Regionen in Binärbildern

Größe: px
Ab Seite anzeigen:

Download "Regionen in Binärbildern"

Transkript

1 Regionen in Binärbildern Industrielle Bildverarbeitung, Vorlesung No. 9 1 M. O. Franz falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005.

2 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

3 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

4 Regionen in Binärbildern Aufgaben: Auffinden von verbundenen Regionen gleicher Pixelfarbe Extraktion von Konturen Repräsentation der Bildregionen Beschreibung der Regionen durch geeignete Kennzahlen

5 Auffinden von Bildregionen Regionenmarkierung (region labeling oder coloring): Bestimmung der Anzahl der Regionen im Bild Bestimmung der Position der Regionen im Bild Bestimmung der Zugehörigkeit der einzelnen Pixel zu den Bildregionen Vorher festzulegen: Art der Nachbarschaft (4er oder 8er) führt zu unterschiedlichen Regionen. Ergebnis der Regionenmarkierung:

6 Regionenmarkierung durch Flood Filling (1) entspricht rekursiver Tiefensuche bei Graphenalgorithmen. Vorsicht: Erschöpfung des Stack-Speichers bei großen Regionen

7 Regionenmarkierung durch Flood Filling (2) entspricht sequentieller Tiefensuche bei Graphenalgorithmen. Da der Stack im Heapspeicher angelegt wird, besteht prinzipiell keine Größenlimitierung.

8 Regionenmarkierung durch Flood Filling (3) entspricht sequentieller Breitensuche bei Graphenalgorithmen. Ebenfalls keine Größenlimitierung, geringerer Speicherbedarf.

9 Beispiel: Flood Filling (1)

10 Beispiel: Flood Filling (2)

11 Sequentielle Regionenmarkierung Verfahren läuft in 2 Schritten ab: 1 Schritt 1- Vorläufige Markierung: Beim ersten Durchlauf werden alle Labels aus der linken/oberen Nachbarschaft übernommen. Gleichzeitig werden das Aufeinandertreffen von Regionen mit unterschiedlichen Labels (Kollisionen) gespeichert. 2 Schritt2 - Auflösung der Kollisionen: Zusammenhängende Regionen werden miteinander verschmolzen. Häufig eingesetzt wegen moderatem Speicherbedarf, Verschmelzung der Regionen ist aber komplex.

12 Sequentielle Regionenmarkierung: Schritt 1

13 Beispiel: Vorläufige Markierung (1)

14 Beispiel: Vorläufige Markierung (2)

15 Beispiel: Vorläufige Markierung (3)

16 Sequentielle Regionenmarkierung: Schritt 2

17 Sequentielle Regionenmarkierung: Schritt 2

18 Beispiel: fertige Regionenmarkierung

19 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

20 Äußere und innere Konturen

21 Repräsentation einer Kontur durch eine geordnete Folge von Pixelkoordinaten

22 Kombinierte Regionenmarkierung und Konturfindung

23 Algorithmus (1)

24 Algorithmus (2)

25 Algorithmus (3)

26 Beispiel Konturverfolgung (1)

27 Beispiel Konturverfolgung (2)

28 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

29 Matrixrepräsentation und Lauflängencodierung

30 Chain Codes

31 Differentielle Chain Codes Problem: Vergleich zweier durch Chain Codes dargestellter Regionen ist schwierig, da abhängig vom Startpunkt Drehung um 90 führt zu völlig anderem Chain Code. Umwandlung absoluter Chain Code C = (c 0, c 1,..., c M 1 ) in differentiellen Chain Code C = (c 0, c 1,..., c M 1 ): Voriges Beispiel:

32 Shape Numbers Problem: Differentielle Chain Codes bleiben zwar bei Drehungen um 90 unverändert, aber sie hängen immer noch von Startpunkt ab. Idee: Repräsentation als Zahlen zur Basis 4 oder 8 (Shape Numbers). Zyklisch vertauschen, z.b. C = (0, 1, 3, 2,..., 9, 3, 7, 4) C 2 = (7, 4, 0, 1,..., 0, 3) und maximale Ähnlichkeit suchen.aber: Drehungen um beliebige Winkel Skalierungen Verzerrungen Veränderung an Teilen führen zu starken Abweichungen in dieser Repräsentation.

33 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

34 Eigenschaften binärer Bildregionen Nächstes Mal...

MAP CellSs Mapprakt3

MAP CellSs Mapprakt3 MAP CellSs Mapprakt3 Andreas Fall, Matthias Ziegler, Mark Duchon Hardware-Software-Co-Design Universität Erlangen-Nürnberg Andreas Fall, Matthias Ziegler, Mark Duchon 1 CellSs Cell CPU (1x PPU + 6x SPU)

Mehr

Binärbildverarbeitung

Binärbildverarbeitung Prof. Dr.-Ing. Thomas Zielke " Binärbildverarbeitung SS 2013 3.1 Anwendungen von Binärbildern" Ein Bild mit nur zwei Grau/Farb-Stufen nennt man Binärbild. In der Regel werden Bildpunkte mit dem Wert Null

Mehr

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.

Mehr

Morphologie auf Binärbildern

Morphologie auf Binärbildern Morphologie auf Binärbildern WS07 5.1 Konen, Zielke WS07 5.2 Konen, Zielke Motivation Aufgabe: Objekte zählen Probleme: "Salt-&-Pepper"-Rauschen erzeugt falsche Objekte Verschmelzen richtiger Objekte durch

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Industrielle Bildverarbeitung mit OpenCV

Industrielle Bildverarbeitung mit OpenCV Industrielle Bildverarbeitung mit OpenCV Zhang,Duoyi 6.7.2 Gliederung. Einführung für OpenCV 2. Die Struktur von OpenCV Überblick Funktionsumfang in Ausschnitten mit Beispielen 3. Industrielles Anwendungsbeispiel

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Kapitel 13 Binärisierung und Verarbeitung von Binärbildern p.2/40

Kapitel 13 Binärisierung und Verarbeitung von Binärbildern p.2/40 Kapitel 13 Binärisierung und Verarbeitung von Binärbildern Automatische Schwellwertbestimmung Verarbeitung von Dokumentbildern (Skew- und Slant-Korrektur) Mathematische Morphologie Distanz-Transformation

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Jmetrika. Handbuch. Analyse sicherheitsrelevanter Software

Jmetrika. Handbuch. Analyse sicherheitsrelevanter Software Jmetrika Handbuch Analyse sicherheitsrelevanter Software Ansprechpartner: Berufsgenossenschaftliches Institut für Arbeitsschutz BGIA Zentralbereich Prof. Dr. Dietmar Reinert 53754 Sankt Augustin Tel.:

Mehr

FILOU NC. Überblick. Copyright 2012 FILOU Software GmbH. Inhalt

FILOU NC. Überblick. Copyright 2012 FILOU Software GmbH. Inhalt FILOU NC Überblick Copyright 2012 FILOU Software GmbH Inhalt Die FILOUsophie... 2 Was will FILOU-NC können?... 2 Warum nur 2D?... 2 Zielgruppe... 2 Was muss der Anwender können?... 2 FILOU-NC, ein SixPack...

Mehr

DES der vergangene Standard für Bitblock-Chiffren

DES der vergangene Standard für Bitblock-Chiffren DES der vergangene Standard für Bitblock-Chiffren Klaus Pommerening Fachbereich Mathematik der Johannes-Gutenberg-Universität Saarstraße 1 D-55099 Mainz Vorlesung Kryptologie 1. März 1991, letzte Änderung:

Mehr

Paper Computer Science Experiment

Paper Computer Science Experiment Paper Computer Science Experiment Great Principles of Computing Computation (Informationsspeicherung) Thema Digitale Repräsentation von Grafiken und Bildern Unterrichtsform Einzel- und Partnerarbeit Voraussetzung

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Digitale Bildverarbeitung Image/Picture processing

Digitale Bildverarbeitung Image/Picture processing Digitale Bildverarbeitung Image/Picture processing Ausarbeitung zum Seminarvortrag am 25. Januar 2002 Ralf Bruder Inhaltsverzeichnis Einstieg in die Bildverarbeitung 3 Industrielle Bildverarbeitung 3 Interaktive

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Bildauswertung in UAV

Bildauswertung in UAV Bildauswertung in UAV Prof. Dr. Nailja Luth Prof. N. Luth Emden 2014-1 OTH Ost-Bayerische Technische Hochschule Amberg-Weiden Prof. N. Luth Emden 2014-2 Prof. Dr.-Ing. N. Luth: Vorlesung Bildverarbeitung

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof. Hußmann

Mehr

Viele Digitalbilder in einem Rutsch verkleinern (z.b. zur Verwendung in einer Präsentationsschau) Nachfolgend der Arbeitsvorgang:

Viele Digitalbilder in einem Rutsch verkleinern (z.b. zur Verwendung in einer Präsentationsschau) Nachfolgend der Arbeitsvorgang: Viele Digitalbilder in einem Rutsch verkleinern (z.b. zur Verwendung in einer Präsentationsschau) Digitalkameras liefern für bestimmte Zwecke (z.b. Präsentationsschauen) viel zu große Bilder z.b. 4032

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Morphologische Bildoperationen

Morphologische Bildoperationen Morphologische Bildoperationen Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Gürcan Karakoc Betreuer: Suat Gedikli Abgabetermin: 10.04.2006 1 Inhaltsverzeichnis

Mehr

Unterrichtsvorhaben Q2- I:

Unterrichtsvorhaben Q2- I: Schulinterner Lehrplan Informatik Sekundarstufe II Q2 III. Qualifikationsphase Q2 Unterrichtsvorhaben Q2- I: Im ersten Halbjahr 1 Klausur, im 2. Halbjahr ein Projekt. Die Länge der Klausur beträgt 90 min.

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr Aufgabe 8.1: Zeigerverdopplung Ermitteln Sie an folgendem Beispiel den Rang für jedes Listenelement sequentiell und mit dem in der Vorlesung vorgestellten parallelen

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Fehlerhafte Codes und Zauberei

Fehlerhafte Codes und Zauberei Fehlerhafte Codes und Zauberei THEORIE DER INFORMATIK Isolde Adler Humboldt Universität zu Berlin Girls Day, 24.04.2008 ISOLDE ADLER GIRLS DAY THEORIE DER INFORMATIK 1/12 Willkommen zum Girls Day! ISOLDE

Mehr

Kapitel 9. Kombination von Vektor- und Rasterdaten. Rasterdaten. 3. Transformationen des Formats. 4. Kombinierte Auswertungen

Kapitel 9. Kombination von Vektor- und Rasterdaten. Rasterdaten. 3. Transformationen des Formats. 4. Kombinierte Auswertungen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Kapitel 9 Kombination von Vektor- und Rasterdaten Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2011/12 Ludwig-Maximilians-Universität

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille

CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles Stefan Fleischer, Adolf Hille Gliederung des Vortrags Motivation Physikalische Modellgrundlagen CPM im Einzelnen Resultate

Mehr

Erster Bug: eine Motte

Erster Bug: eine Motte SOFTWAREFEHLER Der erste Bug Erster Bug: eine Motte Der Begriff Bug (deutsch: Motte) stammt aus dem Jahre 1945, als Ingenieure in einem Schaltrelais eines Computers (Harvard Mark II-System) eine Motte

Mehr

generiere aus Textdokumenten zunächst Metadaten, wende Data Mining - Techniken dann nur auf diese an

generiere aus Textdokumenten zunächst Metadaten, wende Data Mining - Techniken dann nur auf diese an 9. Text- und Web-Mining Text Mining: Anwendung von Data Mining - Verfahren auf große Mengen von Online-Textdokumenten Web Mining: Anwendung von Data Mining - Verfahren auf Dokumente aus dem WWW oder auf

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung. Klaus Kusche, September 2014

Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung. Klaus Kusche, September 2014 Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung Klaus Kusche, September 2014 Inhalt Ziel & Voraussetzungen Was sind abstrakte Datentypen? Was kann man damit grundsätzlich?

Mehr

Neuheiten PROfirst CAD Version 6

Neuheiten PROfirst CAD Version 6 Neuheiten PROfirst CAD Version 6 www.profirst-group.com Neuheiten PROfirst CAD Version 6 ab 5.0.34 1/8 Neuheiten PROfirst CAD Version 6 ab Version 5.0.34 Neuheiten PROfirst CAD Version 6 ab Version 5.0.34...2

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Anzahl Pseudotedraden: Redundanz: Weitere Eigenschaften?

Anzahl Pseudotedraden: Redundanz: Weitere Eigenschaften? 1. Aufgabe: Aiken-Code Erstellen Sie die Codetabelle für einen Aiken-Code. Dieser Code hat die Wertigkeit 2-4-2-1. Tipp:Es gibt hier mehrere Lösungen, wenn nicht die Bedingung Aiken-Code gegeben wäre.

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische nformatik inheit 3 Kontextfreie Sprachen 1. Kontextfreie Grammatiken 2. Pushdown Automaten 3. igenschaften kontextfreier Sprachen Theoretische nformatik inheit 3.1 Kontextfreie Grammatiken

Mehr

Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu.

Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu. Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglich eines Computers im Mathematikunterricht mit dem mathbu.ch 7 9 / 9+ Sj LU Aufgabe(n) Adressat Lernphase Mathematischer Inhalt Beschreibung

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

LISE MEITNER GYMNASIUM NEUENHAUS UELSEN

LISE MEITNER GYMNASIUM NEUENHAUS UELSEN Entwurf eines schulinternen Curriculums im Fach Informatik für die Qualifikationsphase (Jahrgang 11 und 12) Für die Gestaltung des Informatikunterrichts in der Qualifikationsphase sind für das schulinterne

Mehr

Software für den Kurs

Software für den Kurs Software für den Kurs das Korpus wird auf der Kurshomepage zur Verfügung gestellt Emu Speech Database System erhältlich unter http://emu.sourceforge.net/index.shtml Ausgangsmaterial: Sprachdatenbank, die

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Neu im DARC. E-Mail-Konto Homepage. Online-Rechnung

Neu im DARC. E-Mail-Konto Homepage. Online-Rechnung Neu im DARC E-Mail-Konto Homepage Online-Rechnung Worum geht es? Der DARC bietet für seine Mitglieder die Einrichtung eines kostenlosen E-Mail-Kontos mit einem komfortablen Zugriff und kostenlosen Speicherplatz

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Workshop - Vistenkarten mit OpenOffice

Workshop - Vistenkarten mit OpenOffice Visitenkarten mit OpenOffice http://lfs.at.vu/lfs Seite 1 Workshop - Vistenkarten mit OpenOffice 1.) Programm Zeichnung von OpenOffice starten. 2.) Mit einem rechten Maustastenklick auf das leere Zeichenblatt

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Projektverwaltung. Bautherm EnEV X 9.0. 2012 BMZ Technisch-Wissenschaftliche Software GmbH

Projektverwaltung. Bautherm EnEV X 9.0. 2012 BMZ Technisch-Wissenschaftliche Software GmbH Projektverwaltung Bautherm EnEV X 9.0 2012 BMZ Technisch-Wissenschaftliche Software GmbH Software Handbuch 2012 BMZ Technisch-Wissenschaftliche Software GmbH Tübingen Alle Rechte vorbehalten. Kein Teil

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Kurze Einführung in IBM SPSS für Windows

Kurze Einführung in IBM SPSS für Windows Kurze Einführung in IBM SPSS für Windows SPSS Inc. Chicago (1968) SPSS GmbH Software München (1986) 1984: Datenanalyse Software für den PC 1992: Datenanalyse Software unter Windows 1993: Datenanalyse Software

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Bildung des IAB: Über statistische Konten können Sie in Finanz Plus die Einstellung des IAB buchen:

Bildung des IAB: Über statistische Konten können Sie in Finanz Plus die Einstellung des IAB buchen: Investitionsabzugsbetrag (IAB) Vorläufige Lösung in Finanz Plus Beim IAB handelt es sich um eine außerbilanzielle Regelung. Bildung des IAB: Über statistische Konten können Sie in Finanz Plus die Einstellung

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Computergrafik Bilder, Grafiken, Zeichnungen etc., die mithilfe von Computern hergestellt oder bearbeitet werden, bezeichnet man allgemein als Computergrafiken. Früher wurde streng zwischen Computergrafik

Mehr

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Regression Trees Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Ao.Univ.Prof. Dr. Marcus Hudec marcus.hudec@univie.ac.at Institut für Scientific Computing, Universität Wien 2

Mehr

Einführung in die Robotik Sensoren. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 30. 10.

Einführung in die Robotik Sensoren. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 30. 10. Einführung in die Robotik Sensoren Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 30. 10. 2012 Sensoren Was ist ein Sensor? Ein Sensor empfängt ein physikalisches

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Synthese Eingebetteter Systeme. 16 Abbildung von Anwendungen: Optimierung mit DOL

Synthese Eingebetteter Systeme. 16 Abbildung von Anwendungen: Optimierung mit DOL 12 Synthese Eingebetteter Systeme Sommersemester 2011 16 Abbildung von Anwendungen: Optimierung mit DOL 2011/06/24 Michael Engel Informatik 12 TU Dortmund unter Verwendung von Foliensätzen von Prof. Lothar

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

2. Aufgabenblatt mit Lösungen

2. Aufgabenblatt mit Lösungen Problem 1: (6*1 = 6) TI II 2. Aufgabenblatt mit Lösungen Geben Sie für jede der folgenden Zahlen deren Ziffernschreibweisen im Dezimal-, Dual-, Oktal- und Hexadezimal-System an. a) (2748) 10 b) (1010011011)

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Ein Verfahren zur Aufzählung binärer Audrucksbäume

Ein Verfahren zur Aufzählung binärer Audrucksbäume Ein Verfahren zur Aufzählung binärer Audrucksbäume Rüdiger Plantiko 5. Januar 2012 Zusammenfassung Ein arithmetischer Ausdruck kann durch einen binären Ausdrucksbaum repräsentiert werden. Es ist wohlbekannt,

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Best Practice. Organisation und Ablage von Kundenaufträgen im DMS von UpToNet

Best Practice. Organisation und Ablage von Kundenaufträgen im DMS von UpToNet Best Practice Organisation und Ablage von Kundenaufträgen im DMS von UpToNet Lösung Nummer 1: DMS Lösung Nummer 1: DMS Organisation und Ablage von Kundenaufträgen im DMS UpToNet unterstützt den Anwender

Mehr

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Sequentielle Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Schaltwerke Flip-Flops Entwurf eines Schaltwerks Zähler Realisierung Sequentielle

Mehr

Detecting Near Duplicates for Web Crawling

Detecting Near Duplicates for Web Crawling Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Digitale Bildverarbeitung Einheit 12 3D-Rekonstruktion

Digitale Bildverarbeitung Einheit 12 3D-Rekonstruktion Digitale Bildverarbeitung Einheit 12 3D-Rekonstruktion Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Einen Eindruck davon

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Algorithmische Grundlagen des Internets III

Algorithmische Grundlagen des Internets III Vorlesung Sommersemester 2003 Algorithmische Grundlagen des Internets III schindel@upb.de Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Informatik AG Theoretische Informatik Algorithmen,

Mehr

Collaboration und Email- Archivierung. Franz Burger November 2006

Collaboration und Email- Archivierung. Franz Burger November 2006 Collaboration und Email- Archivierung Franz Burger November 2006 Agenda Vorstellung Erema Aufgabenstellung Collaboration auf Basis File-Server/Email Probleme Collaboration mit DMS-Basis Beispielfunktionen

Mehr

CVS-Einführung. Sebastian Mancke, mancke@mancke-software.de

CVS-Einführung. Sebastian Mancke, mancke@mancke-software.de CVS-Einführung Sebastian Mancke, mancke@mancke-software.de Grundlagen Motivation und Anforderung Sobald ein Softwaresystem anwächst, ergeben sich Probleme im Umgang mit dem Quell Code. CVS (Concurrent

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Herzlich Willkommen! Neuerungen im Zahlungsverkehr für Deutschland und Europa. Info-Abend für Vereine Vorgehensweise in der Praxis

Herzlich Willkommen! Neuerungen im Zahlungsverkehr für Deutschland und Europa. Info-Abend für Vereine Vorgehensweise in der Praxis Herzlich Willkommen! Neuerungen im Zahlungsverkehr für Deutschland und Europa Info-Abend für Vereine Vorgehensweise in der Praxis 1 Stand: Juni 2013 Was ist SEPA? SEPA steht für Single Euro Payments Area

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

RSA Full Domain Hash (RSA-FDH) Signaturen

RSA Full Domain Hash (RSA-FDH) Signaturen RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne

Mehr

Die perfekte Kombination aus bewährter Factory Automation Software für die Automation nun sehr wirtschaftlich mit Embedded PC und GigE-Kameras

Die perfekte Kombination aus bewährter Factory Automation Software für die Automation nun sehr wirtschaftlich mit Embedded PC und GigE-Kameras So flexibel, modular und leistungsfähig kann Factory Automation sein. Die perfekte Kombination aus bewährter Factory Automation Software für die Automation nun sehr wirtschaftlich mit Embedded PC und GigE-Kameras

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Sachauseinandersetzung und Begründung der Auswahl

Sachauseinandersetzung und Begründung der Auswahl Unterrichtsentwurf zum Thema Vergleich von Morse- und ASCII-Code Lernziele Die SchülerInnen wenden die Begriffe der mittleren Codewortlänge, Präfixfreiheit und binären Kodierung in der Beschreibung des

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr