Seminar zum Thema Kryptographie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Seminar zum Thema Kryptographie"

Transkript

1 Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017

2 Inhaltsverzeichnis 1 Einleitung Konventionen Wiederholung Hauptteil Gruppen/ Untergruppen und Ordnung Prime Restklassengruppen Eulersche phi-funktion und kleine Satz von Euler

3 1 Einleitung Diese Ausarbeitung handelt vom Satz von Euler und dessen Beweis. Dazu wird vorher ein kleiner Teil der Gruppentheorie wiederholt. Als Quellen wurden aus dem Kapitel 2 des Buches Einführung in die Kryptographie von Johannes Buchmann die Sätze und Denitionen und das Kapitel 1.2 aus dem Buch Lineare Algebra von Gerd Fischer, sowie eigene Unterlagen verwendet. 1.1 Konventionen In diesem Abschnitt gehe ich auf Konventionen ein, die ich in dieser Arbeit verwende. Ich schreibe N = {1, 2, 3, 4,...} für die natürlichen Zahlen ohne 0 und Z = {0, ±1, ±2, ±3,...} für die ganzen Zahlen. 1.2 Wiederholung Dieser Abschnitt dient dazu, die wichtigsten Begrie in Erinnerung zu rufen. Dention 1.2.1: Teiler und Vielfaches Seien a, b Z. Man sagt a teilt b (geschrieben a b), falls ein c Z existiert mit b = ac. Das Element a ist dann ein Teiler von b und b ein Vielfaches von a. Wenn kein solches c existiert schreibt man a b. Beispiel 1. Es gilt 6 30, da 30 = 5 6 ist. Beispiel 2. Sei a Z. Für alle a gilt: a 0 weil 0 = a 0 für alle a ist. Dention 1.2.2: gemeinsamer Teiler/ Teilerfremd Seien a, b, c Z. Das Element c ist ein gemeinsamer Teiler von a und b, wenn gilt: c a und c b Unter allen gemeinsamen Teilern zweier ganzen Zahlen a und b, die nicht beide gleich 0 sind, gibt es genau einen gröÿten. Dieser heiÿt gröÿter gemeinsamer Teiler (ggt) von a und b und wird mit ggt (a, b) bezeichnet. Weiterhin wird der 3

4 gröÿte gemeinsame Teiler von 0 und 0 auf 0 gesetzt. Also ggt (0, 0) = 0. Falls ggt (a, b) = 1, sagen wir, a und b sind teilerfremd. An dieser Stelle möchten wir uns kurz klarmachen, dass auch wirklich ein gröÿter gemeinsamer Teiler existiert. Seien dazu a, b Z, und a 0. Da alle Teiler von a durch a beschränkt sind, muss es unter allen Teilern von a und damit unter allen gemeinsamen Teilern von a und b einen gröÿten geben. Beispiel 3. Zum Beispiel gilt: 1. ggt(18,30)=6, 2. ggt(-10,20)=10, 3. ggt(-20,-14)=2. Dention 1.2.3: Kongruenz Sei m N und a, b Z. Wir sagen, a ist kongruent zu b modulo m und schreiben a b mod m, wenn m die Dierenz b a teilt. Dention 1.2.4: Ring Eine Menge R zusammen mit zwei Verknüpfungen + :R R R, (a, b) a + b, und :R R R, (a, b) a b, heiÿt Ring, wenn folgendes gilt: R1) Die Menge R ist mit der Addition + eine abelsche Gruppe. R2) Die Multiplikation ist assoziativ. R3) Es gelten die Distributivgesetze, also für alle a, b, c R gilt: a (b + c) = a b + a c und (a + b) c = a c + b c. Der Ring heiÿt kommutativ, wenn die Halbgruppe (R, ) kommutativ ist. Beispiel 4. (Z, +, ) ist ein kommutativer Ring mit Einselement 1 und daraus leitet man ab, dass (Z/mZ, +, ) ein kommutativer Ring mit Einselement 1 + mz ist. Der letzere Ring heiÿt Restklassenring modulo m. 4

5 Dention 1.2.5: nullteilerfrei Ein Ring heiÿt nullteilerfrei, falls für a, b R gilt: a b = 0 a = 0 oder b = 0. Dention 1.2.6: Einheit Sei R ein nullteilerfreier kommutativer Ring mit 1. Ein Element u R heiÿt Einheit, falls es ein v R gibt mit u v = 1. Wir schreiben R = {u R u ist eine Einheit} für die Menge aller Einheiten in R. Dention 1.2.7: prim Sei R wieder ein nullteilerfreier kommutativer Ring mit 1. Weiter sei p R \ (R {0}). Das Element p heiÿt prim oder Primelement, wenn für alle a, b R mit p a b immer p a oder p b folgt. 5

6 2 Hauptteil Zur Motivation dieses Vortrages: Wir möchten die Restklasse von modulo 10 bestimmen. Durch geschicktes Anwenden von Potenzgesetzen erhalten wir folgende Lösung: (3 2 ) ( 1) 80 1 mod 10. ein ähnliches Beispiel ist modulo 8. Eine mögliche Lösung ist: mod 8. Hierbei kann man sich schon denken, dass es nicht leicht ist, solche Arten von Aufgaben zu lösen. Beispielsweise ist modulo 19 schon nicht mehr so leicht zu rechnen. Nun wäre es hilfreich Sätze oder Regeln zu kennen, die einem dabei helfen. Vorher sollte man sich nochmal ein paar Denitionen in Erinnerung rufen. 2.1 Gruppen/ Untergruppen und Ordnung Dention 2.1.1: Gruppe Eine Menge G zusammen mit einer Verknüpfung heiÿt Gruppe, wenn folgende Axiome erfüllt sind: G1) (Assoziativgesetz) Es gilt (a b) c = a (b c) für alle a, b, c G. G2) (neutrales Element) Es existiert ein e G mit e a = a für alle a G. G3) (inverses Element) Zu jedem a G gibt es ein a G mit a a = e. Gilt zusätzlich das Kommutativgesetz, also a b = b a für alle a, b, G, heiÿt die Gruppe abelsch. Gilt nur G1, dann nennen wir (G, ) eine Halbgruppe. Beispiel 5. Folgende Menge mit deren Verknüpfungen sind Gruppen, Halbgruppen bzw. keine Gruppen: 1. (Z, +) ist eine abelsche Gruppe 2. (Z, ) ist eine Halbgruppe, da nicht jedes Element ein Inverses besitzt. 3. (Z/9Z, ) ist keine Gruppe, da die 0,3,6 kein inverses in der Menge besitzen. 6

7 Als nächstes führen wir Elementordnungen und ihre Eigenschaften ein. Dazu sei G eine Gruppe, die multiplikativ geschrieben ist, mit neutralem Element 1. Dention 2.1.2: Ordnung Sei g G. Wenn es eine natürliche Zahl e gibt mit g e = 1, dann heiÿt die kleinste solche Zahl Ordnung von g in G. Andernfalls sagt man, dass die Ordnung von g in G unendlich ist. Die Ordnung von g in G wird mit ord G (g) bezeichnet. Wenn es klar ist, um welche Gruppe es sich handelt, schreibt man auch ord(g). Beispiel 6. Sei G := (Z/4Z, +). Dann ist Ord G (1) = 4, da 1 4 = = 0, und Ord G (2) = 2, da 2 2 = = 0. Satz Sei g G und e Z. Dann gilt g e = 1 genau dann, wenn e durch die Ordnung von g in G teilbar ist. Beweis. Sei n = ord(g) und k Z. Wenn e = kn ist, dann folgt g e = g kn = (g n ) k = 1 k = 1. Sei umgekehrt g e = 1. Sei weiterhin e = qn + r mit 0 r < n. Dann folgt g r = g e qn = g e (g n ) q = 1. Weil n die kleinste natürliche Zahl ist mit g n = 1, und weil 0 r < n ist, muss r = 0 und damit e = qn sein. Also ist n ein Teiler von e, wie behauptet. Korollar Sei g G und seien k, l Z. Dann gilt: g l = g k l k mod ord(g). Beweis. Folgt direkt mit e = l k aus Satz Dention 2.1.3: Untergruppe Eine Teilmenge U G heiÿt Untergruppe von G, wenn U mit der Verknüpfung von G selbst eine Gruppe ist. 7

8 Beispiel 7. Für jedes g G bildet die Menge {g k : k Z} eine Untergruppe von G. Sie heiÿt die von g erzeugte Untergruppe und wird mit < g > bezeichnet. Hat g endliche Ordnung e, dann ist < g >= {g k : 0 k < e} und e die Ordnung von < g >. Ist nämlich x eine ganze Zahl, dann gilt g x = g x mod e. Wenn man nun beispielsweise (Z/11Z)* untersucht, stellt man folgendes fest: Die Gruppe (Z/11Z)* besteht aus der Menge {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Wir schauen uns dabei die 3 näher an und multiplizieren 3 immer wieder mit sich selbst. 3 1 = = = = = 5 3 = = 4 3 = = 1 3 = 3 Dabei fällt auf, dass man nicht alle Elemente der Gruppe trit. Wenn man allerdings die 2 untersucht, stellt man fest, dass alle Element der Gruppe getroen werden. Dention 2.1.4: zyklische Gruppe und Erzeuger Wenn G =< g > für ein g G ist, so heiÿt G zyklisch und g heiÿt Erzeuger von G. Die Gruppe G ist dann die von g erzeugte Gruppe. Beispiel 8. Die additive Gruppe (Z, +) ist zyklisch mit 2 Erzeugern 1 und -1, denn durch eine additive Verknüpfung können wir jede ganze Zahl zyklisch erzeugen (ebenfalls durch -1). Beispiel 9. Beispiel für eine nicht Zyklische Gruppe: (Z/8Z) ist eine nicht zyklische Gruppe, denn: Die Gruppe (Z/8Z) hat genau 4 Elemente. Es gilt: (Z/8Z) = {1, 3, 5, 7}. Da aber gilt: 3 2 = 9 1 mod 8, 5 2 = 25 1 mod 8, 7 2 = 49 1 mod 8, 8

9 folgt, dass (Z/8Z) nicht zyklisch ist, da jedes von 1 verschiedene Element nur eine Untergruppe der Ordnung 2 erzeugt. Bemerkung In den Vorträgen zu dem diskretem Logarithmus werden wir die zyklischen Gruppen nochmal brauchen. Satz Eine endliche Gruppe G mit G Elementen ist dann und nur dann zyklisch, wenn sie ein Element der Ordnung G enthält. Genauer gilt für jedes g G die Äquivalenz: g erzeugt G ord(g) = G Beweis. Die Untergruppe < g > besteht aus m = ord(g) Elementen. Sie ist also genau dann gleich ganz G, wenn m = G. Satz Ist G eine endliche Gruppe, so teilt die Ordnung jeder Untergruppe die Ordnung von G. Beweis. Sei H eine Untergruppe von G. Wir sagen, dass 2 Elemente a und b aus G äquivalent sind, wenn a/b = ab 1 zu H gehört. Dies ist eine Äquivalenzrelation: Es ist nämlich a/a = 1 H, daher ist die Relation reexiv. Auÿerdem folgt aus a/b H, dass auch b/a H, weil H eine Gruppe ist. Daher ist die Relation symmetrisch. Ist schlieÿlich a/b H und b/c H, so ist auch a/c = (a/b)(b/c) H. Also ist die Relation auch transitiv. Wir zeigen, dass die Äquivalenzklassen alle die gleiche Anzahl von Elementen haben. Die Äquivalenzklasse von a G ist {ha : h H}. Seien a,b zwei Elemente aus G. Betrachte die Abbildung {ha : h H} {hb : h H}, ha hb. Die Abbildung ist injektiv, weil in H die Kürzungsregel gilt. Die Abbildung ist auÿerdem oensichtlich surjektiv. Daher haben beide Äquivalenzklassen gleich viele Elemente. Es ist damit gezeigt, dass alle Äquivalenzklassen die gleiche Anzahl von Elementen haben. Eine solche Äquivalenzklasse ist aber die Äquivalenzklasse von 1 und die ist H. Die Anzahl der Elemente in den Äquivalenzklassen ist somit H. Weil G aber die disjunkte Vereinigung aller Äquivalenzklassen ist, ist G ein Vielfaches von H. 9

10 2.2 Prime Restklassengruppen Dention 2.2.1: Prime Restklasse Eine Restklasse a + mz in Z/mZ heiÿt prim, falls sie in Z/mZ ein multiplikatives Inverses hat, also ein b Z mit ab 1 mod m existiert. Im Vortrag 1 wurde folgender Satz gezeigt, den wir für den Beweis vom Satz benötigen. Satz Die Restklasse a + mz ist genau dann in Z/mZ invertierbar, d.h. die Kongruenz ist genau dann lösbar, wenn ggt (a, m) = 1 gilt. Ist ggt (a, m) = 1, dann ist das Inverse von a + mz eindeutig bestimmt. Die Gruppe der primen Restklassen modulo m heiÿt prime Restklassengruppe modulo m und wird mit (Z/mZ) bezeichnet. Ihre Ordnung bezeichnet man mit ϕ(m). Satz Sei m N. Die Menge aller primen Restklassen modulo m bildet eine endliche abelsche Gruppe bezüglich der Multiplikation. Beweis. Nach Satz ist diese Menge die Einheitengruppe des Restklassenringes mod m. 2.3 Eulersche phi-funktion und kleine Satz von Euler Bei dem Problem am Anfang von Kapitel 2 hilft uns nun genau der folgende Satz von Leonhard Euler. Vorher eine kurze Erinnerung zu Teilbarkeit in Restklassenringen. Eine Restklasse a+mz oder a mod m ist genau dann invertierbar, wenn, ggt (a, m) = 1. Die Abbildung N N; m ϕ(m) heiÿt Eulersche ϕ -Funktion. Es gilt ϕ(m) = {x N 1 x m ggt (x, m) = 1}. 10

11 Beispiel 10. Beispielsweise gilt: ϕ(6) = {1, 5} = 2, ϕ(9) = {1, 2, 4, 5, 7, 8} = 6, ϕ(17) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} = 16. Satz Falls p eine Primzahl ist, gilt ϕ(p) = p 1. Beweis. Da p eine Primzahl ist, und deshalb nur durch sich selbst und 1 teilbar ist, ist sie zu den Zahlen 1 bis p 1 teilerfremd. Weil sie gröÿer als 1 ist, ist sie auÿerdem nicht zu sich selbst teilerfremd. Beispiel 11. Wir wollen ϕ(3 5 ) bestimmen. Jetzt kann man sich überlegen, ob man alle teilerfremden Zahlen zählt oder alle nicht teilerfremden. Dabei ist es ab Besten, wenn man alle Zahlen zählt, deren Primfaktorzerlegung eine Drei enthält, denn alle Vielfachen von 3 sind nicht teilerfremd zu 3 5. Vielfache der 3 sind die Zahlen: 3 1, 3 2, 3 3,..., 3 (3 4 1), }{{} 3 4 Vielfache der 3 Daraus folgt: ϕ(3 5 ) = = 162. Satz Sei p eine Primzahl und m N. Dann ist ϕ(p m ) = p m p m 1. Falls m groÿ und keine Primzahl bzw. Potenz einer Primzahl ist, ist ϕ(m) aktuell noch schwer zu bestimmen. Im Vortrag über den Chinesischen Restsatz wird eine Formel hergeleitet, die es ermöglicht, ϕ(m) im Allgemeinen zu bestimmen. Satz 2.3.3: Satz von Euler Seien a, m N. Wenn ggt (a, m) = 1 ist, dann folgt a ϕ(m) 1 mod m. Beweis. Es gelte ggt (a, m) = 1. Die Funktion ϕ(m) gibt die Anzahl der zu m teilerfremden Zahlen wieder, die kleiner gleich m sind. 11

12 Die einzelnen Elemente bezeichnen wir als k 1, k 2,..., k ϕ(m). Jetzt können wir zu den einzelnen k i die Zahl a dran multiplizieren, also a k 1, a k 2,..., a k ϕ(m), damit bleiben die Zahlen weiterhin teilerfremd, da a zu m teilerfremd ist. Daraus folgt ggt (ak i, m) = 1. Es entsteht lediglich eine Permutation der k i. Wenn wir nun alle k i mit einander multiplizieren, erhalten wir folgende Kongruenz: k 1 k 2... k ϕ(m) a k 1 a k 2... a k ϕ(m) mod m 1 a a... a }{{} ϕ(m) mal 1 a ϕ(m) mod m. mod m Der Satz von Euler dient der Reduktion groÿer Exponenten modulo m, wie im folgendem Beispiel: Beispiel 12 (Anwendung des Satzes von Euler). Als Beispiel möchten wir die letzte Dezimalstelle von wissen. Es gilt ggt (7, 10) = 1 und ϕ(10) = 4. Der Satz von Euler liefert: und wir erhalten mod = = (7 4 ) = mod

13 Literaturverzeichnis [1] Buchmann, Johannes: Einführung in die Kryptographie. 6. Au. Springer-Verlag, Darmstadt, 2016 [2] Fischer,Gert: Lineare Algebra. 18. Au. Springer-Verlag, München,

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $ $Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung

Mehr

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

5 Restklassen. Restklasse siehe unten.) (Zum Namen

5 Restklassen. Restklasse siehe unten.) (Zum Namen 5 Restklassen Definition 5.1 Seien a, m Z. Die Restklasse von a modulo m ist die bekannte Teilmenge a + mz von Z. Sie wird auch mit (a mod m) bezeichnet. (Zum Namen Restklasse siehe unten.) Bemerkungen

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität

Mehr

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014 Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch: 7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik Mathematik III (für Informatiker) Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt 10 Differentialgleichungen 11 Potenz- und Fourier-Reihen 12 Integraltransformationen 13 Algebraische

Mehr

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen 1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen Einleitung 1 Wie der Name schon sagt sind Äquivalenzrelationen besondere Relationen. Deswegen erkläre ich hier ganz allgemein, was Relationen

Mehr

3. Zahlbereiche und algebraische Strukturen

3. Zahlbereiche und algebraische Strukturen technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat.

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat. 3 Die ganzen Zahlen 3.1 Historisches Die { bisher noch nicht erklarte { Subtraktion ist in N 0 nicht uneingeschrankt durchfuhrbar. Die negativen Zahlen wurden noch zu Zeiten von Rene Descartes als falsche\

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Folien der 14. Vorlesungswoche

Folien der 14. Vorlesungswoche Folien der 14. Vorlesungswoche Ein Beispiel: Z 6 Im allgemeinen ist der Ring Z m kein Körper. Wie uns aus der allerdings nichtkommutativen Situation der Matrixringe M n (R) schon bekannt ist, kann das

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven

Mehr

Grundlagen der Algebra und der elementaren Zahlentheorie

Grundlagen der Algebra und der elementaren Zahlentheorie Grundlagen der Algebra und der elementaren Zahlentheorie Kurz-Skript zur Vorlesung Sommersemester 2011 von Dr. Dominik Faas Institut für Mathematik Fachbereich 7: Natur- und Umweltwissenschaften Universität

Mehr

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin Die Menge der ganzen Zahlen von Peter Franzke in Berlin Das System der natürlichen Zahlen weist einen schwerwiegenden Mangel auf: Es gibt Zahlen mn, derart, dass die lineare Gleichung der Form mx n keine

Mehr

2.1 Zyklische Gruppen, Ordnung von Elementen, ggt und kgv

2.1 Zyklische Gruppen, Ordnung von Elementen, ggt und kgv Algebra und Zahlentheorie c Rudolf Scharlau, 2002 2013 111 2.1 Zyklische Gruppen, Ordnung von Elementen, ggt und kgv Eine Gruppe heißt zyklisch, wenn sie aus den Potenzen eines festen Elementes besteht.

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Diskrete Logarithmen

Diskrete Logarithmen Westfälische Wilhelms-Universität Münster Ausarbeitung Diskrete Logarithmen im Rahmen des Seminars Multimedia und Graphen Oliver Liebsch Themensteller: Prof. Dr. Herbert Kuchen Betreuer: Dipl.-Wirt.Inform.

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

Gruppentheorie II. von Nicole Drüke

Gruppentheorie II. von Nicole Drüke Gruppentheorie II von Nicole Drüke Abelsche Gruppen DEFINITION Multiplikative und Additive Gruppe Sei A eine abelsche Gruppe mit x A, dieses wird erzeugt durch a 1,...,a n A x=a 1 1... an n für 1,.., n

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.11 2012/04/16 19:15:39 hk Exp $ $Id: gruppen.tex,v 1.11 2012/04/17 10:30:56 hk Exp $ 1 Modulare Arithmetik 1.3 Restklassen Wir waren gerade damit beschäftigt eine Beispiele zum Rechnen

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1

Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition +

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr

Asymmetrische Kryptographie u

Asymmetrische Kryptographie u Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Prof. S. Krauter Endliche Geometrie. SS 05. Blatt Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung.

Prof. S. Krauter Endliche Geometrie. SS 05. Blatt Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung. Prof. S. Krauter Endliche Geometrie. SS 05. Blatt03 1. Wiederholen Sie die Abschnitte zum Rechnen mit Restklassen aus der Einführungsveranstaltung. 2. Die zahlentheoretische Kongruenz ist folgendermaßen

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Gruppentheorie Eine Zusammenfassung

Gruppentheorie Eine Zusammenfassung Gruppentheorie Eine Zusammenfassung Stephan Tornier ETH Zürich FS 09 21. Mai 2009 Zusammenfassung In diesem Skript sind grundlegende Definitionen und Aussagen der Gruppentheorie zusammengefasst. basierend

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25

2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25 2 Gruppen Übersicht 2.1 Eigenschaften und Beispiele von Gruppen............................. 17 2.2 Untergruppen...................................................... 21 2.3 Homomorphismen..................................................

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Diskrete Strukturen Vorlesungen 13 und 14

Diskrete Strukturen Vorlesungen 13 und 14 Sebastian Thomas RWTH Aachen, WS 2016/17 01.12.2016 07.12.2016 Diskrete Strukturen Vorlesungen 13 und 14 11 Kongruenzen und Restklassenringe In diesem Abschnitt wollen wir eine ganze Serie von neuen Ringen

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr