Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3"

Transkript

1 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3 Die Mathematik ist eine Art Spielzeug, welches die Natur uns zuwarf zum Troste und zur Unterhaltung in der Finsternis. Jean-Baptist le Rond d'alembert Aufgabe 1 (16 Punkte) Zum Vergleich der Verfahren ggt über Primfaktorzerlegung und ggt mit dem euklidischen Algorithmus : Bestimmen Sie für die folgenden Zahlenpaare jeweils den ggt zum einen mit Hilfe der Primfaktorzerlegung und zum anderen mit dem euklidischen Algorithmus. a) und b) und c) und d) und Aufgabe 2 (9 Punkte) a) Bestimmen Sie nach der geometrischen Methode der Wechselwegnahme zeichnerisch den ggt(30,22). Arbeiten Sie auf kariertem Papier und wählen Sie für eine Einheit ein Kästchen. b) Wie viele Karten muss ein Kartenspiel mindestens haben, damit man die Karten restlos sowohl auf 2 als auch auf 3, 4, 5 und 6 Spieler verteilen kann? c) Schreiben Sie eine möglichst schöne/interessante Aufgabe zur Anwendung des ggt und/oder des kgv. Sie können die Aufgabe auch in Form einer Geschichte oder eines Gedichts formulieren. Aufgabe 3 (Für jede richtige Markierung 2 Punkte, für jede falsche Markierung 2 Punkte Abzug) Sei a N und b = 7. Dann gilt: ( ) 7 teilt nicht a kgv(a, b) = 7a ( ) ggt(7a, b) kgv(7a, b) = 49a ( ) ggt(7a, b) kgv(7a, b) = 7a ( ) ggt(7a, b) kgv(7a, b) = 7 kgv(7a, b)

2 Aufgabe 4 (3 Punkte) Mit wie vielen Nullen endet 100!? Aufgabe 5 (8 Punkte) a) Heute ist ein Dienstag im Mai. Welcher Wochentag war vor 200 Tagen? b) Weihnachten war 2006 an einem Sonntag. An welchen Wochentag wird Weihnachten im Jahr 2020 sein? Aufgabe 6 (4 Punkte) Zu welchen Restklassen (einfachste Repräsentanten) gehören die angegebenen Zahlen? a) modulo 5: 12, -2, 30, -100 b) modulo 11: 121, 0, -10, 10 Aufgabe 7 (45 Punkte) Die ISBN 1 (International Standard Book Number, Internationale Standard Buch Nummer) dient dazu, auf einfache Art einen Buchtitel weltweit zu identifizieren. Da in einigen Ländern die bisherigen Nummernkontingente der 10stelligen ISBN (ISBN 10) nicht mehr ausreichten, wurde das gesamte System zum auf 13stellige ISBN (ISBN 13) umgestellt. Die ISBN 10 kann problemlos als Bestandteil in den EAN (European Article Number, Europäische Artikel Nummer) durch Vorsetzen von 978 oder 979 eingegliedert werden. Genau dieser Vorsatz ist es auch, der ab aus allen ISBN 10 eine ISBN 13 macht. Allerdings wird die Prüfziffer (letzte Ziffer der ISBN) bei der ISBN 13 dann auch nach dem Verfahren des EAN berechnet. Jede ISBN 10 hat die Form abcdefghi-p, wobei p die Prüfziffer ist. Man erhält die Prüfziffer p als kleinste, nichtnegative Lösung der Kongruenz: 10a + 9b + 8c + 7d + 6e + 5f + 4g + 3h + 2i + p 0 (mod 11). Ist p = 10, so schreibt man X als Prüfziffer. Jede ISBN 13 hat die Form abcdefghijkl-p, wobei p die Prüfziffer ist. Man erhält die Prüfziffer p als kleinste, nichtnegative Lösung der Kongruenz: a + 3b + c + 3d + e + 3f + g + 3h + i + 3j + k + 3l + p 0 (mod 10). a) Verifizieren Sie für das Buch 1 Siehe:

3 Müller-Philipp, S.; Gorski, H.-J.: Leitfaden Arithmetik. 3. Auflage. Braunschweig, Wiesbaden: Vieweg, ISBN-10: mit ISBN 10 die Gültigkeit seiner Prüfziffer. b) Zeigen Sie, dass man die Prüfziffer des ISBN 10-Codes als kleinste nichtnegative Lösung folgender Kongruenz erhält: p a + 2b + 3c + 4d + 5e + 6f + 7g + 8h + 9i (mod 11). c) Zeigen Sie, dass der ISBN 10-Code Zahlendreher (d.h. das Vertauschen zweier benachbarter verschiedener Ziffern) erkennt, weil dann ein ungültiges ISBN-Codewort entsteht. d) Zeigen Sie, dass der ISBN 10-Code die falsche Eingabe einer Ziffer erkennt, jedoch zwei Fehler nicht notwendig erkennt. e) Verifizieren Sie nun für folgendes Buch mit ISBN 13 die Gültigkeit seiner Prüfziffer: HELLMICH/ KIPER: Einführung in die Grundschuldidaktik. Weinheim und Basel ISBN-13: f) Welche neue Prüfziffer müsste das Buch, das Sie unter a) betrachtet haben, ab 2007 bekommen, wenn die ersten Ziffern der neuen ISBN 978 sind? g) Untersuchen Sie, welche der unter c) und d) genannten Fehler vom ISBN 13-Code erkannt werden und welche nicht. h) Welche Veränderungen ergeben sich für Ihre Ergebnisse unter g), wenn statt einer abwechselnden Gewichtung mit den Faktoren 1 und 3 eine abwechselnde Gewichtung mit den Faktoren 1 und 2 vorgenommen wird? i) Welche zusätzlichen Fragestellungen/Arbeitsaufträge wären möglich/sinnvoll/interessant? Hinweis: Unterrichtsreihen zu diesem Thema für den Schulunterricht in den Klassen 6 oder 7 finden Sie in: Herget, Wilfried: Artikelnummern und Zebrastreifen, Balkencode und Prüfziffern - Mathematik im Alltag. In: Werner Blum, Hans-Wolfgang Henn, Manfred Klika, Jürgen Maaß (Hrsg.). Materialien für einen realitätsbezogenen Mathematikunterricht. Schriftenreihe der ISTRON-Gruppe, Band 1, Hildesheim: Franzbecker, 1994, S Dorfmayr, Anita: Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I. In: Jürgen Maaß, Gilbert Greefrath (Hrsg.). Materialien für einen realitätsbezogenen Mathematikunterricht. Schriftenreihe der ISTRON-Gruppe, Band 11, Hildesheim, Berlin: Franzbecker, 2007, S Anhang zu Aufgabe 7: Ausführliche Darstellung der Prüfzifferberechnung ohne Kongruenzschreibweise Vergleich ISBN 10 zu ISBN 13

4 ISBN 10 ISBN Die Prüfziffern werden nach unterschiedlichen Methoden berechnet. Berechnung der Prüfziffer p der ISBN 10: 1. Alle Ziffern werden von rechts nach links, beginnend mit der vorletzten Ziffer (also vor der Stelle der Prüfziffer), mit ihrer Position in der Ziffernfolge gewichtet, d.h. die vorletzte Ziffer wird mit 2, die nächste mit 3, usw. multipliziert. 2. Die Produkte werden summiert. 3. Der volle Rest zum nächst niedrigeren Vielfachen von 11 (modulo 11) wird errechnet. 4. Die Prüfziffer ist die Differenz des Restes zu 11. Ist die Differenz 10, setzt man p = X. Ist die Differenz 11, setzt man p = 0. Beispiel ISBN10: p Nummer Schritt 1: Gewichtung Schritt 2: Produktsummation p 1 - Summe 272 Schritt 3: Summe mod = 24 Rest 8 Schritt 4: Differenz zu = 3 Endergebnis Prüfziffer 3 ISBN Die Prüfziffernberechnung für die ISBN 13 erfolgt nach der Methode von EAN: 1. Von rechts nach links werden die Stellen abwechselnd mit 3 und 1 gewichtet. 2. Die jeweiligen Produkte aus den beiden Zahlen werden errechnet und summiert.

5 3. Die Prüfziffer ist der volle Rest zur nächsthöheren durch 10 teilbaren Zahl (Modulo 10). Tabelle 3: EAN-Beispiel p Nummer Schritt 1: Gewichtung Schritt 2: Produktsummation Summe 53 Schritt 3: Summe mod Endergebnis Prüfziffer 7 EAN

Frohe Feiertage und ein erfolgreiches Neues Jahr!

Frohe Feiertage und ein erfolgreiches Neues Jahr! Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Wintersemester 2009/10 Arithmetik Übungen 9 Von allen, die bis jetzt nach Wahrheit forschten,

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie 1 Elementare Zahlentheorie Die Mathematik ist die Königin der Wissenschaften, die Zahlentheorie ist die Königin der Mathematik (C. F. Gauss) Dieses Kapitel handelt von den Eigenschaften der ganzen Zahlen

Mehr

Vortrag: Prüfzeichencodierung. Michael Gläser

Vortrag: Prüfzeichencodierung. Michael Gläser Vortrag: Prüfzeichencodierung Michael Gläser Prüfzeichencodierung (Inhalt): 1. Definition und allgemeine Eigenschaften 2. Prüfziffercodierung 3. ISBN-Codierung 4. EAN-Codierung 1. Definition und allgemeine

Mehr

WAS HEISST MODULO? MODULO. Zahlentheorie und Codierung

WAS HEISST MODULO? MODULO. Zahlentheorie und Codierung WAS HEISST MODULO? 1.Was hat das modulo-rechnen mit dem Dividieren zu tun? 2.Begründe folgende Teilbarkeitsregeln: a)eine Zahl ist genau dann durch 3 teilbar, wenn ihre Ziffernsumme durch 3 teilbar ist.

Mehr

Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK

Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK Die Beitragskontonummer besteht aus einem 6-stelligen numerischen Begriff und einer Prüfziffer Die Prüfziffer wird auf folgende Art berechnet:

Mehr

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

ISTRON. Materialien für einen realitätsbezogenen Mathematikunterricht. Inhaltsverzeichnis Bände 0 bis 14. div verlag. div.

ISTRON. Materialien für einen realitätsbezogenen Mathematikunterricht. Inhaltsverzeichnis Bände 0 bis 14. div verlag. div. ISTRON Materialien für einen realitätsbezogenen Mathematikunterricht Inhaltsverzeichnis Bände 0 bis 14 div div verlag franzbecker 1 Zu den Herausgebern der Schriftenreihe ISTRON - Materialien für einen

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN?

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? 13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? Autor Alexander Souza, Universität Freiburg Schon faszinierend, was man so alles mit Algorithmen machen kann: CDs schnell in Regalen

Mehr

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Von allen, die bis jetzt nach Wahrheit

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik

Mehr

Prüfziffern. Man versucht, solche Fehler zu erkennen, indem man der Zahl eine weitere Ziffern, die sog. Prüfziffern, hinzufügt.

Prüfziffern. Man versucht, solche Fehler zu erkennen, indem man der Zahl eine weitere Ziffern, die sog. Prüfziffern, hinzufügt. Prüfziffern Bei der Erfassung von langen Zahlen können Fehler auftreten: Ziffern werden weggelassen oder hinzugefügt, zwei benachbarte Ziffern werden vertauscht, eine Ziffer wird falsch übernommen, usw..

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Kapitel 5. Kapitel 5 Fehlererkennende Codes

Kapitel 5. Kapitel 5 Fehlererkennende Codes Fehlererkennende Codes Inhalt 5.1 5.1 Grundlagen: Was Was sind sind Vehler? 5.2 5.2 Vertuaschungsfehler 5.3 5.3 Der Der ISBN-Code 3-406-45404-6 5.4 5.4 Der Der EAN-Code ( Strichcode ) Seite 2 5.1 Grundlagen:

Mehr

Wie erreiche ich was?

Wie erreiche ich was? Wie erreiche ich was? Projekt: Bezeichnung: Warenwirtschaft (WWSBAU) EAN-Nummer Version: 7.0 Datum: 02.06.2007 Kurzbeschreibung: Mit diesem Leitfaden erhalten Sie eine tabellarische Kurzanleitung, um in

Mehr

6. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

6. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 6. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 5. Dezember 2003, in den jeweils richtigen grünen oder roten Kasten auf

Mehr

Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I

Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I Von Strichcode bis ASCII 9 Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I von Anita Dorfmayr, Wien An Hand der einfachen Codes EAN Strichcode und ISBN können schon in der Sekundarstufe

Mehr

Barcode-Informationen

Barcode-Informationen Barcode-Informationen Einführung Der Barcode ist leicht zu erstellen und mit einfachen Geräten zu lesen und zu entschlüsseln. Man findet ihn direkt auf Umverpackungen oder auf Etiketten aller Art. In einigen

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Pädagogische Hochschule Schwäbisch Gmünd

Pädagogische Hochschule Schwäbisch Gmünd Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Albrecht: Vorkurs Arithmetik/Algebra uebung_0_arith.docx: EAN Die European Article Number (EAN) ist die Bezeichnung für die

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B 90 Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. Binom zum Kopfrechnen? Für was kann man das 3. Binom

Mehr

Arbeitsblatt I. 5. Welche Arten von Fehlern könnten bei der Eingabe noch auftreten?

Arbeitsblatt I. 5. Welche Arten von Fehlern könnten bei der Eingabe noch auftreten? Arbeitsblatt I 1. Sind folgende EAN gültig? a. 3956966784248 b. 3900271934004 2. Berechne händisch die Prüfziffer zu folgender Nummer: 100311409310 Tipp: Du kannst dir die Sache einfacher machen, wenn

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Lineare Codes (Ausarbeitung von Benjamin Demes) 1) Was sind lineare Codes

Mehr

1.2. Teilbarkeit und Kongruenz

1.2. Teilbarkeit und Kongruenz 1.2. Teilbarkeit und Kongruenz Aus den Begriffen der Teilbarkeit bzw. Teilers ergeben sich die Begriffe Rest und Restklassen. Natürliche Zahlen, die sich nur durch sich selbst oder die 1 dividieren lassen,

Mehr

Pädagogische Hochschule Karlsruhe

Pädagogische Hochschule Karlsruhe Die Diedergruppe D und deren Anwendung bei der Numerierung bundesdeutscher DM-Geldscheine Pädagogische Hochschule Karlsruhe Institut für Mathematik und Informatik Vorlesung: Codierung und Kryptographie

Mehr

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 KATHRIN TOFALL Aufgabe 7. (Symmetrischer EEA). (9 Punkte) Ziel dieser Aufgabe ist es zu zeigen, was man gewinnt, wenn man bei der Division mit

Mehr

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Institut für Informatik @ UIBK Sommersemester 2017 Zusammenfassung Zusammenfassung der letzten

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren

Mehr

Mathematik und ihre Didaktik WS 02/03 W. Neidhardt Übung 1. Übungen zu Mathematik und Didaktik I

Mathematik und ihre Didaktik WS 02/03 W. Neidhardt Übung 1. Übungen zu Mathematik und Didaktik I W. Neidhardt Übung 1 Übungen zu Mathematik und Didaktik I Plenumsübung: Einfache Algorithmen mit JAVAscript 1 5 Beweisen Sie mit Hilfe des Prinzips vom kleinsten Element, dass 5 irrational ist. 2 Zahlen

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Verlauf Material LEK Glossar Lösungen. EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen. Klaus Wolthaus, Dülmen VORSCHAU

Verlauf Material LEK Glossar Lösungen. EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen. Klaus Wolthaus, Dülmen VORSCHAU Reihe 34 S 1 Verlauf Material LEK Glossar Lösungen EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen Klaus Wolthaus, Dülmen Beltz und Gelberg, Weinheim und Basel Wie findet der Buchhändler

Mehr

WS 2016/17 Torsten Schreiber

WS 2016/17 Torsten Schreiber 104 Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet die Rechtseindeutigkeit einer Relation? Was weiß man von einer surjektiven Funktion? Wann ist eine Funktion total / partiell? Welche

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

8 Planarbeit zur Vertiefung der Inhalte

8 Planarbeit zur Vertiefung der Inhalte 8 Planarbeit zur Vertiefung der Inhalte 8.1 Tabellarische Übersicht Zunächst sei eine Übersicht gegeben, aus der hervorgeht, mit welchen Aufgaben über welche Grundideen nachgedacht werden soll. Die Aufgaben

Mehr

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen 1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen Einleitung 1 Wie der Name schon sagt sind Äquivalenzrelationen besondere Relationen. Deswegen erkläre ich hier ganz allgemein, was Relationen

Mehr

Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß)

Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß) Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß) 6. Termin, Wien 2014 Mag. a Dagmar Kerschbaumer Letzter Termin g-adische Darstellung

Mehr

Wie werden die Barcode Prüfziffern berechnet?

Wie werden die Barcode Prüfziffern berechnet? KB Consult; K. Bögli Bergwiesenstrasse 3 CH88 Weisslingen Telefon: [] 05 / 38 6 96 Fax: [] 05 / 38 5 0 EMail: kurt.boegli@kbconsult.ch Wie werden die Barcode Prüfziffern berechnet? Nachfolgend die Beschreibung

Mehr

Haydn: Streichquartett op 54.3 aus Largo, Violine I

Haydn: Streichquartett op 54.3 aus Largo, Violine I Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 Codierung 2 EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte

Mehr

Wissen INFORMATIONSMATERIALIEN. Fach Mathematik/Informatik. Die Europäische Artikelnummer (EAN)

Wissen INFORMATIONSMATERIALIEN. Fach Mathematik/Informatik. Die Europäische Artikelnummer (EAN) Wissen INFORMATIONSMATERIALIEN Fach Mathematik/Informatik Die Europäische Artikelnummer (EAN) FACH MATHEMATIK/INFORMATIK Die Europäische Artikelnummer (EAN) Tino Hempel Die Veröffentlichung erfolgt ohne

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin,

Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin, Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin, 28724 1 Prüfzeichensysteme zur Fehlererkennung 11 Europäische Artikel Nummer (EAN) Die EAN ist eine 13

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Materialanleitung. Groß oder klein- das ist hier die 1. Frage

Materialanleitung. Groß oder klein- das ist hier die 1. Frage Materialanleitung Wurzelbrett Groß oder klein- das ist hier die 1. Frage 1. Ein Unterschied besteht erstmal in der Größe der Zahlenwerte, die mit den Brettern bearbeitet werden können. Das kleine Wurzelbrett

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

PRIMZAHLEN PATRICK WEGENER

PRIMZAHLEN PATRICK WEGENER PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier

Mehr

Inhalt s Verzeichnis. Einleitung 1

Inhalt s Verzeichnis. Einleitung 1 Inhalt s Verzeichnis Einleitung 1 I Vier motivierende Probleme - ein Schnupperkurs 5 1 Sicherheit in der Apotheke 5 2 Verblüffende Summendarstellungen 9 3 Ein ungelöstes Problem 13 4 Primzahlen - eine

Mehr

KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r

KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r KAPITEL 13 Polynome 1. Primfaktorzerlegung in den ganzen Zahlen DEFINITION 13.1 (Primzahl). Eine Zahl p ist genau dann eine Primzahl, wenn folgende beiden Bedingungen gelten: (1) Es gilt p > 1. (2) Für

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Kryptographie und Codierung für den Mathematikunterricht

Kryptographie und Codierung für den Mathematikunterricht Kryptographie und Codierung für den Mathematikunterricht Pädagogische Hochschule Karlsruhe University of Education École Supérieure de Pédagogie Institut für Mathematik und Informatik Th. Borys Was verstehst

Mehr

Prima Zahlen? Primzahlen

Prima Zahlen? Primzahlen Prima Zahlen? Primzahlen 10. Dezember 2009 Willi More willi.more@uni-klu.ac.at I n s t i t u t f ü r M a t h e m a t i k Überblick 1/ Primzahlen 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

Mehr

Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule. Themen- und Literaturliste

Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule. Themen- und Literaturliste Dr. Astrid Brinkmann Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule Themen- und Literaturliste Einführung 1. Vorstellung und Verteilung der Themen

Mehr

Euklidische Algorithmus, Restklassenringe (Z m,, )

Euklidische Algorithmus, Restklassenringe (Z m,, ) Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der

Mehr

Lösung zur Klausur zu Krypographie Sommersemester 2005

Lösung zur Klausur zu Krypographie Sommersemester 2005 Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 5.1 a) Seien a, b, c mit a b und b c. Dann gibt es ganze Zahlen n und m mit b = na und c = mb. Daraus folgt c = mna, also ac. Gilt a b und a c, so gibt es ganze Zahlen n und m mit b = na und c = ma. Sind

Mehr

Langzahlarithmetik implementieren Ac 1990 bis 2016

Langzahlarithmetik implementieren Ac 1990 bis 2016 Langzahlarithmetik implementieren Ac 1990 bis 2016 Wie konstruiert man einen BigInteger-Typ (Langzahlarithmetik)? Zur Berechnung von sehr großen Ganzzahlen ( Big Integers ) kann man Register verwenden,

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................

Mehr

Spezielle Fragen der Mathematikdidaktik: Realitätsnaher Mathematikunterricht in der Grundschule

Spezielle Fragen der Mathematikdidaktik: Realitätsnaher Mathematikunterricht in der Grundschule Dr. Astrid Brinkmann Spezielle Fragen der Mathematikdidaktik: Realitätsnaher Mathematikunterricht in der Grundschule Themen- und Literaturliste Einführung 1. Vorstellung und Verteilung der Themen I. Theoretische

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

modulo s auf Z, s. Def

modulo s auf Z, s. Def 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien

Mehr

Imperatives Problemlösen in Java

Imperatives Problemlösen in Java Hinweise Der Kurs Informatik Fach 12 setzt Elemente des Problemlösens in der Programmiersprache Java aus der Klasse 10 voraus. Zum Wiederholen und Angleichen der Voraussetzungen mit denen Ihren Mitschüler

Mehr

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche.

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche. 1 Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc Über die Darstellung von rationalen Zahlen als Dezimalbrüche. Anmerkung: Die Beschränkung auf die Dezimaldarstellung ist unnötig.

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 2016 Mathematischer Wettbewerb, Klassenstufe 7 8 30. April 2016, 9.00 12.00 Uhr Aufgabe 1 (a) Auf wie vielen Nullen endet die Zahl 1 2 3 9 10? (b) Auf wie vielen Nullen endet die Zahl

Mehr

33 D Codes und Prüfziffern. Impuls 1. a b c d e f g h i j. k l m n o p q r s t. u v w x y z ss st au eu. ei äu ä ö ü ie ch sch , ; :.?!

33 D Codes und Prüfziffern. Impuls 1. a b c d e f g h i j. k l m n o p q r s t. u v w x y z ss st au eu. ei äu ä ö ü ie ch sch , ; :.?! Codes und Prüfziffern 33 1 5 Impuls 1 Blindenschrift als spezielle Verschlüsselung a b c d e f g h i j k l m n o p q r s t u v w x y z ss st au eu ei äu ä ö ü ie ch sch, ; :.?! ( ) - 1 2 3 4 5 6 7 8 9

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Die Klausur besteht aus 6 Aufgaben und umfasst 60 Punkte. Bitte schreiben Sie die Lösungen auf die Aufgabenblätter. Vergessen

Mehr

Fehlererkennende und fehlerkorrigierende Codes

Fehlererkennende und fehlerkorrigierende Codes Fehlererkennende und fehlerkorrigierende Codes Claudiu-Vlad URSACHE, 5AHITN Inhalt 1. Codes... 2 2. Hammingdistanz... 3 3. Fehlererkennende Codes... 4 4. Fehlerkorrigierende Codes... 5 1. Codes a 2 a 00

Mehr