ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen"

Transkript

1 ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz

2 Kongruenzen Denition (8) Es seien m N + und a, b Z. a) a heiÿt kongruent zu b modulo m (Schreibweise: a b mod (m)) genau dann, wenn m (b a). m heiÿt der Modul der Kongruenz a b mod (m). b) a = {b Z b a mod (m)} = {a + km k Z} = a + mz heiÿt (die) Restklasse (von a) modulo m. Jedes Element c a einer Restklasse heiÿt ein Repräsentant dieser Restklasse. c) Z/(m) bezeichnet die Menge aller Restklassen modulo m: Z/(m) = {r = r + mz 0 r < m} = {0, 1, 2,..., (m 1)}. d) Für s 1,..., s m Z heiÿt {s 1,..., s m } ein vollständiges Repräsentantensystem modulo m, wenn für alle i, j mit 1 i < j m gilt: s i s j mod (m).

3 Kongruenzen Denition (8) Es seien m N + und a, b Z. a) a heiÿt kongruent zu b modulo m (Schreibweise: a b mod (m)) genau dann, wenn m (b a). m heiÿt der Modul der Kongruenz a b mod (m). b) a = {b Z b a mod (m)} = {a + km k Z} = a + mz heiÿt (die) Restklasse (von a) modulo m. Jedes Element c a einer Restklasse heiÿt ein Repräsentant dieser Restklasse. c) Z/(m) bezeichnet die Menge aller Restklassen modulo m: Z/(m) = {r = r + mz 0 r < m} = {0, 1, 2,..., (m 1)}. d) Für s 1,..., s m Z heiÿt {s 1,..., s m } ein vollständiges Repräsentantensystem modulo m, wenn für alle i, j mit 1 i < j m gilt: s i s j mod (m).

4 Kongruenzen Denition (8) Es seien m N + und a, b Z. a) a heiÿt kongruent zu b modulo m (Schreibweise: a b mod (m)) genau dann, wenn m (b a). m heiÿt der Modul der Kongruenz a b mod (m). b) a = {b Z b a mod (m)} = {a + km k Z} = a + mz heiÿt (die) Restklasse (von a) modulo m. Jedes Element c a einer Restklasse heiÿt ein Repräsentant dieser Restklasse. c) Z/(m) bezeichnet die Menge aller Restklassen modulo m: Z/(m) = {r = r + mz 0 r < m} = {0, 1, 2,..., (m 1)}. d) Für s 1,..., s m Z heiÿt {s 1,..., s m } ein vollständiges Repräsentantensystem modulo m, wenn für alle i, j mit 1 i < j m gilt: s i s j mod (m).

5 Rechenregeln für Kongruenzen mit festem Modul Satz (14) Es seien m N + und a, a, b, b Z mit a a b b mod (m). Dann gilt: mod (m) und a) a ± b a ± b mod (m). b) ab a b mod (m). c) Für k N + gilt: a k (a ) k mod (m). d) Ist f Z[X ], so gilt: f (a) f (a ) mod (m). e) ggt(a, m) = ggt(a, m).

6 Rechenregeln für Kongruenzen zu verschiedenen Moduln Satz (15) Es seien m N + und a, b, c Z. a) Ist a b mod (m) und m 0 N + mit m 0 m, so folgt a b mod (m 0 ). b) Ist a b mod (m) und c 0, so folgt ac bc mod (m c ). c) Ist ac bc mod (m), so folgt a b mod ( m ggt(c,m)). d) Es seien m 1,..., m k N +. Es gilt für alle 1 i k a b mod (m i ) genau dann, wenn a b mod ( kgv(m 1,..., m k ) ) gilt.

7 Anwendung: Prüfziern Oft werden natürliche Zahlen verwendet, um groÿe Datenmengen,,durchzunummerieren (Sozialversicherungs-, Konto-, Kreditkarten-, Artikel-, Kunden-, Buchungs-Nummer). Um bei einer k-stelligen Dezimalzahl Fehler (beim Abschreiben, Eintippen, Scannen,... ) zu vermeiden, wird die Zahl mit einer (oder mehreren) Prüfziern ergänzt, welche nach einem bestimmten Schema (Rechenvorschrift) bestimmt werden. Damit sind bei d Prüfziern nicht mehr alle (k + d)-stelligen Dezimalzahlen,,gültige Nummern, sondern nur mehr jene mit richtigen Prüfziern. ISBN = Internationale Standard Buch Nummer: z 1 -z 2 z 3 z 4 -z 5 z 6 z 7 z 8 z 9 -p mit z 1,..., z 9 {0, 1, 2,..., 9} Die Prüfzier p {0, 1, 2,..., 9, X = 10} wird so berechnet, dass erfüllt ist. p z 1 + 2z 2 + 3z z 9 mod (11) IBAN, EAN = European Article Number (EAN-13), GTIN = Global Trade Item Number (GTIN-13, GTIN-14)

8 Anwendung: Prüfziern Oft werden natürliche Zahlen verwendet, um groÿe Datenmengen,,durchzunummerieren (Sozialversicherungs-, Konto-, Kreditkarten-, Artikel-, Kunden-, Buchungs-Nummer). Um bei einer k-stelligen Dezimalzahl Fehler (beim Abschreiben, Eintippen, Scannen,... ) zu vermeiden, wird die Zahl mit einer (oder mehreren) Prüfziern ergänzt, welche nach einem bestimmten Schema (Rechenvorschrift) bestimmt werden. Damit sind bei d Prüfziern nicht mehr alle (k + d)-stelligen Dezimalzahlen,,gültige Nummern, sondern nur mehr jene mit richtigen Prüfziern. ISBN = Internationale Standard Buch Nummer: z 1 -z 2 z 3 z 4 -z 5 z 6 z 7 z 8 z 9 -p mit z 1,..., z 9 {0, 1, 2,..., 9} Die Prüfzier p {0, 1, 2,..., 9, X = 10} wird so berechnet, dass erfüllt ist. p z 1 + 2z 2 + 3z z 9 mod (11) IBAN, EAN = European Article Number (EAN-13), GTIN = Global Trade Item Number (GTIN-13, GTIN-14)

9 Satz (16) Die Zahl a N + habe die Dezimaldarstellung a = (z k z k 1... z 1 z 0 ) 10 := z k 10 k + z k 1 10 k z z 0 mit k N 0 und z i {0, 1, 2,..., 9}. Dann gilt: a) a z 0 mod (10). b) a 10z 1 + z 0 mod (100). c) a k i=0 z i mod (9). d) a k i=0 ( 1)i z i mod (11). e) a (z 0 z 3 + z 6 z 9... ) + 3 (z 1 z 4 + z 7 z ) (z 2 z 5 + z 8 z ) mod (7).

10 Teilbarkeitsregeln Korollar (2) Es sei a N + in Dezimaldarstellung wie in Satz 16 gegeben. Dann gilt: 2 2 {0, 2, 4, 6, 8} a) 5 teilt a 5 teilt z 0 z 0 {0, 5} {0} b) 3 } teilt a 3 } teilt k 9 9 i=0 z i c) 25 teilt a 25 teilt 10z 1 + z d) 11 teilt a 11 teilt k i=0 ( 1)i z i.

11 Lösbarkeit einer linearen Kongruenz Satz (17) Es seien k, m N + und a 1,..., a k, c Z. Dann gilt: die Kongruenz a 1 X 1 + a 2 X a k X k c mod (m) ist genau dann (über Z) lösbar (d.h.: es existieren x 1,..., x k Z mit k i=1 a ix i c mod (m)), wenn ggt(a 1,..., a k, m) c. Korollar (3) Es seien m N + und a, c Z. Dann gilt: a) ax c mod (m) ist lösbar ggt(a, m) c. b) Es gibt ein a Z mit aa 1 mod (m) ggt(a, m) = 1. c) Es gibt ein a 0 Z mit a 0 0 mod (m) und aa 0 0 mod (m) ggt(a, m) > 1.

12 Lösbarkeit einer linearen Kongruenz Satz (17) Es seien k, m N + und a 1,..., a k, c Z. Dann gilt: die Kongruenz a 1 X 1 + a 2 X a k X k c mod (m) ist genau dann (über Z) lösbar (d.h.: es existieren x 1,..., x k Z mit k i=1 a ix i c mod (m)), wenn ggt(a 1,..., a k, m) c. Korollar (3) Es seien m N + und a, c Z. Dann gilt: a) ax c mod (m) ist lösbar ggt(a, m) c. b) Es gibt ein a Z mit aa 1 mod (m) ggt(a, m) = 1. c) Es gibt ein a 0 Z mit a 0 0 mod (m) und aa 0 0 mod (m) ggt(a, m) > 1.

13 Die Euler'sche Phi-Funktion Denition (9) a) Es seien m N +, a Z und a Z/(m) die Restklasse von a modulo m. a heiÿt eine prime Restklasse modulo m genau dann, wenn es eine Restklasse b Z/(m) gibt mit a b = 1. Die Menge aller primen Restklassen modulo m bezeichnen wir mit Z/(m) = {a a ist prime Restklasse modulo m} = = {a 1 a m und ggt(a, m) = 1}. b) Die Euler'sche Phi-Funktion ϕ : N + N + wird für m N + deniert durch: ϕ(m) := #Z/(m)... Anzahl der primen Restklassen modulo m.

14 Lemma (4) Es sei 2 n N. a) Für x 1,..., x n R gilt: min { } max{x 1,..., x n 1 }, x n = = max { min{x 1, x n }, min{x 2, x n },..., min{x n 1, x n } }. b) Für a 1,..., a n Z ( \ {0} gilt: ) ggt kgv(a 1,..., a n 1 ), a n = = ( kgv ggt(a 1, a n ), ggt(a 2, a n ),..., ggt(a n 1, a n ) ).

15 Lösung von Simultankongruenzen Satz (18) Gegeben sei das Kongruenzensystem X c 1 mod (m 1 ) X c 2 mod (m 2 ). X c n mod (m n ) ( ) mit n, m 1,..., m n N + und c 1,..., c n Z. a) Das System ( ) besitzt eine Lösung x Z genau dann, wenn für alle 1 i < j n gilt: c i c j mod ( ggt(m i, m j ) ). b) Es sei M := kgv(m 1,..., m n ). Ist das System ( ) lösbar, so ist die Lösungsmenge genau eine Restklasse modulo M.

16 Der Chinesische Restsatz Korollar (4) Gegeben sei das Kongruenzensystem ( ) wie in Satz 18. Sind die Moduln m 1,..., m n paarweise relativ prim, so ist ( ) lösbar und die Lösungsmenge ist genau eine Restklasse modulo M = n i=1 m i.

17 Algebraische Bedeutung des chinesischen Restsatzes Satz (19) Es seien n N +, m 1,..., m n N + paarweise relativ prim, M := n i=1 m i und f : Z/(M) Z/(m 1 ) Z/(m 2 ) Z/(m n ) Dann gilt: a = a + MZ (a + m 1 Z, a + m 2 Z,..., a + m n Z) a) Die Abbildung f ist bijektiv und,,mit den Rechenoperationen für Restklassen verträglich (d.h: f ist ein Ringisomorphismus). b) Für a Z/(M) gilt: a Z/(M) genau dann, wenn jede Komponente von f (a) eine prime Restklasse (zum jeweiligen Modul m i ) ist. c) ϕ(m) = n i=1 ϕ(m i).

18 Korollar (5) Es sei n = r i=1 pe i i e i N +. Dann gilt: ϕ(n) = r i=1 N + mit paarweise verschiedenen p i P und ϕ(p e i i ) = r i=1 p e i 1 i (p i 1) = n ( 1 1 ). p p n Satz (20) a) (Satz von Euler) Es seien m N + und a Z mit ggt(a, m) = 1. Dann gilt a ϕ(m) 1 mod (m). b) (Kleiner Satz von Fermat) Es seien p P und a Z, dann gilt: a p a mod (p). Ist p a, so gilt auch a p 1 1 mod (p).

19 Korollar (5) Es sei n = r i=1 pe i i e i N +. Dann gilt: ϕ(n) = r i=1 N + mit paarweise verschiedenen p i P und ϕ(p e i i ) = r i=1 p e i 1 i (p i 1) = n ( 1 1 ). p p n Satz (20) a) (Satz von Euler) Es seien m N + und a Z mit ggt(a, m) = 1. Dann gilt a ϕ(m) 1 mod (m). b) (Kleiner Satz von Fermat) Es seien p P und a Z, dann gilt: a p a mod (p). Ist p a, so gilt auch a p 1 1 mod (p).

20 Denition (10) Es sei m N +. a) Für a Z mit ggt(a, m) = 1 heiÿt k := min{j N a j 1 die Ordnung von a modulo m. Schreibweise: k = ord m (a) = ord Z/(m) (a). mod (m)} b) Eine Zahl g Z heiÿt Primitivwurzel modulo m genau dann, wenn g 1, g 2, g 3,......, g ϕ(m) ein vollständiges Repräsentantensystem für die primen Restklassen modulo m ist. Satz (21) (Satz von Gauÿ) Es sei m N +. Es existieren Primitivwurzeln modulo m genau dann, wenn ist. m {1, 2, 4, p e, 2p e 2 p P, e N}

21 Denition (10) Es sei m N +. a) Für a Z mit ggt(a, m) = 1 heiÿt k := min{j N a j 1 die Ordnung von a modulo m. Schreibweise: k = ord m (a) = ord Z/(m) (a). mod (m)} b) Eine Zahl g Z heiÿt Primitivwurzel modulo m genau dann, wenn g 1, g 2, g 3,......, g ϕ(m) ein vollständiges Repräsentantensystem für die primen Restklassen modulo m ist. Satz (21) (Satz von Gauÿ) Es sei m N +. Es existieren Primitivwurzeln modulo m genau dann, wenn ist. m {1, 2, 4, p e, 2p e 2 p P, e N}

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren

Mehr

Binomische Formel mod p

Binomische Formel mod p Binomische Formel mo p Lemma Binomische Formel mo p Seien a, b Z un p P. Dann gilt (a+b) p a p + b p mo p. Nach Binomischer Formel gilt (a+b) p = p p ) i=0( i a i b p i = a p + b p + p 1( p ) i=1 i a i

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014 Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade

Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Inhaltsverzeichnis Clemens Heuberger 1 Teilbarkeit 2 1.1 Grundbegriffe....................................... 2 1.2 Größter

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Clemens Heuberger

Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Clemens Heuberger Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Clemens Heuberger Inhaltsverzeichnis 1 Teilbarkeit 2 1.1 Grundbegriffe.................................. 2 1.2 Größter gemeinsamer

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Zahlentheorie. Thomas Huber. 4. Juli Grundlagen Teilbarkeit ggt und kgv Abschätzungen... 8

Zahlentheorie. Thomas Huber. 4. Juli Grundlagen Teilbarkeit ggt und kgv Abschätzungen... 8 Zahlentheorie Thomas Huber 4. Juli 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Teilbarkeit..................................... 2 1.2 ggt und kgv................................... 4 1.3 Abschätzungen..................................

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 16 Der Chinesische Restsatz für Z Satz 16.1. Sei n eine positive natürliche Zahl mit anonischer Primfatorzerlegung 1 p r 2 2 p r (die

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie INSTITUT FÜR MATHEMATIK UNIVERSITÄT HANNOVER Prof. Dr. Sander Dr. Viergutz Marco Schwiering 21. Oktober 2004 Einführung in die Zahlentheorie 1. Übungsblatt Abgabe vor der nächsten Übung Aufgabe 1 ( 5+5

Mehr

Zahlentheorie II. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers

Zahlentheorie II. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Schweizer Mathematik-Olympiade smo osm Zahlentheorie II Thomas Huber Aktualisiert: 1. August 2016 vers. 1.2.1 Inhaltsverzeichnis 1 Kongruenzen I 2 1.1 Denitionen.................................. 2 1.2

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr

Chinesischer Restsatz für Ringe

Chinesischer Restsatz für Ringe Chinesischer Restsatz für Ringe Lena Wehlage 22. Mai 2017 1 1 Einleitung Ziel dieses Vortrags zum allgemeinen chinesischen Restsatz ist es, den im letzten Vortrag kennengelernten chinesischen Restsatz

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Ulrich Rabenstein 18.06.2013 Ulrich Rabenstein Zahlentheorie, Arithmetik und Algebra I 18.06.2013 1 / 34 1 Modulare Arithmetik 2 Teiler 3 Primzahlen Ulrich Rabenstein

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

2011W. Vorlesung im 2011W Institut für Algebra Johannes Kepler Universität Linz

2011W. Vorlesung im 2011W  Institut für Algebra Johannes Kepler Universität Linz und Was ist? Mathematik und Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml und Was ist? Inhalt Was ist? und Was ist? Das ist doch logisch!

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Skript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2009/10 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität Ulm

Mehr

Algebraische Strukturen

Algebraische Strukturen Algebraische Strukturen Eine kommutative Gruppe (G, ) ist eine Menge G, auf der eine Verknüpfung (ein zweistelliger Operator) deniert ist (d. h. zu a, b G ist a b G deniert), welche bestimmten Regeln genügt

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria, um 250 Georg Cantor, 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4)

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Algebraische Strukturen Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Idee Formalisierung von Strukturen, die in verschiedenen Bereichen der Mathematik und ihrer Anwendungen

Mehr

Elementare Zahlentheorie I

Elementare Zahlentheorie I Elementare Zahlentheorie I gelesen von Prof. Steuding Sommersemester 2008 L A TEX von Maximilian Michel 24. Juli 2008 Inhaltsverzeichnis I. 1. Teil der Vorlesung 4 0. Was ist Zahlentheorie? 6 1. Teilbarkeit

Mehr

Zahlentheorie, Arithmetik und Algebra

Zahlentheorie, Arithmetik und Algebra Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1

Mehr

Elemente der Algebra und Zahlentheorie

Elemente der Algebra und Zahlentheorie Manuskript zur Vorlesung Elemente der Algebra und Zahlentheorie gehalten an der U n i v e r s i t ä t R o s t o c k von Prof. Dr. Dieter Neßelmann Rostock, Oktober 008 Fassung vom 16. November 009 Inhaltsverzeichnis

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Institut für Informatik @ UIBK Sommersemester 2017 Zusammenfassung Zusammenfassung der letzten

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik Mathematik III (für Informatiker) Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt 10 Differentialgleichungen 11 Potenz- und Fourier-Reihen 12 Integraltransformationen 13 Algebraische

Mehr

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen 20 3. Ringtheorie 3.1 Definition, Ideale, Kongruenzen Definition 1. a) Eine nicht leere Menge R gemeinsam mit zwei Verknüpfungen + und heißt ein Ring (mit Einselement), wenn folgendes gilt: (R1) (R, +)

Mehr

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch: 7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge

Mehr

2.4. Kongruenzklassen

2.4. Kongruenzklassen DEFINITION 2.4.1. kongruent modulo 2.4. Kongruenzklassen Wikipedia:1707 wurde Euler als der älteste Sohn des Pfarrers Paul Euler geboren. Er besuchte das Gymnasium in Basel und nahm gleichzeitig Privatunterricht

Mehr

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128 Aufgabe 1 Wir betrachten die beiden Zahlen a = 57 101 3 und b = 3 57 79 101 (4+2+4=10 Punkte) ( Es gilt: 3, 57, 79, 101 P ) Hier liegt ein Fehler in der Aufgabenstellung vor, denn wegen 57 = 3 19 ist 57

Mehr

Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3

Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3 Die Mathematik ist eine Art Spielzeug,

Mehr

Folien der 14. Vorlesungswoche

Folien der 14. Vorlesungswoche Folien der 14. Vorlesungswoche Ein Beispiel: Z 6 Im allgemeinen ist der Ring Z m kein Körper. Wie uns aus der allerdings nichtkommutativen Situation der Matrixringe M n (R) schon bekannt ist, kann das

Mehr

3-9 Elementare Zahlentheorie

3-9 Elementare Zahlentheorie 3-9 Elementare Zahlentheorie 332 Satz (Charakterisierung zyklischer Gruppen) Sei G eine Gruppe der Ordnung n Die folgenden Aussagen sind äquivalent: (1) G ist zyklisch (2) Die Anzahl der Elemente der Ordnung

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Vorabskript zur Vorlesung Elementare Zahlentheorie Sommersemester 011 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität Ulm Inhaltsverzeichnis

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

UE Zahlentheorie. Markus Fulmek

UE Zahlentheorie. Markus Fulmek UE Zahlentheorie (Modul: Elementare Algebra (EAL)) Markus Fulmek Sommersemester 2015 Aufgabe 1: Betrachte folgende Partition der Menge r9s t1, 2, 3, 4, 5, 6, 7, 8, 9u Ă N: r9s t1, 4, 7u 9Y t2, 5, 8u 9Y

Mehr

Einführung in die Algebra und Diskrete Mathematik

Einführung in die Algebra und Diskrete Mathematik Einführung in die Algebra und Diskrete Mathematik Friedrich Pillichshammer 2008 Universität Linz, Institut für Finanzmathematik, Altenbergerstrasse 69, A-4040 Linz. Email: friedrich.pillichshammer@jku.at

Mehr

Aktualisiert: 18. Juni 2016 vers

Aktualisiert: 18. Juni 2016 vers Schweizer Mathematik-Olympiade smo osm Zahlentheorie II - Lösungen Aktualisiert: 18. Juni 2016 vers. 2.0.10 Kongruenzen I 1. Ist m > 1 und a eine ganze Zahl, dann ist genau einer der Zahlen durch m teilbar.

Mehr

Die umgekehrte Richtung

Die umgekehrte Richtung Die umgekehrte Richtung Satz 95 Sei n N, n 2. Dann gilt: b n 1 1 mod n für alle b Z n \ {0} = n ist prim. Beweis: [durch Widerspruch] Annahme: r n für ein r N, r > 1. Dann also r n 1 1 (r mod n) n 1 1

Mehr

Grundlagen der Algebra und der elementaren Zahlentheorie

Grundlagen der Algebra und der elementaren Zahlentheorie Grundlagen der Algebra und der elementaren Zahlentheorie Kurz-Skript zur Vorlesung Sommersemester 2011 von Dr. Dominik Faas Institut für Mathematik Fachbereich 7: Natur- und Umweltwissenschaften Universität

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7 Quadratische Reste Michael Partheil 19. Mai 008 Inhaltsverzeichnis 1 Hintergrund Quadratische Reste 4 3 Gauß sche Summen 7 4 Quadratisches Rezirozitätsgesetz 10 5 Literaturverzeichnis 1 1 1 Hintergrund

Mehr

Übungsblätter zur Vorlesung Elementare Zahlentheorie Sommersemester Dipl.-Math. Daniel Haase

Übungsblätter zur Vorlesung Elementare Zahlentheorie Sommersemester Dipl.-Math. Daniel Haase Übungsblätter zur Vorlesung Elementare Zahlentheorie Sommersemester 2006 Dipl.-Math. Daniel Haase Prof. Dr. H. Maier 04.05.2006 Dipl.-Math. D. Haase SS 2006 daniel.haase@uni-ulm.de Elementare Zahlentheorie

Mehr

384 = = = =

384 = = = = Aufgabe 1 (a) Sei n N. Charakterisieren Sie die Einheiten im Ring Z/nZ auf zwei verschiedene Arten. (b) Bestimmen Sie das inverse Element zur Restklasse von 119 in der Einheitengruppe von Z/384Z. (a) Die

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

(M1) x N : m(x,1) = x. (M2) x, y N : m(x, y ) = s(m(x, y), x)

(M1) x N : m(x,1) = x. (M2) x, y N : m(x, y ) = s(m(x, y), x) Aufgabe 1 3 Punkte) Erinnerung: Die Addition s und die Multilikation m auf N sind die eindeutigen Funktionen s bzw. m: N N N, für die gilt S1) x N : sx,1) x S) x, y N : sx, y ) sx, y) M1) x N : mx,1) x

Mehr

Elementare Zahlentheorie, Vorlesungsskript

Elementare Zahlentheorie, Vorlesungsskript Elementare Zahlentheorie, Vorlesungsskript Prof. Dr. Irene I. Bouw Sommersemester 2008 Inhaltsverzeichnis 1 Primzahlen 3 1.1 Teilbarkeit und der euklidische Algorithmus............ 3 1.2 Der Fundamentalsatz

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 15. November 2016 WS 2016/2017

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 15. November 2016 WS 2016/2017 IT-Sicherheit WS 2016/2017 Jun.-Prof. Dr. Gábor Erdélyi Lehrstuhl für Entscheidungs- und Organisationstheorie, Universität Siegen Siegen, 15. November 2016 Wiederholung Warum IT-Sicherheit? Grundlagen

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

Asymmetrische Kryptographie u

Asymmetrische Kryptographie u Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch

Mehr

Einführung in die Zahlentheorie. Prof. J. Sander Universität Hannover WS 2000/01 L A TEX 2ε-Umsetzung von Miriam Westerfrölke und Marco Pries

Einführung in die Zahlentheorie. Prof. J. Sander Universität Hannover WS 2000/01 L A TEX 2ε-Umsetzung von Miriam Westerfrölke und Marco Pries Einführung in die Zahlentheorie Prof. J. Sander Universität Hannover WS 2000/01 L A TEX 2ε-Umsetzung von Miriam Westerfrölke und Marco Pries INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 0 Grundlagen 2 1 Teilbarkeit

Mehr

Quadratische Reste und das quadratische Reziprozitätsgesetzt

Quadratische Reste und das quadratische Reziprozitätsgesetzt Quadratische Reste und das quadratische Reziprozitätsgesetzt Alexander Hölzle 03.04.007 Inhaltsverzeichnis I Motivation und Überblick 3 II Quadratische Reste 4 1 Grundlegendes und Beispiele...........................

Mehr