Mathematik PS- Halbschriftlichkeit

Größe: px
Ab Seite anzeigen:

Download "Mathematik PS- Halbschriftlichkeit"

Transkript

1 Mathematik PS- Halbschriftlichkeit 1. Rahmenbedingungen (Lehrplan) mit Beispielen 2. Ausblick Deutschschweizer Lehrplan 3. Was ist halbschriftliches Rechnen? 4. Warum halbschriftlich rechnen? Gründe mit Beispielen 5. Mehrwert für stärkere & schwächere Lernende für Lehrpersonen für abnehmende Schulen 6. Zusammenfassung 1

2 1.1 Lehrplan Mathematik /4. Schuljahr 5./6. Schuljahr Die vier Grundoperationen mit halbschriftlichen Strategien ausführen und erklären. Die vier Grundoperationen mit halbschriftlichen Strategien ausführen und erklären. Die schriftlichen Verfahren ausführen: - Addition - Subtraktion - Multiplikation - Division nur ein Subtrahend ein Faktor höchstens zweistellig Divisor einstellig Die schriftlichen Verfahren ausführen: - Addition - Subtraktion - Multiplikation - Division mehrere Subtrahenden ein Faktor zweistellig Divisor einstellig Divisor max. zweistellig (z.b. 725 : 25) Brüche. Mit Dezimalzahlen im Kopf/halbschriftlich und schriftlich rechnen: Addition/Subtraktion Multiplikation Division 2

3 1.2 Lehrplananpassungen kann die Grundoperationen mit natürlichen Zahlen ausführen. Die vier Grundoperationen mit halbschriftlichen Strategien ausführen und erklären Division mit einstelligem Divisor - Division mit max. zweistelligem Divisor Die schriftlichen Verfahren ausführen: - Addition - Subtraktion - Multiplikation - Division mit einstelligem Divisor - Division mit zweistelligem Divisor 3

4 1.2 Lehrplananpassungen 2006 (Dezimalzahlen) 1.5 kann die Grundoperationen mit Brüchen ausführen Brüche vergleichen Brüche erweitern/kürzen. Mit Dezimalzahlen im Kopf/halbschriftlich und schriftlich rechnen: - Addition/Subtraktion - Multiplikation/Division 4

5 1.3 Exemplarische Beispiele zum Zahlenraum 5. Klasse (sabe 5 S. 27) = = = = Sinn der Menge an Übungen überdenken besser 2 separate Subtraktionen als Übung oder geschickt rechnen: bei vielen Subtrahenden im Sachrechnen mit Taschenrechner 5

6 1.4 Beispiel ( schrittweise ) 5. Klasse (sabe 5 S. 57) als Bsp. schrittweise = = Voraussetzung: Stellen-Einmaleins (Kopfrechnen) 6

7 1.5 Beispiel ( schrittweise ) 6. Klasse (analog sabe 6 S. 22) als Bsp. schrittweise = =

8 1.6 Beispiel ( Malkreuz ) 6. Klasse (sabe 6 S. 33) als Bsp. mit Malkreuz =

9 1.7 Beispiele Dezimalzahlen (Subtraktion) 6. Klasse (sabe 6 S. 86) = Einsatz Taschenrechner oder dann allenfalls für erhöhte Ansprüche: = = = = = Wenn im Sachkontext, dann Einsatz Taschenrechner 9

10 1.8 Beispiele Dezimalzahlen (Multiplikation) 6. Klasse (sabe 6 S. 100) Fr. = Rp. oder Einsatz Taschenrechner mit Taschenrechner wenn im Sachrechnen oder für erhöhte Ansprüche z.b. mit Malkreuz (fakultativ):

11 1.9 Beispiele Dezimalzahlen (Division) 5. Klasse (sabe 5 S. 67) 5/6. Klasse : 4 = : 4 = Rest : 4 = 900 Rest : 4 = 40 Rest 28 : 4 = : 94 = (sabe 5 S. 67) Abschätzen und Taschenrechner, wenn so etwas im Sachkontext vorkommt : 22 = (sabe 6 S. 102) Taschenrechner, wenn so etwas im Sachkontext vorkommt 11

12 2. Ausblick Deutschschweizer Lehrplan Die S. können Addition und Subtraktion mit natürlichen Zahlen und endlichen Dezimalzahlen sowie Multiplikationen und Divisionen natürlicher Zahlen mit insgesamt höchstens 5 Wertziffern mündlich oder halbschriftlich durchführen. Sie können Resultate von komplexeren Rechnungen schätzen und Zahlen runden. Sie können Rechengesetze zur vereinfachten Berechnung nutzen. (Kompetenzraster Bildungsstandards (HarmoS - Mathematik) sowie Deutschschweizer Lehrplan Abb. 34: Kompetenzen Mathematik zu Operieren und Berechnen [Basisstandards, provisorisch]) 12

13 3. Was ist halbschriftliches Rechnen? Definition halbschriftliches Rechnen Eigenständiger Rechentyp Enge Verflechtung mit den Rechengesetzen Zerlegung in Teilaufgaben, um leichter rechnen zu können. Rechenschritte und Zwischenergebnisse werden notiert. Ergebnisse entstehen Zahl für Zahl Keine Normalverfahren Strategien werden nach eigener Vorliebe eingesetzt. Halbschriftliche Rechenstrategien dienen zu grösserer Einsicht und einem besseren Verständnis mathematischer Vorgänge. 13

14 3.1 Um was geht es? Hauptstrategien Addition 1. "Stellenwerte extra = = "Schrittweise" = = "Vereinfachen" = "Hilfsaufgabe" = = = =

15 3.2 Hauptstrategien Subtraktion 1. "Stellenwerte extra = = "Schrittweise" = = "Vereinfachen" = "Hilfsaufgabe" = = = "Ergänzen" = = = =

16 3.3 Hauptstrategien Multiplikation 1. "Malkreuz" "Schrittweise" = = "Vereinfachen" = "Hilfsaufgabe" = =

17 3.4 Hauptstrategien Division 1. Schrittweise" : 11 = : 11 = 1000 Rest : 11 = 20 Rest : 11 = 30 Rest 44 : 11 = 4 2. "Hilfsaufgabe" 896 : 3 = 298 Rest : 3 = : 5 = : 10 = : 11 = 38 Rest : 11 = 40 17

18 3.3 Hauptstrategien Multiplikation Beispiel Malkreuz 4. Klasse Hengartner E. (1999). Mit Kindern lernen. Zug: Klett. S

19 3.4 Hauptstrategien Division Beispiel Division schrittweise 4. Klasse Hengartner E. (1999). Mit Kindern lernen. Zug: Klett. S

20 4. Warum halbschriftliches Rechnen? Gründe die Problemlösefähigkeit wird geschult ein grosser Reichtum individueller Denkversuche offenbart sich die Notation des eigenen Denkweges hilft diesen bewusster zu machen die Notation des eigenen Denkweges schult die Darstellungsfähigkeit beim Austauschen werden die eigenen Strategien nochmals geklärt und andere Strategien kennen gelernt durch den Austausch wird die Argumentationsfähigkeit gefördert 20

21 4.1 Warum halbschriftliches Rechnen? Beispiel einer Erkundung in der 3. Klasse Voraussetzungen Mitte Schuljahr Nach der Erarbeitung des Zahlenraumes bis 1000 Nach der Addition von dreistelligen Zahlen Vor der Erarbeitung der Subtraktion von dreistelligen Zahlen Anzahl Kinder / Anzahl gelöste Aufgaben 116 Kinder haben 168 Aufgaben gelöst Studie von E. Hengartner. In Hengartner E. (1999). Mit Kindern lernen. Zug: Klett. S. 103 ff (Alle folgenden Beispiele sind daraus) 21

22 Erkundung 1. Aufgabenstellung 22

23 Erkundung Subtraktion schrittweise 23

24 Erkundung Ergänzen nach oben 24

25 Erkundung 2. Aufgabenstellung 25

26 Erkundung Ergänzen nach unten 26

27 Erkundung Ergänzen nach oben 27

28 Erkundung Auswertung 116 Kinder haben 168 Aufgaben gelöst. 96 Aufgaben waren richtig. Z.B. haben 44% der Kinder mit Ergänzen gearbeitet (zu 60% erfolgreich). Hengartner E. (1999). Mit Kindern lernen. Zug: Klett. S

29 5.1 Mehrwert für stärkere Lernende Schüler und Schülerinnen lernen Mathematik zu betreiben, sich damit auseinanderzusetzen, Sachverhalte zu mathematisieren. Das eigene Denken und Darstellen wird ermöglicht durch das Operieren Zahl für Zahl Das Zahlverständnis wird geschult und gefordert Lernende können Zahlbeziehungen geschickt nutzen Lernende können Hilfsaufgaben erkennen und nutzen (Merkmal für stärkere Lernende) 29

30 Mathematische Einsichten können auf neue Problemstellungen übertragen werden. Mathematisches Wissen wird vernetzt. Der Frage nach dem Warum bei Gesetzmässigkeiten kann nachgegangen werden, was echtes Nachdenken über Zahlen und Operationen bewirkt und echtes Verständnis zur Folge hat (beim schriftlichen Verfahren unmöglich) Eigenes Gestalten und der Sinn in der Sache ist speziell für Mädchen wichtig 30

31 5.2 Mehrwert für schwächere Lernende Das eigene Denken und Darstellen ist möglich durch das Operieren Zahl für Zahl. Bei Problemen sind die Arbeitsmittel zur Unterstützung da (beim schriftlichen Verfahren unmöglich), dadurch ist echtes Verstehen des Prozesses möglich (ikonische Darstellung der Zahlen und Operationen). Die Lernenden sind dringend darauf angewiesen, auf dem für sie logischen Denkweg weiterzugehen, was durch die Offenheit der Strategien ermöglicht wird. Mathematische Vorgänge werden auch für schwächere Lernende einsichtig. 31

32 Lösungswege können sprachlich aufgezeigt werden. Die einzelnen Lernschritte werden ersichtlich. Das Zahlverständnis wird geschult und gefordert. Durch die Notation und Pflege des eigenen Denkweges erhalten die Lernenden grössere Sicherheit Lernende können evtl. Zahlbeziehungen erkennen. 32

33 5.3 Mehrwert für Lehrpersonen Denkwege werden sichtbar. als Standortbestimmung nutzbar. Darstellungsfähigkeit und Problemlösefähigkeit werden geschult (Richtziele!) Differenzierung geschieht von selber. Verstandenes geht nicht sofort wieder vergessen. Gezielte Hilfestellungen sind möglich. 33

34 5.4 Mehrwert für abnehmende Schulen Schülerinnen und Schüler lernen vernetzt zu denken, Vorgänge zu mathematisieren und Gelerntes auf neue Situationen zu übertragen. Verständnis der Operationen, Operation geschieht Zahl für Zahl (statt Ziffer für Ziffer) Verständnis von Übungsformaten 34

35 6. Zusammenfassung Die halbschriftlichen Rechenstrategien sind verbindlich. Auf diesen wird auf der Sekundarstufe I aufgebaut (Lehrplan 2003, Lehrplananpassungen 2006, D-CH-LP) Massgebend ist der Lehrplan des Kantons Luzern und nicht die Lehrmittel. Umgang: 3./4. Klasse: einfachere Aufgaben werden vor allem mündlich und halbschriftlich durchgeführt, Zahlen sind entsprechend angepasst. 5./6. Klasse: aufwändigere Aufgaben können mit Taschenrechner/PC durchgeführt werden, insbesondere im Sachrechnen. 35

36 Taschenrechner Einsatz Taschenrechner/PC Der Einsatz in der Primarstufe ist schwerpunktmässig in den 5. und 6. Klassen vorgesehen und frühestens ab der 3. Klasse erlaubt. Er ersetzt in keiner Weise das Kopfrechnen. Es gilt: nur selektiver Einsatz, wenn von den Lehrpersonen angeordnet, keine reinen Fertigkeitsaufgaben. Im Vordergrund stehen: Rechnen mit grossen Zahlen (ab insgesamt 5 Wertziffern), Sachrechnen und Dezimalzahlen Überprüfen von Ergebnissen 36

37 Umgang mit dem Taschenrechner Wichtig ist ein gezielter, verantwortungsbewusster und kontrollierter Einsatz Der Taschenrechner ist ein reines Hilfsmittel, seine Anwendung also kein Lernziel. Sein Gebrauch ist nicht prüfbar. Er kann allenfalls beim Sachrechnen (Mathematisierfähigkeit) auch in Prüfungen eingesetzt werden. 37

38 Anschaffung Nur einfachen Rechner verwenden. (Bezugsquelle unter anderen: oder Papeterien, Kosten: ab ca. 2. bis 7. Fr.) Vorzugsweise mindestens einen halben Klassensatz einsetzen. 38

39 Zahlenraum Der Zahlenraum und der damit verbundene prüfbare Pflichtstoff wurden nicht verändert. (Lehrplan 2003, bzw. Lehrplananpassungen 2006). Für das mathematische Verständnis ist es aber sinnvoll, die Zahlenräume grundsätzlich offen zu gestalten (z.b. Zahlenbuch), dies ist auch als Zusatzstoff formuliert (LP S. 9). 3. Klasse Aufgaben im Zahlenraum werden mündlich und halbschriftlich gelöst. Anspruchsvollere Additionen werden mit dem schriftlichen Verfahren gelöst. Frühster möglicher Einsatz des Taschenrechners, wenn die halbschriftlichen Strategien nicht mehr ausreichen (zu kompliziert oder zu aufwändig). 39

40 Zahlenraum 4. Klasse Obligatorischer Zahlenraum 1-10'000 (bis 1 Mio. als Zusatzstoff) Bei Zahlen mit 4 Wertziffern, betragen die Werte der Zehner und Einer möglichst Null und ab 5 Wertziffern wird mit Wertziffern ab den Tausendern gerechnet, z.b. 8700, 5600,, , ,. Anspruchsvollere Additionen werden mit dem schriftlichen Verfahren gelöst. Falls beim Rechnen die halbschriftlichen Strategien nicht mehr ausreichen (zu kompliziert oder zu aufwändig), darf der Taschenrechner eingesetzt werden. 40

41 5./6. Klasse Zahlenraum bis 100'000, bzw. bis 1 Mio. Halbschriftlichkeit nur bei einfacheren natürlichen Zahlen und endlichen Dezimalzahlen. Bei Zahlen mit 5 oder 6 Wertziffern, betragen die Werte der Zehner und Einer sicher, die Hunderterwerte möglichst Null, z.b. 57'000, , 934'000, 500'000, 450'600 Falls beim Rechnen die halbschriftlichen Strategien nicht mehr ausreichen (zu kompliziert oder zu aufwändig, vor allem im Sachrechnen), darf der Taschenrechner eingesetzt werden. 41

42 Kinder mit mathematischen Lernschwierigkeiten Halbschriftliche Verfahren schaffen Einsicht und Verständnis und führen zu mehr Sicherheit. Mathematische Lernschwierigkeiten können verschiedene Ursachen haben. Eine Lernstandserfassung bildet die Grundlage der Förderplanung. Die Förderung des mathematischen Verständnisses ist zentral. Die Verantwortung für den Gebrauch des Zahlenraums liegt bei der Förderlehrperson (IF-Lp) und der Klassenlehrperson. Dies gilt auch für einen sinnvollen Einsatz des Taschenrechners anstelle der schriftlichen Grundoperationen. 42

43 Grundsätzliches zum Mathematikunterricht Qualität vor Quantität! Weniger Aufgaben lösen, dafür Lösungswege darstellen, reflektieren, austauschen. Problemlösefähigkeit und Darstellungsfähigkeit schulen. Mit Einsicht verbundenes Lernen fördern. 1. Priorität: Mathematik (Problemlöse- und Mathematisierfähigkeit), 2. Priorität: Rechnen (Rechenfertigkeit) Im Zentrum steht das Kind, die Anforderungen des Lehrplans 2003 mit den Lehrplananpassungen 2006 (Pflicht) und nicht das Lehrmittel (Angebot). November 2008, Ruedi Püntener, Beauftragter Lehrpläne/Lehrmittel 43

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3.1 Halbschriftliche Addition und Subtraktion 3.3.2 Halbschriftliche Multiplikation und Division Übungsaufgabe Lösen Sie folgende Aufgabe:

Mehr

Selbsteinschätzung. Strategien aufgabenbezogen bewerten. Kenntnis der Rechenwege auch bei schriftlichen Rechenverfahren

Selbsteinschätzung. Strategien aufgabenbezogen bewerten. Kenntnis der Rechenwege auch bei schriftlichen Rechenverfahren Schwerpunkt: Flexibles Rechnen - Klasse 3/4 Flexibles Rechnen Die Schülerinnen und Schüler: - nutzen aufgabenbezogen oder nach eigenen Präferenzen eine Strategie des Zahlenrechnens, ein schriftliches Normalverfahren

Mehr

Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop)

Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop) Idee des Workshops Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop) Mathematik-Tagung Hamburg, 7. Mai 2010, Workshop Vorname Name Autor/-in ueli.hirt@phbern.ch Einen ergänzenden

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen Halbschriftliche Addition und Subtraktion

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen Halbschriftliche Addition und Subtraktion 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3.1 Halbschriftliche Addition und Subtraktion 3.3.2 Halbschriftliche Multiplikation und Division Rahmenplan Rahmenplan Hessen S. 154:

Mehr

Mathematik. Lehrplan für die Primarschule. Kanton Freiburg

Mathematik. Lehrplan für die Primarschule. Kanton Freiburg Lehrplan für die Primarschule Mathematik Kanton Freiburg Der vorliegende Lehrplan Mathematik wurde 2000 von der Fachgruppe Mathematik unter der Leitung von Gregor Wieland erarbeitet und 2000 von der EKSD

Mehr

Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3

Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3 Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3 Prozessbezogene Inhaltsbezogene Kapitel 1: Wiederholung und Vertiefung Seite 4 17 (ca. 1. 4. Woche) Rechnen im Zahlenraum bis 100 festigen;

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (3. Klasse) A. Rechenstrategien Addition

Mehr

Mathematik 4 Primarstufe

Mathematik 4 Primarstufe Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden auf welchen Schulbuchseiten trainiert?

Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden auf welchen Schulbuchseiten trainiert? Bildungsstandards im ZAHLEN-ZUG 2 1 Bildungsstandards im ZAHLEN-ZUG 2 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden auf welchen Schulbuchseiten

Mehr

Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden

Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden Bei allen Operationen gilt für größere Zahlen die gleiche Strategie: schrittweise rechnen Schreibweisen werden

Mehr

Bildungsstandards in FUNKELSTEINE Mathematik 4

Bildungsstandards in FUNKELSTEINE Mathematik 4 Bildungsstandards in FUNKELSTEINE Mathematik 4 1 Bildungsstandards in FUNKELSTEINE Mathematik 4 Inhalt: 1. Allgemeines 2. Bildungsstandards Mathematik Volksschule 3. Welche mathematischen Kompetenzen werden

Mehr

Mathematik im 3. Schuljahr. Kompetenzen und Inhalte

Mathematik im 3. Schuljahr. Kompetenzen und Inhalte Mathematik im 3. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen

Mehr

Arbeitsplan mit Implementierung der Bildungsstandards Mathematik Klasse 3

Arbeitsplan mit Implementierung der Bildungsstandards Mathematik Klasse 3 Arbeitsplan mit Implementierung der Bildungsstandards Mathematik Klasse 3 Kapitel 1: Zahlen überall Seite 4 15 (ca. 1. 6. Woche) Grundrechenarten im Zahlenraum bis 100 Zahldarstellung und Grundrechenarten

Mehr

Vorgehensweisen bei der halbschriftlichen Addition

Vorgehensweisen bei der halbschriftlichen Addition Vorgehensweisen bei der halbschriftlichen Addition Das halbschriftliche Rechnen stellt neben dem mündlichen und schriftlichen Rechnen eine dritte wichtige Rechenmethode dar, welche sich allerdings im Gegensatz

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 1. Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 2. Zehnerschritte bis 1000: Von wo bis wo? 3. Zehnerschritte bis 1000: Wo ist

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

Mathematikunterricht. Volksschule. in der. Maria Koth

Mathematikunterricht. Volksschule. in der. Maria Koth Mathematikunterricht in der Volksschule Maria Koth Herzlich Willkommen! Mathematiklehrplan der Volksschule Mathematiklehrplan der Volksschule Gegliedert in: Grundstufe I: 1. + 2. Schulstufe Grundstufe

Mehr

Mathematik. Sich mathematisch ausdrücken: lesen und beschreiben, argumentieren, darstellen, konstruieren, modellieren

Mathematik. Sich mathematisch ausdrücken: lesen und beschreiben, argumentieren, darstellen, konstruieren, modellieren Mathematik Sich mathematisch ausdrücken: lesen und beschreiben, argumentieren, darstellen, konstruieren, modellieren Mathematisches Verständnis ausbauen: Probleme und Lösungen sprachlich formulieren Gedankengänge

Mehr

Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL

Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL Aufbau des Lehrmittels Moderner Mathematik- Unterricht im Kanton Zürich Wie unterrichten wir im PETERMOOS Fragen Aufbau des Lehrmittels 1. Das Themenbuch

Mehr

Mathematik. Sich mathematisch ausdrücken: lesen und beschreiben, argumentieren, darstellen, konstruieren, modellieren

Mathematik. Sich mathematisch ausdrücken: lesen und beschreiben, argumentieren, darstellen, konstruieren, modellieren Mathematik Sich mathematisch ausdrücken: lesen und beschreiben, argumentieren, darstellen, konstruieren, modellieren Mathematisches Verständnis ausbauen: Probleme und Lösungen sprachlich formulieren Gedankengänge

Mehr

Mathematik im 2. Schuljahr. Kompetenzen und Inhalte

Mathematik im 2. Schuljahr. Kompetenzen und Inhalte Mathematik im 2. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen

Mehr

Orientierungsmodul Oberstufe OS 1. Zahlen auf dem Zahlenstrahl darstellen und interpretieren. natürliche Zahlen bis 2 Millionen lesen und schreiben

Orientierungsmodul Oberstufe OS 1. Zahlen auf dem Zahlenstrahl darstellen und interpretieren. natürliche Zahlen bis 2 Millionen lesen und schreiben Inhalt/ Orientierungsmodul Oberstufe O 1 Zahlendarstellung Zahlen auf dem Zahlenstrahl darstellen und interpretieren O 1 _Mathematik_71 A1, A2, A4 natürliche Zahlen bis 2 Millionen lesen und schreiben

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 6

Schulinterner Lehrplan Mathematik G8 Klasse 6 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/6 Jg 6, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 6 Verbindliche Inhalte zu Kapitel I Rationale Zahlen 1 Brüche und Anteile 2 Was man

Mehr

Additions- und Subtraktionsaufgaben im Zahlenraum bis 20 lassen sich grundsätzlich zählend lösen

Additions- und Subtraktionsaufgaben im Zahlenraum bis 20 lassen sich grundsätzlich zählend lösen 1. Zählendes Rechnen Additions- und Subtraktionsaufgaben im Zahlenraum bis 20 lassen sich grundsätzlich zählend lösen Zählmethoden sind der natürliche Zugang zur Lösung derartiger Aufgaben Auch Erwachsene

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Didaktik der Grundschulmathematik 1.1

Didaktik der Grundschulmathematik 1.1 Didaktik der Grundschulmathematik 1.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 1.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Zahlbegriff 3 Addition

Mehr

Erarbeitung der Operation Subtraktion. Mündliches und halbschriftliches Rechnen

Erarbeitung der Operation Subtraktion. Mündliches und halbschriftliches Rechnen Erarbeitung der Operation Subtraktion Mündliches und halbschriftliches Rechnen Übung / Wiederholung Lösen Sie folgende Aufgaben. Veranschaulichen Sie den Rechenweg, indem Sie Plättchen in einem Abakus

Mehr

Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss.

Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss. Aufgabe 1.5 Idee und Aufgabenentwurf: Vera Laase, Nikolaus-Groß-Schule, Lebach, Klasse 3 (Dezember 2012) Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss. o

Mehr

Kompetenzraster Förderschwerpunkt Lernen: MATHE

Kompetenzraster Förderschwerpunkt Lernen: MATHE Kompetenzraster Förderschwerpunkt Lernen: MATHE Orientierung im Zahlenraum bis (20, 100, 1.000, 10.000, 100.000 ) 1. Halbjahr: 2. Halbjahr: Negative Zahlen Kompetenzfeld: Zahlvorstellung / Umgang mit Größen

Mehr

Arbeitsplan Mathe, 3. Schuljahr

Arbeitsplan Mathe, 3. Schuljahr : 1.-10.Woche Lernvoraussetzungen erfassen Wiederholung des in Klasse 2 Gelernten Lerninhalte des 2. Schuljahres beherrschen Eingangsdiagnostik Wiederholung mit abgewandelten Übungen Diagnosebögen zum

Mehr

Mathematik ist mehr als Rechnen

Mathematik ist mehr als Rechnen Mathematik ist mehr als Rechnen mit produktiven Lernumgebungen zu einem kompetenzorientierten Unterricht Anforderungen an einen modernen Mathematikunterricht Lernumgebung zur Multiplikation Kriterien einer

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

ZUR OPERATION MULTIPLIKATION. Halbschriftliches und schriftliches Rechnen

ZUR OPERATION MULTIPLIKATION. Halbschriftliches und schriftliches Rechnen ZUR OPERATION MULTIPLIKATION Halbschriftliches und schriftliches Rechnen WIEDERHOLUNG Welche Mal-Aufgaben gehören zu den Kernaufgaben? In welcher Reihenfolge werden die Malaufgaben behandelt? Welche Begründungen

Mehr

Zaubern im Mathematikunterricht

Zaubern im Mathematikunterricht Zaubern im Mathematikunterricht 0011 0010 1010 1101 0001 0100 1011 Die Mathematik als Fachgebiet ist so ernst, dass man keine Gelegenheit versäumen sollte, dieses Fachgebiet unterhaltsamer zu gestalten.

Mehr

2.2 Mathematik Der schuleigene Arbeitsplan

2.2 Mathematik Der schuleigene Arbeitsplan 2.2 Mathematik 2.2.1 Der schuleigene Arbeitsplan Stoffverteilungsplan - Schuleingangsphase Arithmetik Entwicklung des Zahlbegriffs und Orientierung im Zahlenraum bis 20 bzw. bis 100, Einsicht in das Dezimalsystem

Mehr

Hauptstudie zur halbschriftlichen Division

Hauptstudie zur halbschriftlichen Division Thema: Vorgehensweisen von Drittklässlern bei Aufgaben zur halbschriftlichen Division Zeitpunkt: Mitte bis Ende Klasse 3 zeitlicher Umfang: ca. 45 Minuten Material: Arbeitsblatt mit Divisionsaufgaben Ziele

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 3. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel

Schuleigener Arbeitsplan im Fach Mathematik 3. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Schuleigener Arbeitsplan im Fach Mathematik 3. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (4. Klasse) A. Rechenstrategien Subtraktion

Mehr

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK Allgemeine mathematische Kompetenzen (AK) 1. Kompetenzbereich Modellieren (AK 1) 1.1 Eine Sachsituation in ein mathematisches Modell (Terme und Gleichungen) übertragen,

Mehr

Sicher mit Zahlen Übungen zur Ablösung vom zählenden Rechnen. Uta Häsel-Weide Marcus Nührenbörger

Sicher mit Zahlen Übungen zur Ablösung vom zählenden Rechnen. Uta Häsel-Weide Marcus Nührenbörger Sicher mit Zahlen Übungen zur Ablösung vom zählenden Rechnen Uta Häsel-Weide Marcus Nührenbörger Sicher mit Zahlen, Übungen zur Ablösung vom zählenden Rechnen Wie entwickeln sich arithmetische Konzepte?

Mehr

MATHEMATIK 3. KL. FL. Übungstyp

MATHEMATIK 3. KL. FL. Übungstyp MATHEMATIK 3. KL. FL ID Übungstyp Anzahl Aufgaben Arithmetik/Algebra Zahlvorstellungen Zahlwörter - Zahlen (ID 1056-3) 1056 Übung 42 Stellenwerttafel (ID 1271-3) 1271 Übung 15 Zahlen bilden 1 (ID 1057-3)

Mehr

Vorgehensweisen bei der halbschriftlichen Subtraktion

Vorgehensweisen bei der halbschriftlichen Subtraktion Vorgehensweisen bei der halbschriftlichen Subtraktion Auf dieser Seite erhalten Sie die Möglichkeit, sich mit Vorgehensweisen von Grundschülern bei Aufgaben zur halbschriftlichen Subtraktion auseinanderzusetzen.

Mehr

So rechne ich! Wie rechnest du? - Eigene Rechenwege mit Forschermitteln entwickeln und dokumentieren

So rechne ich! Wie rechnest du? - Eigene Rechenwege mit Forschermitteln entwickeln und dokumentieren Haus 5: Fortbildungsmaterial Individuelles und gemeinsames Lernen So rechne ich! Wie rechnest du? - Eigene Rechenwege mit Forschermitteln entwickeln und dokumentieren 21. Symposium mathe 2000 - Beate Sundermann

Mehr

Mathematik 1 Primarstufe

Mathematik 1 Primarstufe Mathematik 1 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Inhalte des Schulbuches Kompetenzen und Inhalte Ergänzende Materialien aus dem Produktkranz

Inhalte des Schulbuches Kompetenzen und Inhalte Ergänzende Materialien aus dem Produktkranz Wiederholung (S. 4 13) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien Addieren bis 100 Festigen

Mehr

Kompetenzen und Aufgabenbeispiele Mathematik, 6. Klasse

Kompetenzen und Aufgabenbeispiele Mathematik, 6. Klasse Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele Mathematik, 6. Klasse (Version Nidwalden) Informationen für Lehrpersonen 1. Ergebnisse interpretieren

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 5 Reihen- Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen folge Die Schülerinnen und Schüler

Mehr

Mathematik in der Volksschule

Mathematik in der Volksschule Erziehungsdepartement des Kantons St.Gallen Amt für Volksschule Erziehungsdepartement des Kantons St.Gallen Amt für Volksschule Davidstrasse 31 9001 St.Gallen August 2004 Gestaltung: Monika Walpen, 9200

Mehr

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - erläutern

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

Mathematik Jahrgangsstufe 4

Mathematik Jahrgangsstufe 4 Grundschule Bad Münder Stand: 12.03.2014 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 4 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Kommunizieren und Eigene Vorgehensweisen, Lösungswege

Mehr

Kompetenzen und Aufgabenbeispiele Mathematik Check P6

Kompetenzen und Aufgabenbeispiele Mathematik Check P6 Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele Mathematik Check P6 Informationen für Lehrpersonen und Eltern 1. Wie sind die Ergebnisse dargestellt?

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Dezimalsystem Verschiedene Aspekte des Zahlenraums

Dezimalsystem Verschiedene Aspekte des Zahlenraums Dezimalsystem Verschiedene Aspekte des Zahlenraums Warum ist das dezimale Stellenwertsystem so wichtig? Das Dezimalsystem ist systematisch, effizient und logisch aufgebaut, jede Zahl (bis ins Unendliche)

Mehr

Workshop: Grundvorstellungen aufbauen. Sebastian Wartha, Karlsruhe

Workshop: Grundvorstellungen aufbauen. Sebastian Wartha, Karlsruhe Workshop: Grundvorstellungen aufbauen Sebastian Wartha, Karlsruhe Küchenzurufe Vom Zählen zum Grundvorstellungen, keine Regeln Auf s Übersetzen kommt es an; Verinnerlichen von Handlungen Diagnose & Förderung

Mehr

Download. erarbeiten Mathematik 3. Mathematik 3. Multiplikation und Division. Nina Kostka. Lerninhalte selbstständig

Download. erarbeiten Mathematik 3. Mathematik 3. Multiplikation und Division. Nina Kostka. Lerninhalte selbstständig Download Nina Kostka Lerninhalte selbstständig erarbeiten Mathematik 3 Mit Tippkarten Schritt für Schritt zur richtigen Lösung Nina Kostka Lerninhalte selbstständig erarbeiten Mathematik 3 Grundschule

Mehr

Institut Weiterbildung und Beratung: Projekt Schul-In Integrative Schulung und Unterrichtsentwicklung

Institut Weiterbildung und Beratung: Projekt Schul-In Integrative Schulung und Unterrichtsentwicklung Institut Weiterbildung und Beratung: Projekt Schul-In Integrative Schulung und Unterrichtsentwicklung Teilprojekt LERNATLAS Mathematik Primarstufe Lernlandkarten Mathematik Primar 1-6: Version für dreiklassige

Mehr

Marc Peter, Rainer Hofer, Jean-Louis D Alpaos. Arithmetik und Algebra

Marc Peter, Rainer Hofer, Jean-Louis D Alpaos. Arithmetik und Algebra MATHEMATIK BASICS Marc Peter, Rainer Hofer, Jean-Louis D Alpaos Arithmetik und Algebra Vorwort Zu Beginn der beruflichen Grundbildung haben 0 bis 30 Prozent aller Jugendlichen Schwierigkeiten, dem Unterricht

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

8.1.1 Real : Arithmetik Zahlenräume

8.1.1 Real : Arithmetik Zahlenräume 8.1.1 Real : Arithmetik Zahlenräume P8: Mathematik 8 A1: komb.büchlein W89: Wahlfach 8/9.Prim Zeitraum Wochen Inhalte Kernstoff Zusatzstoff Erledigt am: Natürliche Zahlen (N) P8: 1, 2,,,, 6, 8, 11 TR,

Mehr

Ziele beim Umformen von Gleichungen

Ziele beim Umformen von Gleichungen Ziele beim Umformen von Gleichungen für GeoGebraCAS Letzte Änderung: 29. März 2011 1 Überblick 1.1 Zusammenfassung Beim Lösen von Gleichungen ist besonders darauf zu achten, dass Schüler/innen den Äquivalenzumformungen

Mehr

Mathematik in der Volksschule

Mathematik in der Volksschule Departement Bildung, Kultur und Sport Abteilung Volksschule Mathematik in der Volksschule Elterninformation Mathematik in der Volksschule Elterninformation 1. Einleitung Für viele Menschen ist Mathematik

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S )

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S ) M ATHEMATIK Klasse 3 Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern Duden Mathematik 3 Lehrplan: Anforderungen / Inhalte Der Zahlenraum bis 1000 (S. 14 25) Entwickeln von Zahlvorstellungen

Mehr

Mathematik lehren und lernen vom wohlverstandenen Fach aus

Mathematik lehren und lernen vom wohlverstandenen Fach aus Mathematik lehren und lernen vom wohlverstandenen Fach aus m a t h e 2 0 0 0 http://www.tu-dortmund.de/mathe2000 Wie kann man die in der Mathematik liegenden Möglichkeiten so nutzen, dass die Kinder besser

Mehr

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik V e r l ä s s l i c h e G r u n d s c h u l e Hauptstraße 5 30952 Ronnenberg-Weetzen 05109-52980 Fax 05109-529822 2.Schuljahr Schuleigener Arbeitsplan für das Fach Mathematik Kompetenzbereiche, erwartete

Mehr

Editierbare PDF-Vorlagen

Editierbare PDF-Vorlagen Editierbare PDFVorlagen Hilfestellung 1. Diese PDFDatei am gewünschten Ort speichern 2. PDF mit einem PDFReader öffnen (z. B. Adobe Acrobat Reader) 3. Gewünschte Vorlage auswählen 4. PDF ausfüllen ausfüllbare

Mehr

Umgang mit den Ergebnissen von VERA. Fach Mathematik Bereich Arithmetik

Umgang mit den Ergebnissen von VERA. Fach Mathematik Bereich Arithmetik Umgang mit den Ergebnissen von VERA Fach Mathematik Bereich Arithmetik Einleitung Im Laufe der Grundschulzeit lernen die Kinder Verständnis, Sicherheit und Flexibilität im Umgang mit Zahlen und Rechenoperationen.

Mehr

Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe TU Dortmund

Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe TU Dortmund Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe 2000+ TU Dortmund 25.04.2015 Referent: Günther Röpert Entwicklungsstand siebenjähriger Kinder 8 7 6 5 4 3 2 1 0 1 2 4 6 4 2 1 5,5 6,0 6,5

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Turmzimmer 1: Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 7. Hunderterschritte bis 10000: Wo ist die Zahl? 2. Zehnerschritte bis 1000: Von wo bis wo? 8. Hunderterschritte bis

Mehr

Rechengesetze. 1. Welche Zahl kannst du hier einsetzen? Mache deinen Lösungsweg sichtbar.

Rechengesetze. 1. Welche Zahl kannst du hier einsetzen? Mache deinen Lösungsweg sichtbar. Rechengesetze 1. Welche Zahl kannst du hier einsetzen? Mache deinen Lösungsweg sichtbar. (a) 7 (12+?) = 84+28 = 112 (b) 6 (12?) = 144 Literatur: Materialien Mathematik M49, Weiterentwicklung der Unterrichtskultur

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Russische Bauern- Multiplikation

Russische Bauern- Multiplikation Informationsblatt für die Lehrkraft Russische Bauern- Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Mittelschule, technische Berufsschule Binäre

Mehr

Was macht mathematische Kompetenz aus?

Was macht mathematische Kompetenz aus? Was macht mathematische Kompetenz aus? ^ Kompetenzstrukturmodell Zahlen und Operationen Raum und Form Größen und Messen Daten und Zufall Stand 02/2013 Probleme lösen mathematische Kenntnisse, Fertigkeiten

Mehr

Christoph SELTER, Heidelberg Flexibles Rechnen Forschungsergebnisse, Leitideen, Unterrichtsbeispiele

Christoph SELTER, Heidelberg Flexibles Rechnen Forschungsergebnisse, Leitideen, Unterrichtsbeispiele Christoph SELTER, Heidelberg Flexibles Rechnen Forschungsergebnisse, Leitideen, Unterrichtsbeispiele Ein zentrales Ziel des Mathematikunterrichts nicht nur in der Grundschule besteht darin, dass die Schülerinnen

Mehr

Mathematik - Jahrgangsstufe 6

Mathematik - Jahrgangsstufe 6 Mathematik - Jahrgangsstufe 6 1. Rationale Zahlen und ihre Darstellung A+K: Präsentieren/ WZ: Konstruieren und Darstellen (LS 6 Auflage 2009 Prozessbezogenen Methoden/ Sozialform Teilbarkeitsregeln und

Mehr

Pentominos auf der Hundertertafel

Pentominos auf der Hundertertafel Pentominos auf der Hundertertafel Thema: Stufe: Dauer: Material: Addition, Rechengesetze 3. bis 5. Schuljahr 2 bis 4 Lektionen Pentomino-Schablonen aus Folie, Karton oder Holzwürfeln (falls die entsprechende

Mehr

Lernlandkarten (V3) Mathematik Primar 1-5

Lernlandkarten (V3) Mathematik Primar 1-5 Institut Weiterbildung und Beratung Projekt Schul-In Integrative Schulung und Unterrichtsentwicklung Teilprojekt LERNATLAS Mathematik Primarstufe Lernlandkarten (V3) Mathematik Primar 1-5 Lernlandkarten

Mehr

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder Förderkurs im Schuljahr 2016/17 VS Großarl Förderkurs: Mathematik (Festigung und Förderung der mathematischen Basiskompetenzen, Festigung der Grundrechnungsarten, Sachaufgaben verstehen und lösen, Training

Mehr

Schuleigener Arbeitsplan für das Fach Mathematik

Schuleigener Arbeitsplan für das Fach Mathematik Schuleigener Arbeitsplan für das Fach Mathematik Overbergschule Vechta Kath. Grundschule Overbergstraße 12 49377 Vechta Beschluss FK: 17.02.2014 Seite 1 von 61 Inhaltsverzeichnis 1. Eingeführte Unterrichtswerke

Mehr

Download. Zahlen und Operationen kompetenzorientiert Kl. 4. Halbschriftliche und schriftliche Rechenverfahren. Anna Seitz

Download. Zahlen und Operationen kompetenzorientiert Kl. 4. Halbschriftliche und schriftliche Rechenverfahren. Anna Seitz Download Anna Seitz Zahlen und Operationen kompetenzorientiert Kl. Halbschriftliche und schriftliche Rechenverfahren Downloadauszug aus dem Originaltitel: Praxismaterialien für die erfolgreiche Umsetzung

Mehr

Schulinternes Curriculum: Mathematik 4.Schuljahr

Schulinternes Curriculum: Mathematik 4.Schuljahr Zahlen und Operationen Zahlvorstellungen stellen Zahlen im Zahlenraum bis 1.000.000 unter Anwendung der Struktur des Zehnersystems dar orientieren sich im erweiterten Zahlenraum wechseln zwischen verschiedenen

Mehr

Beobachtungsbogen. Klasse 1 und 2 W

Beobachtungsbogen. Klasse 1 und 2 W Das Zahlenbuch. Wissen, warum. Beobachtungsbogen Klasse 1 und 2 w W 200534 Hinweise zum Gebrauch des Beobachtungsbogens Mathematik Dieser Beobachtungsbogen dient zur Dokumentation der Lernwicklung jedes

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 6 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Bruchzahlen - Wiederholen: Anteile als Bruch darstellen - Dezimalschreibweise - Dezimalschreibweisen vergleichen

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

Arbeitsplan für Rheinland-Pfalz. Kapitel 1: Wiederholung und Vertiefung, Seite 4 15 (ca Woche)

Arbeitsplan für Rheinland-Pfalz. Kapitel 1: Wiederholung und Vertiefung, Seite 4 15 (ca Woche) Arbeitsplan für Rheinland-Pfalz 4 6 7 8 9 Wiederholung: Addieren, Subtrahieren, Einmaleins Kreative Aufgaben: Regelwürmer Addieren und Subtrahieren zweistelliger Zahlen Inhaltsbezogene Kapitel 1: Wiederholung

Mehr

Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten

Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten Inhalt/Lernziele Teil A Bruchteile erkennen Bruchteile von Grössen bestimmen Brüche und Bruchteile ergänzen A1, A2, A3 A4, A5 A6, A7, A8, A9 Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten Anzahl Kanten

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Lehrplan Mathematik 3. Hinweise (Methoden mögliche Anschauungsmittel, evtl.schwierigkeiten) Lernziele / Inhalte. I. Zahlenraum bis 1000 beherrschen

Lehrplan Mathematik 3. Hinweise (Methoden mögliche Anschauungsmittel, evtl.schwierigkeiten) Lernziele / Inhalte. I. Zahlenraum bis 1000 beherrschen Lehrplan Mathematik 3 I. Zahlenraum bis 1000 beherrschen - sich im Zahlenraum bis 1000 orientieren - Zahlvorstellungen entwickeln - Gröβenbegriffe - Zahlen darstellen - Rechnen mit Geld - aus Texten mathematische

Mehr

will die Bildungsstandards umsetzen.

will die Bildungsstandards umsetzen. Aufgabenstellungen für die Klassen 1 bis 4 1 will die Bildungsstandards umsetzen. Grafik entnommen aus Bildungsstandards für die Grundschule: Mathematik konkret, Cornelsen Scriptor 2009 2 1 Raum und Form

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN 1. Kürzen von Bruchtermen Zunächst einmal müssen wir klären, was wir unter einem Bruchterm verstehen. Definition:

Mehr

SINUS an Grundschule Saarland Offene Aufgaben zur Leitidee Größen und Messen

SINUS an Grundschule Saarland Offene Aufgaben zur Leitidee Größen und Messen Aufgabe 5 Idee und Aufgabenentwurf: Nicole Mai, Mellin-Schule, Sulzbach, Klasse 3 (Januar 2013) Dein Kinderzimmer ist mit Spielsachen überfüllt. Deine Mutter macht dir einen Vorschlag, die Spielsachen,

Mehr

Mathematik - Klasse 6 -

Mathematik - Klasse 6 - Schuleigener Lehrplan Mathematik - Klasse 6 - Stand: 03.11.2011 2 I. Rationale Zahlen Die n Kompetenzen gelten grundsätzlich für alle Kapitel. Abweichungen werden gesondert aufgeführt. Die hier genannten

Mehr