Univariates Datenmaterial

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Univariates Datenmaterial"

Transkript

1 Univariates Datenmaterial Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x = {y 1, y 2,..., y n } o Ausprägungen: a 1 < a 2 <... < a k, k n Deskriptive Statistik: Aufarbeitung der Daten o Tabellarisch (Werte, relative und kumulative Häufigkeiten) o Graphisch: Stabdiagramm, Kreisdiagramm, Histogramm 1

2 Lageparameter Deskriptive Statistik Abhängig vom Skalierungsniveau der Variable Nominale Daten o Modalwert: häufigster Wert Ordinale Daten o Median: teilt n gegebene Werte in die 50% kleineren bzw. größeren Beobachtungen o Quantil: z ist p-quantil, falls p-fache der Beobachtungen kleiner gleich z sind Kardinale Daten o Mittelwert (arithmetisches Mittel): ȳ = 1 n n i=1 y i 2

3 Streuungsparameter Deskriptive Statistik Spannweite: max(y i ) - min(y i ) Interquartilsspanne: Differenz zwischen 0.75-Quantil (3. Quartil) und 0.25-Quantil (1. Quartil) Kardinale Daten o Empirische Varianz: s 2 = 1 n 1 n i=1 (y i ȳ) 2 o Mittlere quadratische Abweichung: s 2 mqa = 1 n n i=1 (y i ȳ) 2 o Standardabweichung: s = s 2 o Variationskoeffizient: s ȳ 3

4 Mehrdimensionales Datenmaterial Deskriptive Statistik Beispiel: zwei Merkmale/ Zufallsvariablen: Daten: ( x1 y 1 ), ( x2 y 2 ),, ( xn y n ) ( X1 Y 1 ), ( X2 Y 2 ),, ( Xn Y n ) Datenaufbereitung o nominale oder ordinale/kardinale Daten mit wenigen Ausprägungen: Kontingenztabelle o kardinale/ordinale Daten mit wenigen Ausprägungen (stetige Daten): Streudiagramm/Scatterplot 4

5 Streudiagramm Deskriptive Statistik 5

6 Korrelation Deskriptive Statistik Ordinale Daten o Rangkorrelationkoeffizient (Spearman): r SP r SP = n i=1 (rg(x i) rk x )(rg(y i ) rg y ) n i=1 (rg(x n i) rg x ) 2 i=1 (rg(y i) rg y ) 2 Kardinale Daten o Korrelationkoeffizient (Pearson): 1 r xy 1 r xy = n i=1 (x i x)(y i ȳ) Cov(x, y) n i=1 (x i x) 2 n i=1 (y = i ȳ) 2 s x s y 6

7 Kovarianz und Korrelation Deskriptive Statistik Kardinale Daten o Kovarianz von x und y: Cov(x, y) = s xy Cov(x, y) = s xy = 1 n 1 n (x i x)(y i ȳ) i=1 Kovarianz und Korrelation beschreiben die lineare Abhängigkeit/ Beziehung von zwei Variablen bzw. den relevanten Daten Korrelation ist im Gegensatz zur Kovarianz ein normiertes Maß: 1 r xy 1 o r xy = 1: perfekter positiver linearer Zusammenhang o r xy = 1: perfekter negativer linearer Zusammenhang o r xy = 0: kein linearer Zusammenhang 7

8 Varianz-Kovarianz Matrix Deskriptive Statistik Varianz-Kovarianz Matrix von x und y ( ) s 2 x s x,y s x,y s 2 y Merke: Cov(x, y) = Cov(y, x) bzw. s x,y = s y,x 8

9 Wahrscheinlichkeitstheorie/ Stochastik Modellieren ökonomische Phänomene als Ergebnis von Zufallsexperimenten Ökonomischen Variablen werden entsprechend als Zufallsvariablen interpretiert o Zufallsvariablen werden durch Verteilungen (z.b. Normalverteilung) und deren Charakteristika beschrieben (z.b. Erwartungswert und Varianz) o Verteilung repräsentiert Eigenschaften der interessierenden Grundgesamtheit (z.b. Grundgesamtheit aller Arbeitnehmer im Rahmen einer Arbeitsmarktstudie) Kollektion von ökonomischen Variablen (z.b. Lohn von 10 Arbeitnehmern) wird als Kollektion von Zufallsvariablen interpretiert (Stichprobe) 9

10 Wahrscheinlichkeitstheorie/ Stochastik Wieso? o Wollen etwas über die Eigenschaften der Grundgesamtheit (z.b. Streuung der Löhne) lernen Anwendung von Schätzern o Stochastische Modellierung erlaubt uns die sinnvolle Evaluation von Schätzern und Interpretation von Schätzergebnissen o Durch Verteilungssannahmen werden Eigenschaften der Grundgesamtheit,,parametrisiert o Schätzer schätzen die Parameter o Wir können die Eigenschaften der Schätzer ableiten o Wir können Aussagen darüber machen, ob Schätzergebnisse relevant (signifikant) verschieden von einer Referenz sind (Statistische Tests) Referenz: Stock & Watson: Kap

11 Zufallsexperiment Annahme: beobachtete Ereignisse sind Ergebnis eines Zufallsexperiment/ Zufallsprozess,,Computerabstürze während des Schreibens einer Seminararbeit o Ergebnisse: sich gegenseitig ausschließende Resultate eines Zufallsexperimentes kein, 1, 2, 3,..., Computerabstürze o Jedem Ergebnis kann eine Wahrscheinlichkeit zugeordnet werden o Ergebnismenge: Menge aller möglichen Ergebnise o Ereignis: Untermenge der Ergebnismenge Ereignis:,,Der Computer stürzt nicht mehr als einmal ab = Menge bestehend aus den Ergebnissen,,kein und,,1 Absturz 11

12 Zufallsvariablen Zufallsvariable: numerische Zusammenfassung eines zufälligen Ergebnisses ZV:,,Anzahl der Computerabstürze o diskrete ZVen: ZV nimmt nur eine diskrete Menge an Werten an z.b. 0, 1,... Computerabstürze o stetige ZVen: ZV kann unendliche viele Werte (in einem Interval) annehmen z.b. Haushaltseinkommen, Aktienkurse,... o Hinweis: Die meisten,,stetigen ökonomischen Variablen, wie z.b. Einkommen, werden nur als stetig modelliert, sind es im strengen Sinne aber nicht. Grund: die Einheiten, z.b. Währung, sind nicht beliebig teilbar. Zufallsvariablen können durch Verteilungen beschrieben werden: Unterscheidung in diskrete und stetige Variablen ist wichtig 12

13 Diskrete Zufallsvariablen Wahrscheinlichkeitsfunktion o Liste aller möglichen Werte y i einer ZVen und deren Wahrscheinlichkeiten P (Y = y i ) o Summe der W.keiten = 1 (Kumulative) Verteilungsfunktion o Wahrscheinlichkeit, dass ZVe kleiner oder gleich einem Wert c ist P (Y c) = i:y i c P (Y = y i) = F (c) Beispiele: fiktive Verteilung für Computerabstürze, Bernoulli-Verteilung 13

14 Stetige Zufallsvariablen (Kumulative) Verteilungsfunktion o Definiert wie für diskrete Variablen o Beispiel: fiktive Verteilung für Fahrzeit zwischen Wohnung und Uni, Normalverteilung Dichtefunktion (Wahrscheinlichkeitsdichte) o Formal: Ableitung der Verteilungsfunktion f(c) = F (c) o Fläche unter der Dichtefunktion zwischen zwei Punkten a und b (Integral) gibt Wahrscheinlichkeit an, dass Wert der ZVe zwischen a und b liegt: P (a Y b) o Merke: P (Y = a) = P (a) = 0 für stetige Zufallsvariablen! 14

15 Verteilungsannahmen Die wahren Verteilungen von Zufallsvariablen sind unbekannt Häufig nehmen wir eine spezifische Verteilung an, z.b. Normalverteilung o Problem: Daten widersprechen oft der Verteilungsannahme o Lösung: Keine spezifischen Verteilungsannahme, sondern nur Annahmen über Erwartungswert und Varianz einer Zufallsvariable (Existenz, manchmal auch konkrete Werte) o Merke: Erwartungswert und Varianz sind Eigenschaften, die aus der Verteilung der Zufallsvariable abgeleitet werden bzw. Verteilung näher charakterisieren! Konzentrieren uns bei Erläuterungen zu Erwartungswert und Varianz auf diskrete ZVen o stetige ZVen: Summen werden durch Integrale ersetzt 15

16 Erwartungswert Erwartungswert: mittlerer (durchschnittlicher) Wert, den eine Zufallsvariable nach unendlich vielen Wiederholungen eines Zufallsexperimentes annimmt Lageparameter der Verteilung der Zufallsvariable o Notation: E(Y ) = µ Y, der Wert µ Y ist üblicherweise unbekannt o E(Y ) = y 1 p 1 + y 2 p y k p k = k i=1 y ip i o Beispiele: erwartete Anzahl von Computerabstürzen, Erwartungswert einer Bernoulli-ZVe 16

17 Varianz und Standardabweichung Maße für Streuung der Verteilung o Notation Varianz: Var(Y ) = σy 2 Standardabweichung: σ Y o Var(Y ) = E[(Y µ Y ) 2 ] = k i=1 (y i µ Y ) 2 p i o Beispiele: Varianz der Anzahl von Computerabstürzen, Varianz einer Bernoulli-ZVe 17

18 Lineare Funktion einer Zufallsvariable Lineare Funktion der Zufallsvariablen X: Y = a + bx a, b sind Konstanten Y ist folglich auch eine Zufallsvariable Erwartungswert und Varianz von Y? o E(Y ) = µ Y = a + be(x) = a + bµ X o Var(Y ) = σy 2 = b2 Var(X) = b 2 σx 2 18

19 Zwei Zufallsvariablen Die meisten ökonomisch interessanten Fragen betreffen zwei oder mehrere Variablen o Finden Uniabsolventen leichter einen Arbeitsplatz als als Bewerber ohne Uniabschluß? o Ist die Einkommensverteilung für Männer und Frauen unterschiedlich? Wir müssen Verteilung mehrerer Zufallsvariablen (z.b. Ausbildung/ Einkommen und Einkommen/Geschlecht) gleichzeitig berücksichtigen. Konzepte: gemeinsame, marginale und bedingte Wahrscheinlichkeitsverteilung 19

20 Gemeinsame und marginale Verteilung Gemeinsame Wahrscheinlichkeitsverteilung gibt Wahrscheinlichkeit an, dass die ZVen X und Y gleichzeitig die Werte x und y annehmen P (X = x, Y = y) o Beispiel: Gemeinsame Verteilung von Wetterbedingungen und Fahrzeit Marginale Wahrscheinlichkeitsverteilung einer ZVe Y ist ein anderer Name für die Wahrscheinlichkeitsfunktion von Y o Marginale Verteilung ergibt sich aus gemeinsamer Verteilung durch Addition der W.keiten aller Ereignisse für die Y einen bestimmten Wert annimmt P (Y = y) = l i=1 P (X = x i, Y = y) 20

21 Bedingte Verteilung, Erwartungswert und Varianz Bedingte Verteilung von Y gegeben X Verteilung von Y gegeben, dass eine andere Zufallsvariable X einen spezifischen Wert annimmt P (X = x, Y = y) o P (Y = y X = x) = P (X = x) o Beispiel: Bedingte Verteilung der Fahrzeit gegeben, dass es regnet Bedingter Erwartungswert von Y gegeben X o Wird unter Verwendung bedingter Verteilung bestimmt o E(Y X = x) = k i=1 y ip (Y = y i X = x) Bedingte Varianz von Y gegeben X ist die Varianz der bedingten Verteilung von Y gegeben X 21

22 o Var(Y X = x) = k i=1 [y i E(Y X = x)] 2 P (Y = y i X = x) 22

23 Gesetz der iterierten Erwartungen Herleitung des unbedingten Erwartungswertes über den bedingten Erwartungswert E(Y ) = E[E(Y X)] o Implikation: E(Y X) = 0 E(Y ) = E[E(Y X)] = E[0] = 0 23

24 Unabhängigkeit von Zufallsvariablen X und Y sind unabhängig verteilt bzw. unabhängig, falls Informationen über eine Variable keine Information über die andere Variable liefert o Bedingte Verteilung von Y gegeben X entspricht marginaler Verteilung von Y o P (Y = y X = x) = P (Y = y) o Implikation: P (Y = y, X = x) = P (X = x)p (Y = y) 24

25 Kovarianz und Korrelation Kovarianz ist lineares Abhängigkeitsmaß der Zufallsvariablen X und Y Cov(X, Y ) = σ XY = E[(X µ X )(Y µ Y )] = k i=1 l (x i µ X )(y j µ Y )P (X = x i, Y = y j ) j=1 Korrelation ist normiertes lineares Abhängigkeitsmaß ρ X,Y = Cov(X, Y ) Var(X)Var(Y ) = σ XY σ X σ Y, 1 ρ X,Y 1 25

26 Unabhängigkeit, Korrelation und bedingter Erwartungswert Unabhängigkeit von X und Y Cov(X, Y ) = ρ X,Y = 0 o Umkehrung gilt nicht! E(Y X) = E(Y ) Cov(X, Y ) = ρ X,Y = 0 o Umkehrung gilt nicht! 26

27 Summen von Zufallsvariablen E(X + Y ) = E(X) + E(Y ) = µ X + µ Y Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ) = σ 2 X + σ2 Y + σ XY o Falls X und Y unabhängig oder unkorrelliert sind: Var(X + Y ) = σ 2 X + σ2 Y Weitere Eigenschaften von Summen von Zufallsvariablen: siehe Key Concept 2.3 in Stock & Watson 27

28 Verteilungen von Zufallsvariablen Normalverteilung: charakterisiert durch Erwartungswert und Varianz: Y N(µ, σ 2 ) Standardnormalverteilung: µ = 0 und σ 2 = 1 Z = (Y µ)/σ Z N(0, 1) o Berechnung von Wahrscheinlichkeiten mit Normalverteilung: siehe Key Concept 2.4 und Figure 2.6 in Stock & Watson Weitere Verteilungen o Chi 2 -Verteilung mit m Freiheitsgraden Z 1,... Z m sind unabhängig N(0, 1) m i=1 Z2 i χ2 m o t-verteilung mit m Freiheitsgraden Z N(0, 1) und W χ 2 m sind unabhängig Z/ W/m t m 28

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II, Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter Erwartsungswert und Varianz

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Hypothesentests. 5 Regression

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Hypothesentests. 5 Regression 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests 5 Regression Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0 Beispiel: Zweidimensionale Normalverteilung I Beispiel: Zweidimensionale Normalverteilung II Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale multivariate Normalverteilung Spezifikation am

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Wirtschaftswissenschaftliches Prüfungssekretariat Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2015

Wirtschaftswissenschaftliches Prüfungssekretariat Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2015 Wirtschaftswissenschaftliches Prüfungssekretariat Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 205 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-43 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Statistik mit und ohne Zufall

Statistik mit und ohne Zufall Christoph Weigand Statistik mit und ohne Zufall Eine anwendungsorientierte Einführung Mit 118 Abbildungen und 10 Tabellen Physica-Verlag Ein Unternehmen von Springer Inhaltsverzeichnis Teil I Deskriptive

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Stichwortverzeichnis. Chi-Quadrat-Verteilung 183, 186, 189, 202 ff., 207 ff., 211 Testen von Zufallszahlen 294 Cărtărescu, Mircea 319

Stichwortverzeichnis. Chi-Quadrat-Verteilung 183, 186, 189, 202 ff., 207 ff., 211 Testen von Zufallszahlen 294 Cărtărescu, Mircea 319 Stichwortverzeichnis A Ableitung partielle 230 absolute Häufigkeit 47 Abweichungen systematische 38, 216, 219 zufällige 216, 218, 220, 222 Algorithmus average case 303 Las Vegas 300 Monte Carlo 300 randomisierter

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7 Inhaltsverzeichnis Einführung 21 Über dieses Buch 21 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23 Teil I: Ein paar statistische Grundlagen 23 Teil II: Die beschreibende Statistik

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenho Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare

Mehr

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2018/19

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2018/19 Aufgabenstellung und Ergebnisse zur Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 08/9 PD Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Die Klausur besteht

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript Wahrscheinlichkeitsrechnung Sommersemester 2008 Kurzskript Version 1.0 S. Döhler 1. Juli 2008 In diesem Kurzskript sind Begriffe und Ergebnisse aus der Lehrveranstaltung zusammengestellt. Außerdem enthält

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

1 Einleitung und Grundlagen 1

1 Einleitung und Grundlagen 1 Inhaltsverzeichnis Vorwort vii 1 Einleitung und Grundlagen 1 1.1 Einführende Beispiele 1 1.2 Statistischer Prozess 2 1.3 Grundlagen 2 1.4 Unterscheidung von Merkmalen 3 1.4.1 Skalenniveaus 3 1.4.2 Stetige

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2011

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2011 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2011 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Über dieses Buch Die Anfänge Wichtige Begriffe... 21

Über dieses Buch Die Anfänge Wichtige Begriffe... 21 Inhalt Über dieses Buch... 12 TEIL I Deskriptive Statistik 1.1 Die Anfänge... 17 1.2 Wichtige Begriffe... 21 1.2.1 Das Linda-Problem... 22 1.2.2 Merkmale und Merkmalsausprägungen... 23 1.2.3 Klassifikation

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik 1. Deskriptive Statistik 2. Induktive Statistik 1. Deskriptive Statistik 1.0 Grundbegriffe 1.1 Skalenniveaus 1.2 Empirische Verteilungen 1.3 Mittelwerte 1.4 Streuungsmaße 1.0

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

1.5.4 Quantile und Modi. Bem [Quantil, Modus] 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.73. [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Stochastik in den Ingenieu rwissenschaften

Stochastik in den Ingenieu rwissenschaften ---_..,.'"--.---------- Christine Müller Liesa Denecke Stochastik in den Ingenieu rwissenschaften Eine Einführung mit R ~ Springer Vieweg 1 Fragestellungen........................................... Teil

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr