Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW"

Transkript

1 Rechnerarchitektur und Betriebssysteme (CS201): Multiprogramming und -Tasking Flynn-Klassifikation, ILP, VLIW 26. Oktober 2012 Prof. Dr. Christian Tschudin Departement Informatik, Universität Basel Uebersicht Multiprogramming, Multitasking Context Switch Klassifikation von Flynn (SISD etc) Instruction level Parallelism, Skalar/Superskalar Very Long Instruction Words (VLIW) Hyperthreading Moores Gesetz c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 2/44

2 Mono-Programmierung = Computer wird nur für ein einziges Programm verwendet. Verschiedene Speicher-Layouts denkbar: c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 3/44 Multi-Programmierung Multiprogrammierung: mehrere Programme im Hauptspeicher jedes Programm hat seinen eigenen Zustand (zb ProgCounter) CPU bzw OS wählt, welches Programm (kurz) bearbeitet wird pseudoparallele statt sequentielle CPU-Nutzung Multiprogrammierung heisst nicht unbedingt Interaktivität: frühe Multiprogramming-OS waren für Batch-Jobs c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 4/44

3 Time-Sharing System (TSS) / Multitasking Timesharing Variante der Multiprogrammierung: sehr häufiges Umschalten zwischen Programmen/Tasks für festes Zeitintervall (Quantum) oder bis ein Programm blockiert, d.h. warten muss Jeder Benutzer hat die Illusion, jederzeit den ganzen Rechner zur Verfügung zu haben. Multitasking: eine CPU für mehrere (gleichzeitige) Aufgaben In einem TSS wird das Programm eines Benutzers Prozess / Task genannt. c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 5/44 Def von Programm / Prozess oder Task / Thread Programm: Code und Daten, ev schon im Hauptspeicher installiert Prozess: installiertes Programm mit dazugehörigen Ressourcen (Ein-Ausgabe, Benutzerrechte etc) Thread: Abstraktion für CPU-Aktivität (Kontrollfluss) ein Prozess hat mind ein Thread c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 6/44

4 Multiprozessor vs Time-Sharing System c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 7/44 Begriffe Multiprogrammierung betrifft Anzahl Programme im Hauptspeicher Multitasking betrifft Anzahl gleichzeitiger Aktivitäten: innerhalb einer CPU (Prozesse), oder auch innerhalb eines Programmes (Threads) Multiprocessing betrifft Anzahl vorhandener CPUs (oder Cores) c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 8/44

5 Context Switch Kontextwechsel übergibt die CPU an einen anderen Prozess Zustand des alten Prozesses speichern im Hauptspeicher oder auf Harddisk Zustand des neuen Prozesses laden Wiederherstellen der Registerinhalte Wiederherstellen des (virtuellen) Hauptspeichers, memory map und dann starten Context Switch benötigt µsek teuer, da reiner Verwaltungsaufwand ohne Rechennutzen c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 9/44 Context Switch Abschätzung beim AVR-Chip Zu sichernder Zustand eines Programmes: PC, SP, 32 Register 36 Bytes Interrupt Handler aufrufen, Register freimachen pro Register: 2 Takte für Speichern, dec, Vergleich, branch nächstes Prog auswählen: 100 Takte Benötigte Zeit Total: bis zu 400 Takte Bei 4Mhz CPU-Taktfrequenz: ca 0.1 millisec pro Context Switch bei 1000 Context Switches/sec (Linux): 100 millisec d.h. 10% der Rechenkapazität! c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 10/44

6 Schnellere Rechner durch... Schnellere CPUs: Cache RISC Pipelining Superscalare CPU-Architektur Mehrere CPUs: Multiprozessoren Verteilte Systeme Andere CPU-Architektur: Dataflow c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 11/44 Multiprozessoren Rechner Rechnergeschwindigkeit erhöhen mit mehr CPUs. Varianten: Welches Netzwerk verbindet die CPUs? Bus, Hyperwürfel, Matrix? Müssen sich die CPUs den Bus für Speicherzugriff teilen? Gibt es Unterschiede zwischen (CPU-)lokalem und gewöhnlichem Hauptspeicher? Können die CPUs unabhängig voneinander an unterschiedliche Daten arbeiten? [ Je nach Problem trotz Zusatz-CPU kein Speed-up messbar. ] c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 12/44

7 Die Klassifikation von Flynn (1966!) Niemand ist wirklich glücklich damit, aber alle benutzen sie. Zwei Grundkategorien: Code: Strom von Befehlen Data: Strom von Dateneinheiten Hauptfrage: Wieviele Befehlsströme und Datenströme werden eingesetzt? c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 13/44 SISD - Single Instruction Single Data SISD ist der klassische von-neumann Computer, inkl Varianten wie Harvard-Architektur (getrennter Prog- und Datenspeicher) c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 14/44

8 SIMD - Single Instruction Multiple Data Mehrere (identische) Prozessoren arbeiten mit verschiedenen Datenelementen aber immer die gleiche Instruktion c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 15/44 SIMD Beispiele Illiac IV ( ), 64 processing elements (PE) Vector-Prozessoren (siehe weiter unten) Thinking Machines CM1 (connection machine, 80+90er-Jahre) 1024 oder mehr Ausführungselemente jedes arbeitet auf einem (!) Bit Eine Kontrolleinheit gibt Instruktion für alle aus Jeder processing element hat anderes Datum zu bearbeiten c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 16/44

9 SIMD Beispiel: Connection Machine (CM-1) Ein processing element besteht aus einer einfachen ALU. Eine zentrale Kontrolleinheit zur Steuerung. Frontend-Computer (CM) zur Steuerung der CM, Compilieren von Programmen etc c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 17/44 SIMD Beispiel: Connection Machine (rechts: CM-2) In Hollywood-Filmen vorweggenommen (links: WOPR in War Games, 1983) und zitiert (CM-5 in Jurassic Parc, 1993) c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 18/44

10 MIMD - Multiple Instruction Multiple Data Jeder Prozessor arbeitet unabhängig mit unterschiedlichen Daten. c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 19/44 MISD - Multiple Instruction Single Data Eher der Vollständigkeit halber, aber keine Realisierung (systolic?) Man könnte behaupten, dass CPUs mit Pipeline zur MISD Klasse gehören... c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 20/44

11 Parallelismus-Grade c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 21/44 Feingranularer SISD Parallelismus: ILP ILP = Instruction Level Parallelism überlappende Ausführung unabhängiger Instruktionen Statistisch: eine Verzweigung nach durchschnittlich 5 Befehlen natürliche Basisblöcke für ILP Zwei Ansätze nötig, um ILP umzusetzen: Hardware (pipeline, superscalar etc) Software (compiler) ILP über den Verzweigungspunkt hinaus? Hazards c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 22/44

12 Pipeline für die CPU Vier typische Phasen der Abarbeitung eines Befehls: IF Instruction Fetch Speicherzugriff (Befehle und Daten) ID Instruction Decoding Einzelaufgaben ableiten (Registerbewegungen, ALU-Modus etc) EX Execution / Durchführung WB Write Back / Resultate zurückschreiben Bei serieller Ausführung: 4 Taktzyklen für 1 Befehl c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 23/44 Skalare CPU Pipeline: 4 (z.t. bis 12) Befehle gleichzeitig in Bearbeitung Erlaubt skalare CPUs : 1 Befehl pro Takt c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 24/44

13 Superskalare CPU Mehr als 1 Instruktionsabarbeitung pro Takt, im Mittel! Zusatztricks: mehrere ALUs, FPU, SIMD-Werke (siehe MMX) Challenge: Hardware muss für gute Belegung sorgen c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 25/44 Very Long Instruction Words (VLIW) Explizites Scheduling fest vorgegeben im Befehlswort c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 26/44

14 Prozessor-Struktur für VLIW c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 27/44 Explicit Parallel Instruction Computer (EPIC, ca 2000) Der Intel/HP IA-64 Prozessor (Projektname Merced, Itanium): Intels Abkehr vom x86-befehlssatz Langes Befehlswort: 128 bits beinhaltet 3 Befehle Enttäuschende Performance Itanium 2 Konkurrenz durch AMD64 (Opteron: 64-Bit CPU mit Unterstützung für IA-32-Befehle): Intel schwenkte um und stellte IA-32e vor. c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 28/44

15 Explicit Parallel Instruction Computer (Forts.) Itanium-2 Chip, 416 mm 2 Gut sichtbar: grosses Volumen an L3 cache (blau) Gefahr von zu viel Ausschuss bei so vielen Memory-Gattern: Error Correcting Code Vergleich zum Itanium 1: kürzere Pipeline (damit weniger falsch -Ausführungen), 128-bit breiter frontside bus c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 29/44 Explicit Parallel Instruction Computer (Forts. II) Itanium-2 Block-Diagramm: Beachte die 11 issue ports (B, M, I, F) c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 30/44

16 SIMD Beispiel: Vektor CPU Hersteller von Vektorrechner: (Cray, Convex), Fujitsu, Hitachi, NEC c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 31/44 Vektor Prozessor Optimierte ALU für Vektor- und Matrix-Operationen ( konventioneller skalarer Prozessorteil nicht dargestellt) c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 32/44

17 Vektor Berechnungen, Beispiel 1 c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 33/44 Vektor Berechnungen, Beispiel 2 c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 34/44

18 Vektor Prozessor: Interface zum Hauptspeicher Address Generation Unit: Daten in die Vektorregister bringen AGU: lädt/speichert ganze Matrix-Spalten und Reihen c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 35/44 Vektor Supercomputer Geschwindigkeitsvorteil wegen Verarbeitung von Vektoren: 1 Vektor-Instruktion = Schleife für normale CPU Spezialunterstützung für Speicher (liest ganze Blöcke) Anwendungen: fluid dynamics, finite element computations (Wettervorhersagen, Windtunnel/Crash-Simulationen) multimedia (rendering) Bezug zu Intel MMX-Instruktionen: erlaubt Aufteilung eines 64bit-Register in 8x8bits, or 4x16 Bits Instruktionen, um mit solchen mini-vektoren zu rechnen c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 36/44

19 Vektorcomputers with Style Auch hier berühmtes Design der Computer als Sitzbank (70er Jahre, heute beliebtes Ausstellungsobjekt im Foyer ETHZ, EPFL) c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 37/44 Hyper-Threading Logische Parallel-CPU: nur Register werden dupliziert schnelles Umschalten zwischen Registersätzen weiterhin nur ein CPU-Kern Sieht für das Betriebssystem aus wie zwei CPUs: jede logische CPU erhält einen Thread zur Bearbeitung wenn ein Thread blockiert ist, kommt der andere zum Zug Zuerst in der Xeon-Reihe, nun auch in der Pentium-Reihe. c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 38/44

20 Multi-Core Mehrere CPU-Kerne auf einem Chip Bus-Interface der Flaschenhals Quad-core und mehr... Software: wie alle Cores immer beschäftigt halten? c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 39/44 Moore s Law Gordon E. Moore (Mitbegründer von Intel) macht Prognose: Anzahl Transistoren auf einem Chip verdoppelt sich alle zwei Jahre, d.h. exponentielles Wachstum! Stimmt recht gut seit Mitte 60er/Anfangs 70er-Jahre In der Oeffentlichkeit besser bekannt auf der Performance-Seite: Die Performance verdoppelt sich alle 18 Monate Self-fulfilling prophecy : Heute nur noch mit Multi-Cores zu erreichen. c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 40/44

21 Moore s Law Anzahl Transistoren, 1971 bis 2008 c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 41/44 Moore s Law Taktrate stagniert c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 42/44

22 Ray Kurzweil: Moore s Law ist nur ein Ausschnitt y-achse: Rechenoperationen pro 1000$ Die Lithographiegrenze wird zwar 2019 erreicht Neue Technologien werden aber die Kurve jenseits von Halbleiter fortsetzen (Quantum, Optical Computing) c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 43/44 Supercomputer in der Schweiz Nationales Supercomputing-Zentrum der ETHZ in Mano, Tessin (Swiss National Supercomputing Centre). Stand 2011: Cray XT5 (bald CRAY XE6) 3688 AMD hexa-core 2.4 GHz 28.8 TB DDR2 RAM 290 TB Disk 9.6 GB/s interconnect bandwidth Cray XMT 2 TB of globally shared memory and 64 Cray Threadstorm processors which allow to run simultaneous hardware threads und weitere Rechen- und Speicher-Ressourcen c Christian Tschudin CS201 Rechnerarchitektur und Betriebssysteme , 44/44

Teil Rechnerarchitekturen M07. Multiprogramming und Tasking, Flynn-Klassifikation, Parallelismus. Corinna Schmitt

Teil Rechnerarchitekturen M07. Multiprogramming und Tasking, Flynn-Klassifikation, Parallelismus. Corinna Schmitt Teil Rechnerarchitekturen M07 Multiprogramming und Tasking, Flynn-Klassifikation, Parallelismus Corinna Schmitt corinna.schmitt@unibas.ch Multiprogrammierung und -Tasking 2015 Corinna Schmitt Teil Rechnerarchitekturen

Mehr

2 Rechnerarchitekturen

2 Rechnerarchitekturen 2 Rechnerarchitekturen Rechnerarchitekturen Flynns Klassifikation Flynnsche Klassifikation (Flynn sche Taxonomie) 1966 entwickelt, einfaches Modell, bis heute genutzt Beschränkung der Beschreibung auf

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

Teil Rechnerarchitekturen. Repetitorium. Corinna Schmitt

Teil Rechnerarchitekturen. Repetitorium. Corinna Schmitt Teil Rechnerarchitekturen Repetitorium Corinna Schmitt corinna.schmitt@unibas.ch Vorlesungsinhalt Rechnerarchitekturen M01: Architektur, ALU, Flip-Flop M02: Einführung in die Sprache C M03: 2er-Komplement,

Mehr

Architektur paralleler Plattformen

Architektur paralleler Plattformen Architektur paralleler Plattformen Freie Universität Berlin Fachbereich Informatik Wintersemester 2012/2013 Proseminar Parallele Programmierung Mirco Semper, Marco Gester Datum: 31.10.12 Inhalt I. Überblick

Mehr

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme wwwnet-texde Proseminar Rechnerarchitekturen Parallelcomputer: Multiprozessorsysteme Stefan Schumacher, , PGP Key http://wwwnet-texde/uni Id: mps-folientex,v

Mehr

moderne Prozessoren Jan Krüger jkrueger@techfak.uni-bielefeld.de

moderne Prozessoren Jan Krüger jkrueger@techfak.uni-bielefeld.de moderne Prozessoren Jan Krüger jkrueger@techfak.uni-bielefeld.de Übersicht FachChinesisch SPARC - UltraSparc III/IV PowerPC - PowerPC 970(G5) X86 - Pentium4(Xeon), Itanium, (Pentium M) X86 - AthlonXP/MP,

Mehr

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9 Inhalt Curriculum 1.4.2 Manfred Wilfling HTBLA Kaindorf 28. November 2011 M. Wilfling (HTBLA Kaindorf) CPUs 28. November 2011 1 / 9 Begriffe CPU Zentraleinheit (Central Processing Unit) bestehend aus Rechenwerk,

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Computational Biology: Bioelektromagnetismus und Biomechanik Implementierung Gliederung Wiederholung: Biomechanik III Statische Elastomechanik Finite Elemente Diskretisierung Finite Differenzen Diskretisierung

Mehr

Grundlagen der Parallelisierung

Grundlagen der Parallelisierung Grundlagen der Parallelisierung Philipp Kegel, Sergei Gorlatch AG Parallele und Verteilte Systeme Institut für Informatik Westfälische Wilhelms-Universität Münster 3. Juli 2009 Inhaltsverzeichnis 1 Einführung

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Hardware-Architekturen

Hardware-Architekturen Kapitel 3 Hardware-Architekturen Hardware-Architekturen Architekturkategorien Mehrprozessorsysteme Begriffsbildungen g Verbindungsnetze Cluster, Constellation, Grid Abgrenzungen Beispiele 1 Fragestellungen

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

Multicore Herausforderungen an das Software-Engineering. Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010

Multicore Herausforderungen an das Software-Engineering. Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010 Multicore Herausforderungen an das Software-Engineering Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010 Inhalt _ Motivation _ Herausforderung 1: Hardware _ Herausforderung 2: Software-Partitionierung

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Intel 80x86 symmetrische Multiprozessorsysteme Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Gliederung I. Parallel Computing Einführung II.SMP Grundlagen III.Speicherzugriff

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Übersicht. Einleitung. Übersicht. Architektur. Dr.-Ing. Volkmar Sieh WS 2008/2009

Übersicht. Einleitung. Übersicht. Architektur. Dr.-Ing. Volkmar Sieh WS 2008/2009 Übersicht Einleitung 1 Einleitung Dr.-Ing. Volkmar Sieh 2 Technologische Trends Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 3 Historischer

Mehr

Instruktionen pro Takt

Instruktionen pro Takt (c) Peter Sturm, Universität Trier (u.a.) 1 Instruktionen pro Takt 500 MIPS (Dhrystone) Taktfrequenz 450 400 350 300 250 200 150 100 50 0 8086 80286 80386 80486 Pentium Pentium Pro Die-Größen: Intel Vorlesung

Mehr

IT-Infrastruktur, WS 2014/15, Hans-Georg Eßer

IT-Infrastruktur, WS 2014/15, Hans-Georg Eßer ITIS-D'' IT-Infrastruktur WS 2014/15 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz D'': Rechnerstrukturen, Teil 3 v1.0, 2014/11/27 Folie D''-1 Dieser Foliensatz Vorlesungsübersicht Seminar Wiss.

Mehr

Neue Prozessor-Architekturen für Desktop-PC

Neue Prozessor-Architekturen für Desktop-PC Neue Prozessor-Architekturen für Desktop-PC Bernd Däne Technische Universität Ilmenau Fakultät I/A - Institut TTI Postfach 100565, D-98684 Ilmenau Tel. 0-3677-69-1433 bdaene@theoinf.tu-ilmenau.de http://www.theoinf.tu-ilmenau.de/ra1/

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

DIGITALE SCHALTUNGEN II

DIGITALE SCHALTUNGEN II DIGITALE SCHALTUNGEN II 3. Sequentielle Schaltkreise 3.1 Vergleich kombinatorische sequentielle Schaltkreise 3.2 Binäre Speicherelemente 3.2.1 RS Flipflop 3.2.2 Getaktetes RS Flipflop 3.2.3 D Flipflop

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

Multicore-Architekturen

Multicore-Architekturen Universität Erlangen- Nürnberg Technische Universität München Universität Stuttgart Multicore-Architekturen Vortrag im Rahmen der Ferienakademie 2009 Kurs 1: Programmierkonzepte für Multi-Core Rechner

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 4 Prozesse Maren Bennewitz Version 20.11.2013 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern! 2 Wdhlg.: Attributinformationen in

Mehr

Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.)

Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.) Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.) von Martin Stöcker Motivation Geschwindigkeit der Prozessoren verdoppelt sich alle 18 Monate (Moore s Law) Geschwindigkeit des Speichers

Mehr

CPU Speicher I/O. Abbildung 11.1: Kommunikation über Busse

CPU Speicher I/O. Abbildung 11.1: Kommunikation über Busse Kapitel 11 Rechnerarchitektur 11.1 Der von-neumann-rechner Wir haben uns bisher mehr auf die logischen Bausteine konzentriert. Wir geben jetzt ein Rechnermodell an, das der physikalischen Wirklichkeit

Mehr

Hyperthreads in Itanium - Prozessoren

Hyperthreads in Itanium - Prozessoren Hyperthreads in Itanium - Prozessoren und wie OpenVMS damit umgeht Thilo Lauer Technical Consultant Account Support Center 2006 Hewlett-Packard Development Company, L.P. The information contained herein

Mehr

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1 E-1 Technische Grundlagen der Informatik 2 SS 2009 Einleitung R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt Lernziel E-2 Verstehen lernen, wie ein Rechner auf der Mikroarchitektur-Ebene

Mehr

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1 IT für Führungskräfte Zentraleinheiten 11.04.2002 Gruppe 2 - CPU 1 CPU DAS TEAM CPU heißt Central Processing Unit! Björn Heppner (Folien 1-4, 15-20, Rollenspielpräsentation 1-4) Harald Grabner (Folien

Mehr

Grundlagen der Programmierung 2. Parallele Verarbeitung

Grundlagen der Programmierung 2. Parallele Verarbeitung Grundlagen der Programmierung 2 Parallele Verarbeitung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 27. Mai 2009 Parallele Algorithmen und Ressourcenbedarf Themen: Nebenläufigkeit,

Mehr

Rechnerarchitekturen und Betriebssysteme (CS201): UMA/NUMA, software-morphing CPUs Cell-CPU, Intro Betriebssysteme

Rechnerarchitekturen und Betriebssysteme (CS201): UMA/NUMA, software-morphing CPUs Cell-CPU, Intro Betriebssysteme Rechnerarchitekturen und Betriebssysteme (CS201): UMA/NUMA, software-morphing CPUs Cell-CPU, Intro Betriebssysteme 24. Oktober 2014 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

3 Technikarchitekturen

3 Technikarchitekturen 3 Technikarchitekturen 3.1 Rechnerarchitektur Definition Taxonomien Komponenten Rechnergrößentypologie 3.2 Kommunikationssystemarchitektur ISO-Referenzmodell TCP/IP Grundlagen der Telekommunikation 3.3

Mehr

Grafikkarten-Architektur

Grafikkarten-Architektur > Grafikkarten-Architektur Parallele Strukturen in der GPU Name: Sebastian Albers E-Mail: s.albers@wwu.de 2 > Inhalt > CPU und GPU im Vergleich > Rendering-Pipeline > Shader > GPGPU > Nvidia Tesla-Architektur

Mehr

Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ. Big.LITTLE-Processing mit ARM- Cortex-Prozessoren. E. Zenker

Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ. Big.LITTLE-Processing mit ARM- Cortex-Prozessoren. E. Zenker Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ Big.LITTLE-Processing mit ARM- Cortex-Prozessoren E. Zenker Dresden, 14.12.2011 TU Dresden, 14.12.11 Folie 2 von 21 Performance Video

Mehr

HW/SW Codesign 5 - Performance

HW/SW Codesign 5 - Performance HW/SW Codesign 5 - Performance Martin Lechner e1026059 Computer Technology /29 Inhalt Was bedeutet Performance? Methoden zur Steigerung der Performance Einfluss der Kommunikation Hardware vs. Software

Mehr

Rechnernutzung in der Physik. Betriebssysteme

Rechnernutzung in der Physik. Betriebssysteme Rechnernutzung in der Physik Betriebssysteme 1 Betriebssysteme Anwendungsprogramme Betriebssystem Treiber BIOS Direkter Zugriff von Anwenderprogrammen auf Hardware nur in Ausnahmefällen sinnvoll / möglich:

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Beispiel Parallelisierung 2D Laplace. Lagrange Formulierung/Hyperelastisches Material. Finite Differenzen Diskretisierung

Beispiel Parallelisierung 2D Laplace. Lagrange Formulierung/Hyperelastisches Material. Finite Differenzen Diskretisierung Simulation von physikalischen Feldern im menschlichen Körper Implementierung Gliederung Gliederung Wiederholung: Biomechanik III Statische elastomechanische Probleme Finite Elemente Diskretisierung Finite

Mehr

Systeme 1: Architektur

Systeme 1: Architektur slide 1 Vorlesung Systeme 1: Architektur Prof. Dr. Ulrich Ultes-Nitsche Forschungsgruppe Departement für Informatik Universität Freiburg slide 2 Prüfung 18. Februar 2004 8h00-11h40 13h00-18h20 20 Minuten

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Thomas Röfer Hardware und Software von Neumann Architektur Schichtenmodell der Software Zahlsysteme Repräsentation von Daten im Computer Hardware Prozessor (CPU)

Mehr

Was ist Rechnerleistung

Was ist Rechnerleistung Was ist Rechnerleistung Leistung im engeren Sinne: Leistung gemessen in seltsamen Einheiten, bestimmt vorwiegend von der Zentraleinheit: MIPS (Millionen Instruktionen pro Sekunde) FLOPS (Floating Point

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance

Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance 5. November 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Repetition

Mehr

Parallelverarbeitung. Parallelverarbeitung. 2. Grundlagen. 2. Grundlagen. 2.1 Parallelität

Parallelverarbeitung. Parallelverarbeitung. 2. Grundlagen. 2. Grundlagen. 2.1 Parallelität 2. Grundlagen Parallelverarbeitung SS 2005 Inhalt Parallelität Ebenen der Parallelität Parallelrechnerarchitekturen Parallele Programmiermodelle 18.04.05 Roland Wismüller, Univ. Siegen roland.wismueller@uni-siegen.de

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Samsungs Exynos 5 Dual

Samsungs Exynos 5 Dual Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Samsungs Exynos 5 Dual Candy Lohse Dresden, 12.12.12 Gliederung 1. Motivation und

Mehr

Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1

Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1 Ein kleiner Einblick in die Welt der Supercomputer Christian Krohn 07.12.2010 1 Vorschub: FLOPS Entwicklung der Supercomputer Funktionsweisen von Supercomputern Zukunftsvisionen 2 Ein Top10 Supercomputer

Mehr

ARM Cortex-M Prozessoren. Referat von Peter Voser Embedded Development GmbH

ARM Cortex-M Prozessoren. Referat von Peter Voser Embedded Development GmbH ARM Cortex-M Prozessoren Referat von Peter Voser Embedded Development GmbH SoC (System-on-Chip) www.embedded-development.ch 2 Instruction Sets ARM, Thumb, Thumb-2 32-bit ARM - verbesserte Rechenleistung

Mehr

Angewandte Informatik

Angewandte Informatik Angewandte Informatik Teil 2.1 Was ist Hardware? Die Zentraleinheit! 1 von 24 Inhaltsverzeichnis 3... Was ist Hardware? 4... Teile des Computers 5... Zentraleinheit 6... Die Zentraleinheit 7... Netzteil

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I SS 2001 PD Dr. A. Strey Abteilung Neuroinformatik Universität Ulm Inhalt Einführung: Überblick über die historische Entwicklung der Rechnerhardware Teil 1: Digitale Logik kurzer

Mehr

Teil VIII Von Neumann Rechner 1

Teil VIII Von Neumann Rechner 1 Teil VIII Von Neumann Rechner 1 Grundlegende Architektur Zentraleinheit: Central Processing Unit (CPU) Ausführen von Befehlen und Ablaufsteuerung Speicher: Memory Ablage von Daten und Programmen Read Only

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 4 Prozesse Wolfram Burgard Version 18.11.2015 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität Parallelrechner (1) Motivation: Bedarf für immer leistungsfähigere Rechner Leistungssteigerung eines einzelnen Rechners hat physikalische Grenzen: Geschwindigkeit von Materie Wärmeableitung Transistorgröße

Mehr

Convey, Hybrid-Core Computing

Convey, Hybrid-Core Computing Convey, Hybrid-Core Computing Vortrag im Rahmen des Seminars Ausgewählte Themen in Hardwareentwurf und Optik HWS 09 Universität Mannheim Markus Müller 1 Inhalt Hybrid-Core Computing? Convey HC-1 Überblick

Mehr

Cell Broadband Engine

Cell Broadband Engine Cell Broadband Engine 21.March 2006 Benjamin Keck Outline Why Cell?!? Application Areas Architectural Overview SPU Programming Model Programming on the PPE C/C++ Intrinsics The Cell Supercomputer on a

Mehr

Einführung. Anwendung. logischer Adreßraum. Kontrollfluß (Thread) = CPU führt Instruktionen aus. Was charakterisiert einen Kontrollfluß?

Einführung. Anwendung. logischer Adreßraum. Kontrollfluß (Thread) = CPU führt Instruktionen aus. Was charakterisiert einen Kontrollfluß? Kontrollflüsse Einführung 1 Motivation Kontrollfluß Anwendung logischer Adreßraum Kontrollfluß (Thread) = führt Instruktionen aus Was charakterisiert einen Kontrollfluß? Programmzähler Registerinhalte

Mehr

Betriebssysteme Studiengang Informatik

Betriebssysteme Studiengang Informatik Betriebssysteme Studiengang Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 /

Mehr

Grundlagen paralleler Architekturen

Grundlagen paralleler Architekturen Vorlesung Rechnerarchitektur 2 Seite 27 Grundlagen paralleler Architekturen Unterscheidung der Parallelrechner nach dem Operationsprinzip Als grobes Unterscheidungsmerkmal kann die von Flynn [Flynn72]

Mehr

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005 Mikroprozessoren Aufbau und Funktionsweise Christian Richter Ausgewählte Themen der Multimediakommunikation SS 2005 Christian Richter (TU-Berlin) Mikroprozessoren AT MMK 2005 1 / 22 Gliederung Was ist

Mehr

Gliederung Seite 1. Gliederung

Gliederung Seite 1. Gliederung Gliederung Seite 1 Gliederung 1. Klassifikationen...6 1.1. Klassifikation nach der Kopplung der rechnenden Einheiten...6 1.1.1. Enge Kopplung...6 1.1.2. Lose Kopplung...6 1.2. Klassifikation nach der Art

Mehr

MULTICORE- UND GPGPU- ARCHITEKTUREN

MULTICORE- UND GPGPU- ARCHITEKTUREN MULTICORE- UND GPGPU- ARCHITEKTUREN Korbinian Pauli - 17. November 2011 Seminar Multicore Programmierung, WS11, Universität Passau 2 Einleitung Klassisches Problem der Informatik: riesige Datenmenge! Volkszählung

Mehr

Codesigned Virtual Machines

Codesigned Virtual Machines Codesigned Virtual Machines Seminar Virtualisierung Philipp Kirchhofer philipp.kirchhofer@student.kit.edu Institut für Technische Informatik Lehrstuhl für Rechnerarchitektur Universität Karlsruhe (TH)

Mehr

Programmierung Paralleler Prozesse

Programmierung Paralleler Prozesse Vorlesung Programmierung Paralleler Prozesse Prof. Dr. Klaus Hering Sommersemester 2007 HTWK Leipzig, FB IMN Sortierproblem Gegeben: Menge M mit einer Ordnungsrelation (etwa Menge der reellen Zahlen) Folge

Mehr

Rechnergrundlagen SS 2007. 11. Vorlesung

Rechnergrundlagen SS 2007. 11. Vorlesung Rechnergrundlagen SS 2007 11. Vorlesung Inhalt Evaluation der Lehre (Auswertung) Synchroner/asynchroner Systembus Kontrollfluss/Datenfluss RISC vs. CISC Speicherhierarchie Cache Lesen Schreiben Überschreiben

Mehr

Kapitel 4 Grundlagen zur Parallelverarbeitung

Kapitel 4 Grundlagen zur Parallelverarbeitung Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Kapitel 4 Grundlagen zur Parallelverarbeitung SWT I Sommersemester 2009 Prof. Dr. Walter F. Tichy Dipl.-Inform. David J. Meder Warum Parallelverarbeitung?

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 4 Prozesse Maren Bennewitz Version 21.11.2012 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern! 2 Testat nach Weihnachten Mittwoch

Mehr

11.0 Rechnerarchitekturen

11.0 Rechnerarchitekturen 11.0 Rechnerarchitekturen Die Ziele dieses Kapitels sind: Kennen lernen der Rechnerklassifikation nach Flynn Betrachtung von Prozessorarchitekturen auf verschiedenen Abstraktionsebenen - Befehlsarchitektur

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Outline. Cell Broadband Engine. Application Areas. The Cell

Outline. Cell Broadband Engine. Application Areas. The Cell Outline 21.March 2006 Benjamin Keck Why Cell?!? Application Areas Architectural Overview Programming Model Programming on the PPE C/C++ Intrinsics 1 2 The Cell Supercomputer on a chip Multi-Core Microprocessor

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

früher: CISC ( Complex Instruction Set Computer )

früher: CISC ( Complex Instruction Set Computer ) Hochleistungs-CPUs früher: CISC ( Complex Instruction Set Computer ) mächtige Instruktionssätze zur Unterstützung von Hochsprachenkonstrukten durch Hardware (Idee: don t do in software what you can do

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

Multiprozessor System on Chip

Multiprozessor System on Chip Multiprozessor System on Chip INF-M1 AW1-Vortrag 25. November 2009 Übersicht 1. Einleitung und Motivation 2. Multiprozessor System on Chip (MPSoC) 3. Multiprozessoren mit Xilinx EDK 4. FAUST SoC Fahrzeug

Mehr

Einführung in die Programmierung mit C++

Einführung in die Programmierung mit C++ Seite 1 Einführung in die Programmierung mit C Teil IV - Weiterführende Themen 16. SIMD Programmierung Was bedeutet SIMD Seite SIMD Single-Instruction, Multiple-Data, also eine Instruktion, mehrere Daten

Mehr

CHARON-AXP Alpha Hardwarevirtualisierung

CHARON-AXP Alpha Hardwarevirtualisierung Alpha virtualisierung Nutzung von Softwareinvestitionen auf neuer plattform Jörg Streit, Reinhard Galler Inhalt: Alpha überblick Wozu Alpha? Prinzip der Produkte Performance Cluster Support Zusammenfassung

Mehr

Paralleles Rechnen. (Architektur verteilter Systeme) von Thomas Offermann Philipp Tommek Dominik Pich

Paralleles Rechnen. (Architektur verteilter Systeme) von Thomas Offermann Philipp Tommek Dominik Pich Paralleles Rechnen (Architektur verteilter Systeme) von Thomas Offermann Philipp Tommek Dominik Pich Gliederung Motivation Anwendungsgebiete Warum paralleles Rechnen Flynn's Klassifikation Theorie: Parallel

Mehr

COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME

COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME D - CA - XIX - CC,M&SPC - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 19 COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME Sommersemester 2003 Leitung: Prof. Dr. Miroslaw

Mehr

Multiprozessoren. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Multiprozessoren. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Multiprozessoren Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Multiprozessoren 1/29 2011-06-16 Multiprozessoren Leistungsfähigkeit

Mehr

Wichtige Rechnerarchitekturen

Wichtige Rechnerarchitekturen Wichtige Rechnerarchitekturen Teil 3 Control Data Corporation CDC 6600 1 CDC 6600 Fertigstellung 1964, Betrieb bis weit in die achtziger Jahre Hauptentwickler: Seymour Cray, Entwickler-Team aus nur 34

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Speedup: Grundlagen der Performanz Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 30. April 2015 Eine Aufgabe aus der Praxis Gegeben ein

Mehr

Die Vision Landschaft und was sie mit Moore s Gesetz zu tun hat

Die Vision Landschaft und was sie mit Moore s Gesetz zu tun hat Die Vision Landschaft und was sie mit Moore s Gesetz zu tun hat Horst A. Mattfeldt Produkt Manager Matrix Vision GmbH V1.0 10/2010 MATRIX VISION GmbH 1 Inhalt/Content: Vom Vision Sensor über Atom Boxen

Mehr

Parallele Rechnerarchitektur I

Parallele Rechnerarchitektur I Parallele Rechnerarchitektur I Stefan Lang Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368, Raum 532 D-69120 Heidelberg phone: 06221/54-8264 email: Stefan.Lang@iwr.uni-heidelberg.de

Mehr

Was machen wir heute? Betriebssysteme Tutorium 2. Organisatorisches. Frage 2.1.a. Theorieblätter Abgabe. Antwort. Probleme mit OS/161?

Was machen wir heute? Betriebssysteme Tutorium 2. Organisatorisches. Frage 2.1.a. Theorieblätter Abgabe. Antwort. Probleme mit OS/161? Was machen wir heute? Betriebssysteme Tutorium 2 Philipp Kirchhofer philipp.kirchhofer@student.kit.edu http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität Karlsruhe (TH) 1

Mehr

Umsetzung in aktuellen Prozessoren

Umsetzung in aktuellen Prozessoren Kapitel 8: Umsetzung in aktuellen Prozessoren 4 Realisierung elementarer Funktionen Reihenentwicklung Konvergenzverfahren 5 Unkonventionelle Zahlensysteme redundante Zahlensysteme Restklassen-Zahlensysteme

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Implementierung: Direkt abgebildeter Cache

Implementierung: Direkt abgebildeter Cache Implementierung: Direkt abgebildeter Cache Direkt-abgebildeter Cache von 64 KB mit 16-Byte-Linien (Adress- und Wortlänge 32 Bit, Byteadressierung) Address (showing bit positions) 31 30 29 28..... 19 18

Mehr

Synthese Eingebetteter Systeme. 14 Abbildung von Anwendungen auf Multicore-Systeme

Synthese Eingebetteter Systeme. 14 Abbildung von Anwendungen auf Multicore-Systeme 12 Synthese Eingebetteter Systeme Wintersemester 2012/13 14 Abbildung von Anwendungen auf Multicore-Systeme Michael Engel Informatik 12 TU Dortmund 2012/12/19 Abbildung von Anwendungen auf Multicores Multicore-Architekturen

Mehr

Masterpraktikum Scientific Computing

Masterpraktikum Scientific Computing Masterpraktikum Scientific Computing High-Performance Computing Thomas Auckenthaler Alexander Heinecke Technische Universität München, Germany Outline Gastvortrag + Begin 14:30 Logins Ebenen der Parallelität

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

CISC ( Complex Instruction Set Computer ) mächtige Instruktionssätze zur Unterstützung von Hochsprachenkonstrukten

CISC ( Complex Instruction Set Computer ) mächtige Instruktionssätze zur Unterstützung von Hochsprachenkonstrukten Hochleistungs-CPUs CISC ( Complex Instruction Set Computer ) mächtige Instruktionssätze zur Unterstützung von Hochsprachenkonstrukten durch Hardware (Idee: don t do in software what you can do in hardware

Mehr