate in F q Im Folgenden sei q n, n N und rim. Dann gilt folgender Satz : a Ist, dann sind alle Elemente von F q Quadrate. b Ist, dann gilt : #{x F q y F q : y x} q 1 a Folgt aus der Tatsache dass f : F n F n mit fx x ein Automorhismus auf F n ist. b Sei Ω eine algebraische Abgeschlossenheit von F q ;wennx Fq dann soll y Ω, sodass y x. Man hat : y q 1 x q 1 ±1 dax q 1 1. Damit x ein Quadrat in F q ist es notwendig und hinreichend, dass y zu Fq gehört, d.h. y q 1 1. Deshalb ist Fq der Kern von x x q 1. D.h. also, wenn x Fq dann y Fq mit y x. x x q 1 y q 1 1 x Kern. x Kern x q 1, d.h. im Kern sind die Elemente die auf 1 abgebildet werden. Daraus folgt, das Polynom x q 1 1hathöchstens q 1 Nullstellen 1

2 bzw. die # Elemente im Kern q 1.* Außerdem wissen wir, dass Fq zyklisch ist und die Ordnung q 1hat. Das bedeutet : Fq : {a, a,a 3,...,a q 1 },mita Fq. Man sieht, dass Fq q 1 mindestens Quadrate hat, d.h. # Quadrate q 1. ** Aus * und ** #{x Fq y F q : y x}. Legendre Symbol Definition : Sei und x F. Das Legendre Symbol x durch { x : x 1 +1, x ist Quadrat modulo 1, sonst ist definiert 3 Satz..1 : Das Legendre Symbol ist multilikativ, d.h. es gilt für x, y F : xy x y Aus voriger Definition folgt : xy xy 1 x 1 y 1 x y 5.3 Das QRG und seine Ergänzungssätze Das Quadratische Rezirozitätsgesetz ist einer der wichtigsten Sätze der elementaren Zahlentheorie. Euler vermutete es bereits um 170, lieferte jedoch keinen Beweis. Die vereinfachte Formulierung des QRGs stammt von Legendre, aber erst Gauß gelang der erste vollständige Beweis. Satz.3.1 : Seien l, zwei verschiedene Primzahlen. Dann gilt : l 1 l l Sei S F,sodasssichF als disjunkte Vereinigung schreiben lässt : F 1 S S. Im Folgenden setzen wir S : {1,..., }.Für a F, s S ist auch a s F, d.h. es gibt eindeutig bestimmte Zahlen e s a {+1, 1} und s a S mit a s e s a s a 7

3 Dann gilt : i Gaußlemma : a e s a 8 Beweis von i : Beh. : Die s a sind aarweise verschieden, d.h. für s, t S mit s t gilt s a t a. Denn angenommen s a t a,dannwürde gelten : a s s a t a a t 9 Mit a F folgt s t,alsos ±t. Die Behautung ergibt sich daher nach Definition von S. Aufgrund der Endlichkeit von S und der gezeigten Injektivität der Abbildung s s a ist diese eine Bijektion von S in sich selbst. Zur Erinnerung : a s e s a s a 10 Durch Produktbildung über alle s S liefert dies folgende Gleichung : a 1 s e s a s a e s a s 11 Daher gilt Beachte s F : Mit a a 1 a 1 folgt die Behautung. e s a 1 ii Ergänzungssätze : Im Folgenden sei eine Primzahl. 1.Ergänzungssatz : { 1 +1, +1 mod 1, 1mod 13 Es gilt Die Behautung folgt nun aus der Tatsache, dass 1 gerade +1 mod. 3

4 .Ergänzungssatz : { +1, ±1mod8 1, ±5mod8 1 Nach dem Gaußlemma gilt für a F : e s 15 Betrachte s e s s.für s 1 ist s S. Setze s : s, dann folgt e s +1. Andernfalls ist s / S, alsos s,das S. Alsoe s 1. Also gilt für s S : e s { +1, s 1 1, s > 1 16 Definiere { n : # s Z, 1 <s 1 } 17 Dann gilt : 1 n 18 Fallunterscheidungen : Fall 1 1 mod, d.h. k +1für k N Dann ist n #{s Z, k < s k} k k k. Also gilt : { 1 k +1, +1 mod 8 1, +5 mod 8 19 Denn für k gerade gilt : l+18l +1, und für k ungerade gilt : l +1+18l +5. Fall 1 mod, d.h. k +3für k N Dann ist n # { s Z, k+ 1 <s k +1} k +1 k k +1. Also gilt : { 1 k+1 +1, 1mod8 1, 5mod8 0 Denn für k +1gerade,d.h.k ungerade gilt : l +1+38l +7,

5 und für k + 1 ungerade, d.h. k gerade gilt : l+38l +3. Damit folgt die Behautung : { +1, ±1mod8 1, ±5mod8 1 Dies ist äquivalent zu iii Trigonometrisches Lemma Zum Beweis des QRGs benötigen wir folgende Identität : sinmx sinx m 1/ 1 j m 1/ sin x sin πj m 3 wobei m eine ungerade ganze Zahl ist. Der Leser möge sich das im Buch von H.-D. Ebbinghaus et al. : Zahlen Grundwissen Mathematik 1, Sringer veranschaulichen. iv Beweis des quadratischen Rezirozitätsgesetzes Seien l und zwei verschiedene Primzahlen und l,. Sei S { 1,..., 1 } wie vorher. Nach dem Gauss Lemma gilt : l e s l. Nun ergibt sich aus der Gleichheit von ls e s ls l : sin π ls e slsin π s l 5 Formt man diese Gleichung um und unter Beachtung, dass s s l eine Bijektion ist, ergibt sich folgender Ausdruck : l e s l sin πls /sinπs 6 Unter Verwendung des Trigonometrischen Lemmas mit m l können wir die Gleichung auch schreiben als : l l 1/ sin πs πt sin l t T l 1 1/ sin πs πt 7 sin l,t T 5

6 wobei T die Menge der ganzen Zahlen zwischen 1 und l 1/ kennzeichnet. Vertauscht man l und, erhält man einen ähnlichen Ausdruck : l 1 1/ sin πt sin πs 8 l l,t T l und l sind identisch bis auf ihr Vorzeichen. Da es l 1 Faktoren davon gibt, unterscheiden sich die Gleichungen nur um den Faktor 1 1 1l 1, womit das quadratische Rezirozitätsgesetz bewiesen wäre.. Beisiel 9 i 3 iv ii 1 iii ii i 7 9 v 1 9 Hierbei wurde verwendet : i QRG 9 1mod a ii ist nach Definition nur von der Restklasse a modulo abhängig iii Satz..1 Multilikativität des Legendre Symbols iv Satz.3.1 Teilii :.Ergänzungssatz 9 5mod8 v 1 ist als Quadratzahl für jede Primzahl Quadrat modulo 6

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7 Quadratische Reste Michael Partheil 19. Mai 008 Inhaltsverzeichnis 1 Hintergrund Quadratische Reste 4 3 Gauß sche Summen 7 4 Quadratisches Rezirozitätsgesetz 10 5 Literaturverzeichnis 1 1 1 Hintergrund

Mehr

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Charaktere. 1 Die Charaktergruppe

Charaktere. 1 Die Charaktergruppe Vortrag zum Seminar zur Funktionentheorie, 28.01.2008 Elisabeth Peternell Zu den wichtigsten Dirichletschen Reihen gehören die L-Reihen, welche insbesondere gewöhnliche Dirichletsche Reihen darstellen,

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Prof. Dr. Don Zagier Schätze der Zahlentheorie Ergänzendes Material

Prof. Dr. Don Zagier Schätze der Zahlentheorie Ergänzendes Material Prof. Dr. Don Zagier Schätze der Zahlentheorie Ergänzendes Material Felix Boes & Anna Hermann 11 Setember 2013 In der zweiten Vorlesung des heutigen Tages beschäftigen wir uns mit einem Beweis des Quadratischen

Mehr

4.2 Das quadratische Reziprozitätsgesetz

4.2 Das quadratische Reziprozitätsgesetz 4. Das quadratische Rezirozitätsgesetz Die Grundlage zur Berechnung des Legendre- (und Jacobi-) -Symbols sind die folgenden beiden Sätze; zunächst aber ein Hilfssatz, mit dem sich zusammengesetzte Moduln

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

16. Das Quadratische Reziprozitätsgesetz

16. Das Quadratische Reziprozitätsgesetz O Forster: Einführung in die Zahlentheorie 16 Das Quadratische Rezirozitätsgesetz 161 Das uadratische Rezirozitätsgesetz acht eine Aussage darüber, wie sich die Legendresybole ( und ( zueinander verhalten,

Mehr

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch: 7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge

Mehr

Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x

Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07 Aufgabe 1. Es seien R ein kommutativer Ring mit 1 und D R. Wir schreiben { ) x Dy QR, D) = x, y R}. y x Dann ist QR, D) abgeschlossen bezüglich der

Mehr

8. Woche Quadratische Reste und Anwendungen. 8. Woche: Quadratische Reste und Anwendungen 163/ 238

8. Woche Quadratische Reste und Anwendungen. 8. Woche: Quadratische Reste und Anwendungen 163/ 238 8 Woche Quadratische Reste und Anwendungen 8 Woche: Quadratische Reste und Anwendungen 163/ 238 Quadratische Reste Ḋefinition Quadratischer Rest Sei n N Ein Element a Z n heißt quadratischer Rest in Z

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 11. Januar 2018 1/32 Erinnerung: Eine Gruppe ist eine algebraische Struktur (G, )

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016 Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016

Mehr

Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum:

Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: Der Zwei-Quadrate-Satz von Fermat Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: 09.11.2015 GLIEDERUNG Einleitung Der Zwei-Quadrate-Satz Vorwissen

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Quadrate und Wurzelziehen modulo p

Quadrate und Wurzelziehen modulo p Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

Seminar Kryptographie. Satz von Hasse-Weil. Autor: Philipp Heÿler. Dozent: Dr. Mohamed Barakat

Seminar Kryptographie. Satz von Hasse-Weil. Autor: Philipp Heÿler. Dozent: Dr. Mohamed Barakat Seminar Kryptographie Satz von Hasse-Weil Autor: Philipp Heÿler Dozent: Dr. Mohamed Barakat 3. Mai 011 Inhaltsverzeichnis 1 Motivation 1 Frobenius Endomorphismus 3 Beweis Satz von Hasse-Weil 4 4 Anwendung

Mehr

= 1. Falls ( a n. ) r i. i=1 ( b p i

= 1. Falls ( a n. ) r i. i=1 ( b p i Das Jacobi-Symbol Definition Jacobi-Symbol Sei n N ungerade mit Primfaktorzerlegung n = s definieren das Jacobi-Symbol ( a ( ) ri n) := s a i=1 p i. i=1 pr i i. Wir Anmerkungen: Falls a quadratischer Rest

Mehr

Der Drei-Quadrate-Satz von Gauß

Der Drei-Quadrate-Satz von Gauß Der Drei-Quadrate-Satz von Gauß Bekanntlich ist eine ungerade Primzahl p genau dann Summe zweier Quadratzahlen, wenn p 1 mod 4. Daraus folgt, dass eine positive ganze Zahl n genau dann Summe zweier Quadratzahlen

Mehr

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x}

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x} $Id: endlich.tex,v 1.4 2009/04/27 13:49:37 hk Exp $ 3 Endliche Körper Wir waren gerade mit dem Beweis von Satz 1 beschäftigt, und hatten die Existenzteile des Satzes bereits eingesehen. Satz 3.1 (Klassifikation

Mehr

9. Woche: Elliptische Kurven - Gruppenarithmetik. 9. Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238

9. Woche: Elliptische Kurven - Gruppenarithmetik. 9. Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238 9 Woche: Elliptische Kurven - Gruppenarithmetik 9 Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238 Elliptische Kurven Ḋefinition Elliptische Kurve Eine elliptische Kurve E über dem Körper K ist eine

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Primzahltest für Mersenne-Primzahlen

Primzahltest für Mersenne-Primzahlen Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω

Mehr

7-1 Elementare Zahlentheorie

7-1 Elementare Zahlentheorie 7-1 Elementare Zahlentheorie 7 Die ganzen Gauß schen Zahlen Wir betrachten den Körper C der komplexen Zahlen Es ist C = R 2 mit komponentenweiser Addition und mit Multiplikation [a 1, a 2 ][b 1, b 2 ]

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Algebra und Geometrie 06. September 011 Klausur zur Vorlesung Aufgabe 1 (5 Punkte) Sei G eine Gruppe und X G eine beliebige Teilmenge von G. X := X N G a) Zeigen Sie, dass X der kleinste Normalteiler

Mehr

Zerlegung in Quadratzahlen

Zerlegung in Quadratzahlen Zerlegung in Quadratzahlen Die Zerlegung von natürlichen Zahlen in die Summe von Quadratzahlen ist eine alte, abgeschlossene Theorie, die schon von FERMAT im 17. Jahrhundert und später von EULER, LAGRANGE

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Ergebnisse über die Teiler der Folgen (a n + 1)

Ergebnisse über die Teiler der Folgen (a n + 1) Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Ergebnisse über die Teiler der Folgen (a n + 1) Bachelorarbeit in Mathematik

Mehr

Quadratische Reste und das quadratische Reziprozitätsgesetzt

Quadratische Reste und das quadratische Reziprozitätsgesetzt Quadratische Reste und das quadratische Reziprozitätsgesetzt Alexander Hölzle 03.04.007 Inhaltsverzeichnis I Motivation und Überblick 3 II Quadratische Reste 4 1 Grundlegendes und Beispiele...........................

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

5 Kongruenzrechnung. Definition. Zwei Zahlen heißen kongruent modulo m, wenn sie bei der Division durch m den gleichen Rest lassen.

5 Kongruenzrechnung. Definition. Zwei Zahlen heißen kongruent modulo m, wenn sie bei der Division durch m den gleichen Rest lassen. 5 Kongruenzrechnung Sei m > 0 fest vorgegeben Nach wissen wir: Jede Zahl a läßt sich auf eindeutige Weise durch m mit Rest dividieren, dh: Es gibt genau ein Zahlenpaar q, r mit der Eigenschaft ( ) a =

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

Algebraische Gleichungen. Martin Brehm February 2, 2007

Algebraische Gleichungen. Martin Brehm February 2, 2007 Algebraische Gleichungen Martin Brehm February, 007 1. Der Begriff Algebra Algebraische Gleichungen Durch das herauskristalisieren von mehreren Teilgebieten der Algebra ist es schwer geworden eine einheitliche

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

(M1) x N : m(x,1) = x. (M2) x, y N : m(x, y ) = s(m(x, y), x)

(M1) x N : m(x,1) = x. (M2) x, y N : m(x, y ) = s(m(x, y), x) Aufgabe 1 3 Punkte) Erinnerung: Die Addition s und die Multilikation m auf N sind die eindeutigen Funktionen s bzw. m: N N N, für die gilt S1) x N : sx,1) x S) x, y N : sx, y ) sx, y) M1) x N : mx,1) x

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.2 2010/05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Zahlentheoretische Variationen zum Satz des Pythagoras

Zahlentheoretische Variationen zum Satz des Pythagoras Zahlentheoretische zum Satz des nstitut für Mathematik Humboldt-Universität zu Berlin 17. Januar 2017 Aus Die Pythagoreer von Bartel L. van der Waerden Satz. Ein rechtwinkliges Dreieck mit den Katheten

Mehr

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012 Zahlentheorie = Algebra + Geometrie + Analysis 19. Januar 2012 Inhalt 1 Dreieckszahlen 2 3 4 Dreieckszahlen Eine rationale Zahl D > 0 heißt Dreieckszahl (oder Kongruenzzahl), falls D die Fläche eines rechtwinkligen

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

Elemente der Mathematik - Sommer 2017

Elemente der Mathematik - Sommer 2017 Elemente der Mathematik - Sommer 2017 Prof. Dr. Peter Koepke, Thomas Poguntke Lösung 1 Aufgabe 54 (4+2 Punkte). In der Vorlesung wurde die Multiplikation auf den ganzen Zahlen definiert durch (a, b) (a,

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

6-1 Elementare Zahlentheorie Zahlen, die sich als Summe zweier Quadrate schreiben lassen.

6-1 Elementare Zahlentheorie Zahlen, die sich als Summe zweier Quadrate schreiben lassen. 6-1 Elementare Zahlentheorie 6 Summen von Quadraten Wir interessieren uns hier für die Frage, ob sich eine Zahl n als Summe von sagen wir t Quadraten ganzer Zahlen schreiben lässt, oder auch, genauer,

Mehr

Summen aufeinander folgender Quadrate, die ein Quadrat ergeben

Summen aufeinander folgender Quadrate, die ein Quadrat ergeben Elem Math 60 (2005) 66 71 001-6018/05/020066-6 c Swiss Mathematical Society, 2005 Elemente der Mathematik Summen aufeinander folgender Quadrate, die ein Quadrat ergeben Josef Rung und Johann Werner Josef

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

2-1 Elementare Zahlentheorie

2-1 Elementare Zahlentheorie -1 Elementare Zahlentheorie. Die Restklassenringe Z/n. Wir beschäftigen uns hier mit den Ringen Z/n = Z/nZ mit n N, und zwar einerseits mit der additiven Grue (Z/n, +), andererseits mit der multilikativen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl

Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan Prof. Dr. Johann Hartl Kapitel 1 Komplexe Zahlen Wozu brauchen wir komplexe Zahlen? 1 Für das Rechnen in

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Gleichungen fünften Grades

Gleichungen fünften Grades Gleichungen fünften Grades Teil 1 Marc Pollak 11. Juni 2013 Motivation Was ist uns bisher bekannt? Allgemeine Lösung einer Gleichung zweiten Grades durch die Mitternachtsformel Vor zwei Wochen, Lösung

Mehr

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Technische Universität Dortmund Sommersemester 2012 Fakultät für Mathematik 23.07.2012 Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

8. Übungsblatt zur Mathematik I für Chemiker

8. Übungsblatt zur Mathematik I für Chemiker Fachbereich Mathematik PD Dr. P. Ne WS 007/008 6.1.007 8. Übungsblatt zur Mathematik I für Chemiker Zur Erinnerung, die Formel für die Taylorreihe um die Stelle x 0 lautet f(x) n0 f (n) (x 0 ) (x x 0 )

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Kryptographie mit elliptischen Kurven Ausarbeitung im Rahmen des Seminars Verschlüsselungs- und Codierungstheorie an der

Mehr

Die Riemann'sche Vermutung

Die Riemann'sche Vermutung Die Riemann'sche Vermutung Julián Cancino (ETH Zürich) 7. Juni 7 Leonhard Euler (77-783) und Bernhard Riemann (86-866) sind sicher die bedeutendsten Mathematiker aller Zeiten für ihre Beiträge zu verschiedenen

Mehr

Analysis für Ingenieure

Analysis für Ingenieure Analysis für Ingenieure Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf SS 2011 Überblick 0. Einleitung 1. Umgang mit Mengen 2. Die natürlichen Zahlen und das Prinzip

Mehr

Die umgekehrte Richtung

Die umgekehrte Richtung Die umgekehrte Richtung Satz 95 Sei n N, n 2. Dann gilt: b n 1 1 mod n für alle b Z n \ {0} = n ist prim. Beweis: [durch Widerspruch] Annahme: r n für ein r N, r > 1. Dann also r n 1 1 (r mod n) n 1 1

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Aufgabenblatt 1: Abgabe am vor der Vorlesung

Aufgabenblatt 1: Abgabe am vor der Vorlesung Aufgabenblatt 1: Abgabe am 17.09.09 vor der Vorlesung Aufgabe 1. a.) (1P) Geben Sie die Lösungsmenge der folgenden Gleichung an: 6x + y = 10. Zeichnen Sie die Lösungsmenge in ein Koordinatensystem. b.)

Mehr

Elementare Zahlentheorie (Version 2)

Elementare Zahlentheorie (Version 2) Elementare Zahlentheorie (Version ) (Winter Semester, 005-6) Einführung Literatur. An Introduction to the Theory of Numbers, Oxford University Press, von Hardy und Wright.. A Classical Introduction to

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

2. Primzeta-Funktion. Summe der reziproken Primzahlen

2. Primzeta-Funktion. Summe der reziproken Primzahlen O. Forster: Analytische Zahlentheorie. Primzeta-Funktion. Summe der reziroken Primzahlen.. Definition. Die Primzeta-Funktion ist für Re(s > definiert durch P(s := s. Dabei wird über alle Primzahlen summiert.

Mehr

ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA

ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA ZAHLENTHEORIE Skritum zur Vorlesung von Prof. Michael DRMOTA Inhaltsverzeichnis Teilbarkeit in ganzen Zahlen. ggt und kgv............................2 Fundamentalsatz der Zahlentheorie............... 3.3

Mehr

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $ $Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

c Swiss Mathematical Society, 2007

c Swiss Mathematical Society, 2007 Elem. Math. 62 (2007) 106 117 0013-6018/07/030106-12 c Swiss Mathematical Society, 2007 Elemente der Mathematik Idempotente Zahlen Günter Köhler und Jürgen Spilker Beide Verfasser sind pensionierte Professoren

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr