Regionen in Binärbildern

Größe: px
Ab Seite anzeigen:

Download "Regionen in Binärbildern"

Transkript

1 Regionen in Binärbildern Industrielle Bildverarbeitung, Vorlesung No. 9 1 M. O. Franz falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005.

2 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

3 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

4 Regionen in Binärbildern Aufgaben: Auffinden von verbundenen Regionen gleicher Pixelfarbe Extraktion von Konturen Repräsentation der Bildregionen Beschreibung der Regionen durch geeignete Kennzahlen

5 Auffinden von Bildregionen Regionenmarkierung (region labeling oder coloring): Bestimmung der Anzahl der Regionen im Bild Bestimmung der Position der Regionen im Bild Bestimmung der Zugehörigkeit der einzelnen Pixel zu den Bildregionen Vorher festzulegen: Art der Nachbarschaft (4er oder 8er) führt zu unterschiedlichen Regionen. Ergebnis der Regionenmarkierung:

6 Regionenmarkierung durch Flood Filling (1) entspricht rekursiver Tiefensuche bei Graphenalgorithmen. Vorsicht: Erschöpfung des Stack-Speichers bei großen Regionen

7 Regionenmarkierung durch Flood Filling (2) entspricht sequentieller Tiefensuche bei Graphenalgorithmen. Da der Stack im Heapspeicher angelegt wird, besteht prinzipiell keine Größenlimitierung.

8 Regionenmarkierung durch Flood Filling (3) entspricht sequentieller Breitensuche bei Graphenalgorithmen. Ebenfalls keine Größenlimitierung, geringerer Speicherbedarf.

9 Beispiel: Flood Filling (1)

10 Beispiel: Flood Filling (2)

11 Sequentielle Regionenmarkierung Verfahren läuft in 2 Schritten ab: 1 Schritt 1- Vorläufige Markierung: Beim ersten Durchlauf werden alle Labels aus der linken/oberen Nachbarschaft übernommen. Gleichzeitig werden das Aufeinandertreffen von Regionen mit unterschiedlichen Labels (Kollisionen) gespeichert. 2 Schritt2 - Auflösung der Kollisionen: Zusammenhängende Regionen werden miteinander verschmolzen. Häufig eingesetzt wegen moderatem Speicherbedarf, Verschmelzung der Regionen ist aber komplex.

12 Sequentielle Regionenmarkierung: Schritt 1

13 Beispiel: Vorläufige Markierung (1)

14 Beispiel: Vorläufige Markierung (2)

15 Beispiel: Vorläufige Markierung (3)

16 Sequentielle Regionenmarkierung: Schritt 2

17 Sequentielle Regionenmarkierung: Schritt 2

18 Beispiel: fertige Regionenmarkierung

19 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

20 Äußere und innere Konturen

21 Repräsentation einer Kontur durch eine geordnete Folge von Pixelkoordinaten

22 Kombinierte Regionenmarkierung und Konturfindung

23 Algorithmus (1)

24 Algorithmus (2)

25 Algorithmus (3)

26 Beispiel Konturverfolgung (1)

27 Beispiel Konturverfolgung (2)

28 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

29 Matrixrepräsentation und Lauflängencodierung

30 Chain Codes

31 Differentielle Chain Codes Problem: Vergleich zweier durch Chain Codes dargestellter Regionen ist schwierig, da abhängig vom Startpunkt Drehung um 90 führt zu völlig anderem Chain Code. Umwandlung absoluter Chain Code C = (c 0, c 1,..., c M 1 ) in differentiellen Chain Code C = (c 0, c 1,..., c M 1 ): Voriges Beispiel:

32 Shape Numbers Problem: Differentielle Chain Codes bleiben zwar bei Drehungen um 90 unverändert, aber sie hängen immer noch von Startpunkt ab. Idee: Repräsentation als Zahlen zur Basis 4 oder 8 (Shape Numbers). Zyklisch vertauschen, z.b. C = (0, 1, 3, 2,..., 9, 3, 7, 4) C 2 = (7, 4, 0, 1,..., 0, 3) und maximale Ähnlichkeit suchen.aber: Drehungen um beliebige Winkel Skalierungen Verzerrungen Veränderung an Teilen führen zu starken Abweichungen in dieser Repräsentation.

33 Übersicht 1 Auffinden von Bildregionen 2 Konturen von Regionen 3 Repräsentation von Bildregionen 4 Eigenschaften binärer Bildregionen

34 Eigenschaften binärer Bildregionen Nächstes Mal...

Bildverarbeitung Herbstsemester. Binärbildanalyse

Bildverarbeitung Herbstsemester. Binärbildanalyse Bildverarbeitung Herbstsemester Herbstsemester 2010 2012 Binärbildanalyse 1 Inhalt Einführung Partikelfilterung und -analyse Auffinden von Regionen und Konturen Gruppenarbeit Erkennung von geometrischen

Mehr

- - CodE 11 CodE 0 0 0 0 0 0 0 0 2.o C 1 10.0 C 2 off 3 3.0 4 2.0 5 off 6 1 8 20.0 9 60 C 7 4.0 10 80 C 1 38 C 12 8 k 13 on 14 30.0 15 10 16 - - CodE 11 CodE 0 0 0 0 0 0 0 0 2.o C 1 10.0 C 2

Mehr

MAP CellSs Mapprakt3

MAP CellSs Mapprakt3 MAP CellSs Mapprakt3 Andreas Fall, Matthias Ziegler, Mark Duchon Hardware-Software-Co-Design Universität Erlangen-Nürnberg Andreas Fall, Matthias Ziegler, Mark Duchon 1 CellSs Cell CPU (1x PPU + 6x SPU)

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Morphologie auf Binärbildern

Morphologie auf Binärbildern Morphologie auf Binärbildern WS07 5.1 Konen, Zielke WS07 5.2 Konen, Zielke Motivation Aufgabe: Objekte zählen Probleme: "Salt-&-Pepper"-Rauschen erzeugt falsche Objekte Verschmelzen richtiger Objekte durch

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

Binärbildverarbeitung

Binärbildverarbeitung Prof. Dr.-Ing. Thomas Zielke " Binärbildverarbeitung SS 2013 3.1 Anwendungen von Binärbildern" Ein Bild mit nur zwei Grau/Farb-Stufen nennt man Binärbild. In der Regel werden Bildpunkte mit dem Wert Null

Mehr

Industrielle Bildverarbeitung mit OpenCV

Industrielle Bildverarbeitung mit OpenCV Industrielle Bildverarbeitung mit OpenCV Zhang,Duoyi 6.7.2 Gliederung. Einführung für OpenCV 2. Die Struktur von OpenCV Überblick Funktionsumfang in Ausschnitten mit Beispielen 3. Industrielles Anwendungsbeispiel

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Paper Computer Science Experiment

Paper Computer Science Experiment Paper Computer Science Experiment Great Principles of Computing Computation (Informationsspeicherung) Thema Digitale Repräsentation von Grafiken und Bildern Unterrichtsform Einzel- und Partnerarbeit Voraussetzung

Mehr

DES der vergangene Standard für Bitblock-Chiffren

DES der vergangene Standard für Bitblock-Chiffren DES der vergangene Standard für Bitblock-Chiffren Klaus Pommerening Fachbereich Mathematik der Johannes-Gutenberg-Universität Saarstraße 1 D-55099 Mainz Vorlesung Kryptologie 1. März 1991, letzte Änderung:

Mehr

Fahrzeuglokalisierung anhand visueller Landmarken und einer digitalen Karte

Fahrzeuglokalisierung anhand visueller Landmarken und einer digitalen Karte Fahrzeuglokalisierung anhand visueller Landmarken und einer digitalen Karte Oliver Pink INSTITUT FÜR MESS- UND REGELUNGSTECHNIK KIT - Universität des Landes Baden-Württemberg und nationales Großforschungszentrum

Mehr

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler 3.Übung: Inhalte: - binäre Logik, boolsche Gleichungen - logische Grundschaltungen - trukturentwurf elementarer echenwerke - Grund-Flipflop (-Flipflop) - egister, chieberegister, Zähler Übung Informatik

Mehr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr Aufgabe 8.1: Zeigerverdopplung Ermitteln Sie an folgendem Beispiel den Rang für jedes Listenelement sequentiell und mit dem in der Vorlesung vorgestellten parallelen

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Kapitel 13 Binärisierung und Verarbeitung von Binärbildern p.2/40

Kapitel 13 Binärisierung und Verarbeitung von Binärbildern p.2/40 Kapitel 13 Binärisierung und Verarbeitung von Binärbildern Automatische Schwellwertbestimmung Verarbeitung von Dokumentbildern (Skew- und Slant-Korrektur) Mathematische Morphologie Distanz-Transformation

Mehr

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik)

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik) Vortrag Suchverfahren der Künstlichen Intelligenz Sven Schmidt (Technische Informatik) Suchverfahren der Künstlichen Intelligenz Grundlagen Zustandsraumrepräsentation Generische Suche Bewertung von Suchstrategien

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

SplineGen. Modellierung

SplineGen. Modellierung SplineGen SplineGen ist ein im Rahmen des generischen Modells entstandenes Programmpaket, das bei der Festigkeitsanalyse von Laufrädern eingesetzt werden kann. Modellierung Die hier vorgestellte Software

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

Viele Digitalbilder in einem Rutsch verkleinern (z.b. zur Verwendung in einer Präsentationsschau) Nachfolgend der Arbeitsvorgang:

Viele Digitalbilder in einem Rutsch verkleinern (z.b. zur Verwendung in einer Präsentationsschau) Nachfolgend der Arbeitsvorgang: Viele Digitalbilder in einem Rutsch verkleinern (z.b. zur Verwendung in einer Präsentationsschau) Digitalkameras liefern für bestimmte Zwecke (z.b. Präsentationsschauen) viel zu große Bilder z.b. 4032

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Zusammenfassung der Vorlesung vom 15.4.2015

Zusammenfassung der Vorlesung vom 15.4.2015 Zusammenfassung der Vorlesung vom 15.4.2015 Für welche Schutzziele ist Kryptographie der geeignete Schutzmechanismus? Was genau kann erreicht werden (verhindern / entdecken)? Was besagt das Prinzip von

Mehr

E-Mails zuordnen. Änderungen, Irrtümer und Druckfehler vorbehalten. Bearbeitet von Harald Borges. Stand April 2015 www.cobra.de

E-Mails zuordnen. Änderungen, Irrtümer und Druckfehler vorbehalten. Bearbeitet von Harald Borges. Stand April 2015 www.cobra.de E-Mails zuordnen Copyright 2015 cobra computer s brainware GmbH cobra Adress PLUS, cobra CRM PLUS, cobra CRM PRO und cobra CRM BI sind eingetragene Warenzeichen der cobra computer s brainware GmbH. Andere

Mehr

Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls

Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls Die Mappe enthält Makros, ohne die sie nicht funktionsfähig ist. Die Sicherheitseinstellungen müssen entsprechend gewählt und die Ausführung von Makros

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof. Hußmann

Mehr

Diana Lange. GENERATIVE GESTALTUNG Komplexe Datentypen: PShape

Diana Lange. GENERATIVE GESTALTUNG Komplexe Datentypen: PShape Diana Lange GENERATIVE GESTALTUNG Komplexe Datentypen: PShape EINFÜHRUNG In diesem Foliensatz geht es um den Import und die Darstellung von vektorbasierten Bildmaterial in Processing. Vektorgrafiken basieren,

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Bildauswertung in UAV

Bildauswertung in UAV Bildauswertung in UAV Prof. Dr. Nailja Luth Prof. N. Luth Emden 2014-1 OTH Ost-Bayerische Technische Hochschule Amberg-Weiden Prof. N. Luth Emden 2014-2 Prof. Dr.-Ing. N. Luth: Vorlesung Bildverarbeitung

Mehr

TARGET 3001!-Dateien aufbereiten für Veröffentlichungen

TARGET 3001!-Dateien aufbereiten für Veröffentlichungen TARGET 3001!-Dateien aufbereiten für Veröffentlichungen Für Elektroniker und Anwender der Target 3001!-Software bietet die Software alle Möglichkeiten, beliebige Ansichten von Schaltplänen, Bestückungsplänen

Mehr

FILOU NC. Überblick. Copyright 2012 FILOU Software GmbH. Inhalt

FILOU NC. Überblick. Copyright 2012 FILOU Software GmbH. Inhalt FILOU NC Überblick Copyright 2012 FILOU Software GmbH Inhalt Die FILOUsophie... 2 Was will FILOU-NC können?... 2 Warum nur 2D?... 2 Zielgruppe... 2 Was muss der Anwender können?... 2 FILOU-NC, ein SixPack...

Mehr

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Sequentielle Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Schaltwerke Flip-Flops Entwurf eines Schaltwerks Zähler Realisierung Sequentielle

Mehr

TRANSMETRA. Datenerfassungs-Software für GSV2, 3-Messverstärker Datacapture-Software für GSV2, 3-Instruments. GSV Multi RS, USB.

TRANSMETRA. Datenerfassungs-Software für GSV2, 3-Messverstärker Datacapture-Software für GSV2, 3-Instruments. GSV Multi RS, USB. Beschreibung Die Software GSVMulti eignet sich zur Aufzeichnung von Messdaten mit GSV-2 und GSV-3 Messverstärkern. Es können bis zu 128 Kanäle verarbeitet werden. Die Messwerte werden grafisch dargestellt.

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Architektur Verteilter Systeme Teil 2: Prozesse und Threads

Architektur Verteilter Systeme Teil 2: Prozesse und Threads Architektur Verteilter Systeme Teil 2: Prozesse und Threads 21.10.15 1 Übersicht Prozess Thread Scheduler Time Sharing 2 Begriff Prozess und Thread I Prozess = Sequentiell ablaufendes Programm Thread =

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Unterrichtsvorhaben Q2- I:

Unterrichtsvorhaben Q2- I: Schulinterner Lehrplan Informatik Sekundarstufe II Q2 III. Qualifikationsphase Q2 Unterrichtsvorhaben Q2- I: Im ersten Halbjahr 1 Klausur, im 2. Halbjahr ein Projekt. Die Länge der Klausur beträgt 90 min.

Mehr

FLASH IMAGESLIDER PROFESSIONELL 4

FLASH IMAGESLIDER PROFESSIONELL 4 FLASH IMAGESLIDER PROFESSIONELL 4 ANLEITUNG, PARAMETERBESCHREIBUNG, HINWEISE UND ERKLÄRUNGEN Version 2.0 - August 2011 Mark Kirstein, sector12 PARAMETERBESCHREIBUNG In diesem Bereich sind alle Parameter

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Anbindung Borland CaliberRM

Anbindung Borland CaliberRM Anbindung Borland CaliberRM pure::variants - Das Werkzeug Einstieg intergrierbar in bestehende Softwareentwicklungsprozesse unabhängig von der genutzten Programmiersprache Anwendung automatische Auflösung

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x),

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x), Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 25. August 2014 Programmier-Labor 04. + 05. Übungsblatt Aufgabe 21: a) Schreiben Sie eine Methode

Mehr

Vorlesung 09: Mengen. Peter Thiemann SS 2010

Vorlesung 09: Mengen. Peter Thiemann SS 2010 Vorlesung 09: Mengen Peter Thiemann Universität Freiburg, Germany SS 2010 Peter Thiemann (Univ. Freiburg) JAVA 1 / 43 Inhalt Mengen HashSet LinkedHashSet CopyOnWriteArraySet EnumSet SortedSet NavigableSet

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

EXAR v 13.0 SOFTWAREPAKET ZUR BERECHNUNG VON AUSFALLRATEN

EXAR v 13.0 SOFTWAREPAKET ZUR BERECHNUNG VON AUSFALLRATEN EXAR v 13.0 SOFTWAREPAKET ZUR BERECHNUNG VON AUSFALLRATEN EXAR EIN SOFTWAREPAKET STELLT SICH VOR EXAR ist ein Windows - Software - Paket für PCs zum Berechnen von Ausfallraten. Als Basis dieser Berechnung

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Somit können Sie schnell und einfach Stärken und Schwächen eines Unternehmens erkennen und feststellen wo dieses im Vergleich zur Branche steht.

Somit können Sie schnell und einfach Stärken und Schwächen eines Unternehmens erkennen und feststellen wo dieses im Vergleich zur Branche steht. DATEV Branchenauswertungen Musterauswertungen Mit dem Zusatzmodul Branchenauswertungen rufen Sie schnell und einfach Branchenkennzahlen aus dem DATEV-Rechenzentrum ab. Diese Kennzahlen zeigen Durchschnittswerte

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Digitale Bildverarbeitung Image/Picture processing

Digitale Bildverarbeitung Image/Picture processing Digitale Bildverarbeitung Image/Picture processing Ausarbeitung zum Seminarvortrag am 25. Januar 2002 Ralf Bruder Inhaltsverzeichnis Einstieg in die Bildverarbeitung 3 Industrielle Bildverarbeitung 3 Interaktive

Mehr

Morphologische Bildoperationen

Morphologische Bildoperationen Morphologische Bildoperationen Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Gürcan Karakoc Betreuer: Suat Gedikli Abgabetermin: 10.04.2006 1 Inhaltsverzeichnis

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

Prüfungszeiten für den Studiengang Bachelor of Science in Psychologie

Prüfungszeiten für den Studiengang Bachelor of Science in Psychologie Prüfungszeiten für den Studiengang Bachelor of Science in Psychologie Stand: 1.12.2014 Die folgende Übersicht enthält einen Rahmenterminplan für die Prüfungszeiten nach der Änderung der Prüfungsordnung,

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Algorithmen und Datenstrukturen 2-2. Seminar -

Algorithmen und Datenstrukturen 2-2. Seminar - Algorithmen und Datenstrukturen 2-2. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 2. Übungsserie: 3 Aufgaben, insgesamt 30 Punkte A4 Flußnetzwerk, Restgraphen

Mehr

Vorlesung. Optische Koordinatenmesstechnik. Dr. Uwe Nehse Mahr GmbH, Jena. November 2010

Vorlesung. Optische Koordinatenmesstechnik. Dr. Uwe Nehse Mahr GmbH, Jena. November 2010 Vorlesung Optische Koordinatenmesstechnik Dr. Uwe Nehse Mahr GmbH, Jena November 2010 Lernziele 1 2 3 4 5 Kennenlernen der Bildstapelauswertung Erkennen des Einflusses des Benutzers auf das Messergebnis

Mehr

Erster Bug: eine Motte

Erster Bug: eine Motte SOFTWAREFEHLER Der erste Bug Erster Bug: eine Motte Der Begriff Bug (deutsch: Motte) stammt aus dem Jahre 1945, als Ingenieure in einem Schaltrelais eines Computers (Harvard Mark II-System) eine Motte

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

In dieser Aufgabe sollen Teile eines kleinen Pong-Spiels analysiert und implementiert werden. Gegeben sei dazu das folgende Szenario:

In dieser Aufgabe sollen Teile eines kleinen Pong-Spiels analysiert und implementiert werden. Gegeben sei dazu das folgende Szenario: IF1-Informatik Eph GK (GA) Bearbeitungszeit: 90 min. Seite 1 Aufgabe 1: Greenfoot mit Kara Ein Pong-Spiel In dieser Aufgabe sollen Teile eines kleinen Pong-Spiels analysiert und implementiert werden. Gegeben

Mehr

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung Funktionale Programmierung 1 Funktionale Programmierung: Vorlesungsüberblick 1. Funktionale Programmierung Prinzipien funktionaler Programmierung Funktionale Programmierung in prozeduralen Sprachen Rekursive

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Synthese Eingebetteter Systeme. 16 Abbildung von Anwendungen: Optimierung mit DOL

Synthese Eingebetteter Systeme. 16 Abbildung von Anwendungen: Optimierung mit DOL 12 Synthese Eingebetteter Systeme Sommersemester 2011 16 Abbildung von Anwendungen: Optimierung mit DOL 2011/06/24 Michael Engel Informatik 12 TU Dortmund unter Verwendung von Foliensätzen von Prof. Lothar

Mehr

HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG. Das Luzifer-Rätsel. Prof. Dr. Hartmut Plesske Wintersemester 2008/09. von.

HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG. Das Luzifer-Rätsel. Prof. Dr. Hartmut Plesske Wintersemester 2008/09. von. HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG Fakultät Informatik Das Luzifer-Rätsel Prof. Dr. Hartmut Plesske Wintersemester 2008/09 von Max Nagl nagl@fh-konstanz.de Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Bildverstehen. Vorlesung an der TU Chemnitz SS 2013

Bildverstehen. Vorlesung an der TU Chemnitz SS 2013 Bildverstehen Vorlesung an der TU Chemnitz SS 2013 Johannes Steinmüller 1/B309 Tel.: 531 35198 stj@informatik.tu-chemnitz.de Seite zur Vorlesung: http://www.tu-chemnitz.de/informatik/ki/edu/biver/ Buch

Mehr

Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung. Klaus Kusche, September 2014

Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung. Klaus Kusche, September 2014 Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung Klaus Kusche, September 2014 Inhalt Ziel & Voraussetzungen Was sind abstrakte Datentypen? Was kann man damit grundsätzlich?

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Visualisierung von Wellen

Visualisierung von Wellen Wer könnte es wagen, der Natur eine Grenze zu setzen, und zu sagen: Bis hierher darf der Mensch gehen, aber keinen Schritt weiter. Jean Jacques Rousseau Visualisierung von Wellen Momentaufnahmen Linienhafte

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Abamsoft Finos im Zusammenspiel mit shop to date von DATA BECKER

Abamsoft Finos im Zusammenspiel mit shop to date von DATA BECKER Abamsoft Finos im Zusammenspiel mit shop to date von DATA BECKER Abamsoft Finos in Verbindung mit der Webshopanbindung wurde speziell auf die Shop-Software shop to date von DATA BECKER abgestimmt. Mit

Mehr

CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille

CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles Stefan Fleischer, Adolf Hille Gliederung des Vortrags Motivation Physikalische Modellgrundlagen CPM im Einzelnen Resultate

Mehr

Woraus besteht ein Bild? 28.02.2008 (c) Winfried Heinkele 2006 2

Woraus besteht ein Bild? 28.02.2008 (c) Winfried Heinkele 2006 2 Woraus besteht ein Bild? 28.02.2008 (c) Winfried Heinkele 2006 2 Was ist ein Pixel? Die durch das Objektiv einer Kamera auf einen Film oder einen elektronischen Bildsensor projizierte Wirklichkeit ist

Mehr

Beschleunigung von WMS-Diensten durch Datenoptimierung. Michael Dreesmann Consultancy

Beschleunigung von WMS-Diensten durch Datenoptimierung. Michael Dreesmann Consultancy Beschleunigung von WMS-Diensten durch Datenoptimierung Michael Dreesmann Consultancy Problemstellung Analyse Lösungsansatz Erste Ergebnisse Übersicht GADM (Ebene 0) und Gitterlinien 9. Mai 2014 Michael

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten

Mehr

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Regression Trees Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Ao.Univ.Prof. Dr. Marcus Hudec marcus.hudec@univie.ac.at Institut für Scientific Computing, Universität Wien 2

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Leitfaden zur Anlage einer Nachforderung. Nachforderung. 04.04.2013 Seite 1 von 11 RWE IT GmbH

Leitfaden zur Anlage einer Nachforderung. Nachforderung. 04.04.2013 Seite 1 von 11 RWE IT GmbH Leitfaden zur Anlage einer 04.04.2013 Seite 1 von 11 Inhaltsverzeichnis 1 Aufruf des RWE smanagements...3 2 Eingabe der Benutzerdaten...4 3 Erfassen der...5 4 Neue...6 4.1 Allgemeine Daten...7 4.2 Beschreibung...7

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Bildverarbeitung und Algorithmen. Einführung in ImageJ

Bildverarbeitung und Algorithmen. Einführung in ImageJ Prof. Dr. Wolfgang Konen Einführung in ImageJ SS06 3b.1 Konen SS06 3b.2 Konen Tools in der Bildverarbeitung Früher: fast so viele BV-Tools wie BV-Formate Lösungen nur schwer auf andere Systeme übertragbar

Mehr

VC Smart Reader: Neue Data Matrix-Software auf Smart Kameras

VC Smart Reader: Neue Data Matrix-Software auf Smart Kameras Willkommen bei Vision Components The Smart Camera People VC Smart Reader: Neue Data Matrix-Software auf Smart Kameras Referent: Klaus Schneider, Vision Components Das Unternehmen Wer ist VC: VC ist innovativer

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Computergrafik Bilder, Grafiken, Zeichnungen etc., die mithilfe von Computern hergestellt oder bearbeitet werden, bezeichnet man allgemein als Computergrafiken. Früher wurde streng zwischen Computergrafik

Mehr