Kapitel 2: Zufallszahlen

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2: Zufallszahlen"

Transkript

1 Kapitel 2: Zufallszahlen Anwendungsgebiete: stochastische Algorithmen, z.b. Monte-Carlo-Integration Simulation von Ereignissen mit bekannten Wahrscheinlichkeitsverteilungen, in der Physikalischen Chemie insbesondere: (Metropolis-)Monte-Carlo-Verfahren zur Simulation verschiedener Ensembles in der statistischen Thermodynamik Eine Sequenz von echten Zufallszahlen wiederholt sich nicht, sowohl innerhalb einer Sequenz als auch bei Neustart der Sequenz (auch bei sonst gleichem input, sofern vorhanden); ist nicht vorhersagbar, und dabei insbesondere unkorreliert (Wahrscheinlichkeit für jeden Wert immer gleich, unabhängig von allen vorigen Werten). Problem: Computer ist deterministisch (immer gleicher output bei gleichem input) bestenfalls Pseudozufallszahlen möglich: wiederholen sich nach (möglichst sehr langer) Sequenz; haben keine offensichtlichen Korrelationen; sind aber exakt vorhersagbar, da nach deterministischer Vorschrift erzeugt. Vorgefertigte Zufallszahlen-Generatoren: bis inkl. Fortran77 gab es keinen Generator im Standard; alle Compiler-Hersteller boten Generatoren an, mit einigen Ähnlichkeiten aber auch subtilen Unterschieden im interface und großen Unterschieden in der Qualität; ab Fortran90 gibt es ein standardisiertes interface im Standard; die eigentlichen Generatoren sind aber immer noch hersteller-abhängig. Problem: das interface ist in einem entscheidenden Aspekt unverständlich; portable Zufallszahlengene- natürlich gibt es auch direkt in Fortran geschriebene, ratoren. Hier: Algorithmus eines portablen Generators selbst programmieren und Resultate mit eingebautem Generator vergleichen.

2 Verschiedenste Algorithmen als Zufallszahlen-Generatoren denkbar. Praktisch wichtig: Erzeugung von Pseudozufallszahlen muß schnell gehen, da meist in großer Menge benötigt. möglichst kurze, einfache Formel nötig. Eine von mehreren Standard-Möglichkeiten: linear-kongruente Zufallszahlen: Iteration mit modulo-division: I j+1 = (a I j + c) mod m (1) liefert (für geeignete Werte a, c, m, I 0 ) lange, weitgehend unkorrelierte, integer-zahlenfolge, gleichverteilt zwischen 0 und m. Typische Standardisierung: Normierung auf Intervall [0, 1[ (und Erzeugung einer real-zahl): Tips zur Programmierung: alle Größen integer (bis auf r) r = I j+1 /m (2) Vorsicht bei Division von integer-werten (wie in Gl. 2): integer-division wird in Fortran ganzzahlig abgeschnitten. Das eigentlich gewünschte mathematische Verhalten bei r = i/j ergibt sich durch: r = real(i)/real(j) Initialisierung = Wahl von I 0 (seed): bei gutem Generator Sequenzlänge unabhängig von I 0, daher: Wahl von I 0 eigtl. beliebig; I 0 legt nur den Einstiegspunkt in einer durch die anderen Parameter vorgegebenen, sich immer wiederholenden Sequenz fest; aber wichtiger Praxisaspekt: Prozedur ist streng deterministisch: selber I 0 -Wert ergibt bei erneutem Programmlauf exakt denselben output! gewünschtes Verhalten bei reproduzierbaren Tests; bei echten Anwendungsrechnungen pseudo-zufällige seed-werte konstruierbar aus z.b. Tagesdatum und Uhrzeit oder hardware-countern. Parameterwahl = gute Werte für m, a, c: nicht trivial: Sequenzlänge m Korrelationen: Plot von k Zufallszahlen in k-dimensionalem Raum ergibt keine Gleichverteilung, sondern Konzentration auf (k 1)-dimensionale Ebenen. Selbst bei optimaler Wahl von m, a, c gibt es maximal m 1/k Ebenen. Faustregel: große m-werte sind besser selbst bei gutem m sind Korrelationen und Sequenzlänge auch bestimmt von a und c schwarze Magie..., siehe Tabelle. (Warnung: in Maschinensprache (assembler) sind größere integer-werte möglich als in Fortran eigener Generator sollte eigentlich schlechter sein als kommerzielle Generatoren in assembler.)

3 Standardtrick zur Zerstörung von Korrelationen und damit zur Verbesserung eines existierenden Zufallszahlengenerators: Initialisierung: generiere N Zufallszahlen speichere sie in array r(i) bei allen folgenden Aufrufen: skaliere vorherige Zufallszahl auf integer-wert j im Intervall [1, N] r(j) wird als Zufallszahl-output ausgegeben generiere eine neue Zufallszahl speichere sie in r(j)

4 Verwendung eingebauter Zufallszahlengeneratoren nicht-standard-generatoren in Fortran77: typische Befehle: seed auswählen, z.b. call srand(iseed), wobei der Wert von iseed selbst gewählt werden muß (z.b. konstruiert aus Tagesdatum und Uhrzeit) nachfolgend beliebig oft neue Zufallszahlen erzeugen, z.b. mit x = rand(); die x-werte sind dann meist gleichverteilt im Intervall [0, 1[. immer Manual für genauen Gebrauch konsultieren! Dabei achten auf: Funktions-/Subroutinen-Namen, Argumente single/double precision (Funktionen, Argument(e)) Verteilung und Intervall der Zufallszahlen seed nötig oder nicht Verhalten bei Programm-Neustart stehen diese Routinen direkt zur Verfügung oder sind compiler-direktiven oder Einbinden von Bibliotheken nötig? Erwartete Funktionsweise des Generators vor eigentlichem Einsatz immer mit einem kleinen Testprogramm verifizieren! Standard-Generator in Fortran90/95: Der Aufruf des eigentlichen Generators erfolgt wie hier gezeigt:... real::r... call random_number(r)... Dadurch wird eine Zufallszahl in der Variablen r gespeichert. Nachfolgende Aufrufe derselben Art legen die nachfolgenden Zahlen der Pseudozufallssequenz in r ab. Dabei handelt es sich um gleichverteilte Zufallszahlen im Intervall [0, 1[. Soweit ist alles unproblematisch. Will man bei sukzessiven Programmläufen unterschiedliche Pseudozufallssequenzen haben, muß man die Sequenz zunächst neu initialisieren. Dafür gibt es ein Unterprogramm random_seed, das aber dummerweise im Standard sehr verwirrend implementiert ist: Die seed-zahl ist kein einfacher integer-wert, sondern ein integer-array. Die Länge dieses seed-arrays ist nicht festgelegt. In der Praxis variiert sie tatsächlich stark von compiler zu compiler.

5 Ein Aufruf von random_seed ohne jegliche Argumente ist möglich. Dadurch wird der seed-array auf einen implementationsabhängigen Wert gesetzt dieser kann jedoch bei jedem Programmlauf derselbe sein. Korrekterweise müßte daher eigentlich folgendermaßen verfahren werden: Testprogramm laufen lassen, in dem per call random_seed(size=n) die Länge n des seed-arrays abgefragt wird. Im eigentlichen Programm den seed-array vereinbaren als integer,dimension(n)::seed (auch wenn n=1 gelten sollte!). seed-array zu Beginn auf einen gewünschten Wert setzen und an random_seed übergeben; dabei ist jedoch völlig unklar, ob alle Elemente des seed-arrays gesetzt werden müssen, mit denselben oder unterschiedliche Werten, usw. Im Absoft-Compiler ist n=1. Das folgende kleine Testprogramm zeigt, wie man das eingebaute Unterprogramm date_and_time verwenden kann, um einen quasi-zufälligen seed zu erzeugen, der bei jedem Programmlauf unterschiedlich sein sollte, und wie der Fortran-Standardgenerator danach anzusteuern ist. Beachten Sie daß trotz des ersten Aufrufs von random_seed die erste Zufallszahl bei mehrfachem Ausführen dieses Programms immer wieder dieselbe ist. daß der seed-wert und die nachfolgenden Zufallszahlen sich aber von Programmlauf zu Programmlauf unterscheiden. program random_test implicit none real::a integer,dimension(8)::date_time integer,dimension(1)::seed integer::n,i call date_and_time(values=date_time) write(*,*) year =,date_time(1) write(*,*) month =,date_time(2) write(*,*) day =,date_time(3) write(*,*) zone =,date_time(4) write(*,*) hours =,date_time(5) write(*,*) minutes =,date_time(6) write(*,*) seconds =,date_time(7) write(*,*) milliseconds =,date_time(8) call random_seed call random_number(a) write(*,*)a call random_seed(size=n) write(*,*) size =,n seed(1)=date_time(6)*date_time(7)+date_time(8) write(*,*) seed =,seed(1) call random_seed(put=seed) do i=1,10 call random_number(a) write(*,*)a end do end

6 Einfaches Programmieren mit Zufallszahlen Verschiedene Verteilungen Gleichverteilung von random_number(r) in [0, 1[ direkt verwenden gleichverteiltes r im Intervall [x 1, x 2 [: r = r(x 2 x 1 ) + x 1 (3) andere Verteilungen (exponentiell, Gaußförmig, Poisson,...) leicht aus Gleichverteilung konstruierbar; siehe Numerical Recipes Münzwurf-Simulation i = { 1 für r für r < 0.5 (4) (direkte Erzeugung zufälliger bits wäre effizienter, siehe Numerical Recipes) Zufallsereignisse bekannter Wahrscheinlichkeit z.b.: Ereignis a: 60%, Ereignis b: 30%, Ereignis c: 10% a b c wähle c für r 0.9 b für 0.6 r < 0.9 a für r < 0.6 (5) Im allgemeinen Fall mit n Ereignissen mit Wahrscheinlichkeiten w i, i = 1,...,n, 0 w i 1 sowie i w i = 1, wird diese Implementation wegen vieler if-abfragen unnötig langsam. Alternative: call random_number(r) s = 0.d0 j = 1 do s = s + w(j) if (s > r) exit j = j + 1 end do i = j Dieses Programmfragment wählt integer-wert i mit Wahrscheinlichkeit w(i), unter obigen Voraussetzungen.

7 Monte-Carlo-Berechnung von π r Fläche Fläche = πr2 /4 = 1 r 2 4 π (6) 0 r Algorithmus zur Berechnung von π: 1. generiere zwei Zufallszahlen x i, y i (gleichverteilt in [0, 1[; implizite Annahme: r = 1) 2. teste, ob Punkt (x i, y i ) im Viertelkreis liegt (trifft zu, wenn x 2 i + y 2 i 1) 3. π = 4 {(Anzahl Punkte im Viertelkreis)/(Anzahl aller Punkte)} 4. wenn noch nicht konvergiert, gehe zu (1) Konvergenz: Vergleich zu exaktem Wert von π wenig sinnvoll: wäre in einer realistischen Rechnung nicht bekannt davon unabhängiges Konvergenzkriterium nötig!: Vergleiche Resultate für π von einer Iteration zur nächsten; Abbruch wenn Differenz unterhalb der gewünschten Genauigkeit. generell wichtig: Anstieg der Genauigkeit mit der Anzahl N der Iterationen, z.b. linear, quadratisch, kubisch,..., exponentiell; je stärker, desto besser! Hier allerdings nur ca. wie N.

8 Monte-Carlo-Integration zwei mögliche Sichtweisen / Verfahren: mittlere Fläche: wie MC-Berechnung von π: y <f> a r r b a b r2 1 3 b a f(x) dx = f (b a) (7) mit f = 1 N N f(r i ) (8) i=1 b a f(x) dx = x,y-punkte unter f(x) y(b a) alle x,y-punkte (9) Offensichtlich ist Verfahren 1 einfacher: nur eine statt zwei Zufallszahlen pro Funktionsberechnung. Konvergenz allerdings ebenso schlecht wie bei MC-π-Berechnung.

9 Zufallszahlen in der PC/TC: Monte-Carlo-Integration: Nachteil: schlechte Konvergenz ( N) Vorteile: sehr robust und allgemein einfache Implementation keine Probleme mit kompliziert geformten Integrationsgebieten Daher Verwendung hauptsächlich bei höherdimensionalen Integralen, bei denen andere Integrationsverfahren schwieriger werden. Monte-Carlo(-Simulation/Verfahren), MC: Berechnung von statistisch-thermodynamischen Ensemblemittelwerten Metropolis-Methode zur Erzeugung eines Ensembles bei vorgegebener Temperatur T: Zufalls-Variation der Struktur, Annahme mit Wahrscheinlichkeit exp( E/kT) etablierte Varianten für verschiedene Ensembles (mikrokanonisch, kanonisch, großkanonisch; konstanter Druck; usw.) Alternative zur Moleküldynamik (MD): Simulation von Molekülen, Clustern, Gasen, Flüssigkeiten, Grenzflächen, Festkörpern,... globale Optimierung: MC-Varianten und Evolutionäre Algorithmen für Cluster-Struktur-Optimierung molecular docking Proteinfaltung

Zufallszahlen in AntBrain

Zufallszahlen in AntBrain Zufallszahlen SEP 291 Zufallszahlen in AntBrain Spezifikation, Teil II: Zum Beispiel könnte ein Objekt vom Typ Match die Spielfelder nach jeweils 1000 Spielrunden speichern; bei einer Anfrage nach den

Mehr

Anhang 1: Lamellare Strukturen in Systemen mit Bolaamphiphilen

Anhang 1: Lamellare Strukturen in Systemen mit Bolaamphiphilen Anhang 1: Lamellare Strukturen in Systemen mit Bolaamphiphilen Charakteristische Konfigurationen von Systemen aus 1848 6-segmentigen Bolaamphiphilen (10 Vol%) im Bereich stabiler Schichtphasen. Dunkle

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Monte Carlo-Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

15 Grundlagen der Simulation

15 Grundlagen der Simulation 15 Grundlagen der Simulation 15.1 Einführung Komplexe Problemstellungen, die einer analytischen Behandlung nur sehr schwer oder gar nicht zugänglich sind Lösung von diskreten (oder analytischen) Optimierungsaufgaben,

Mehr

Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen

Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen Gott würfelt nicht Monte-Carlo-Methode mit Pseudo- und Quasizufallszahlen Inhaltsverzeichnis Pseudo- und Quasizufallszahlen Monte-Carlo- Monte-Carlo- Monte-Carlo-Methode Bekannt nach Stadt Monte Carlo

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

Programmiertechnik II

Programmiertechnik II Zufallszahlen Motivation Simulation Frisörbeispiel Stichprobenauswahl Telefonumfragen Numerische Algorithmen naives Beispiel: Berechnung von Pi Automatisiertes Testen Beispiel aus Übungsaufgabe "Faire"

Mehr

IT-Security. Teil 15: Zufall

IT-Security. Teil 15: Zufall IT-Security Teil 15: Zufall 09.05.17 1 Literatur [15-1] http://de.wikipedia.org/wiki/kryptographisch_sicherer_zufallszahlen generator [15-2] https://gnupg.org/documentation/manuals/gcrypt/fips-prng- Description.html

Mehr

Zufallszahlenerzeugung

Zufallszahlenerzeugung Zufallszahlenerzeugung Anwendunsgebiete: z.b.: - Computerspiele - Kryptographie - Monte-Carlo-Methoden - Simulation Melanie Kaspar, Prof. Dr. B. Grabowski 1 Wie erzeuge ich Zufallszahlen, die sich so verhalten,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 8 Zufallszahlen Generatoren Anwendungen Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden,

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden, Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Einführung in die Simulation Dr. Christoph Laroque Wintersemester 11/12 Dresden, 11.10.2011 01.11.2011 Einführung

Mehr

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen Zufallszahlen Zufallszahlengeneratoren Transformation von Zufallszahlen Test von Zufallszahlengeneratoren Otto-von-Guericke-Universität Magdeburg Thomas Schulze Zufallszahlengeneratoren - Zufallszahlen

Mehr

4.1 Der Blum-Blum-Shub-Generator

4.1 Der Blum-Blum-Shub-Generator 4.1 Der Blum-Blum-Shub-Generator Der Blum-Blum-Shub-Generator oder BBS-Generator setzt bei der in Kapitel III vorgestellten Quadratrest-Vermutung an und funktioniert so: Als ersten Schritt wählt man eine

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Pseudozufallsgeneratoren

Pseudozufallsgeneratoren Pseudozufallsgeneratoren In welchen kryptographischen Verfahren werden keine Zufallszahlen benötigt? Wie generiert man Zufallszahlen in einer deterministischen Maschine wie dem Computer? Wenn man eine

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 16. November 2009 2. Monte Carlo-Methoden 2.1 Zufallszahlen - Warum? 2.2 Zahlendarstellung im Rechner 2.3 Generatoren 2.3.1 Linear kongruente Generatoren

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 6. Vorlesung - 2018 Diskrete ZG eine diskrete ZG X wird vollständig durch ihre Wahrscheinlichkeitsverteilung beschrieben ( ) x1 x X 2... x i... = p 1 p 2... p i... P(X (a, b]) = und die Verteilungsfunktion

Mehr

Tücken bei der Erstellung von Zufallszahlen mit RANUNI

Tücken bei der Erstellung von Zufallszahlen mit RANUNI Tücken bei der Erstellung von Zufallszahlen mit RANUNI Rainer Muche, Tillmann Babik Institut für Biometrie Schwabstraße 13 89075 Ulm rainer.muche@uni-ulm.de Zusammenfassung In der Statistik werden oft

Mehr

Zufallszahlen erzeugen

Zufallszahlen erzeugen Informationsblatt fÿr die Lehrkraft Zufallszahlen erzeugen Informationsblatt fÿr die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Zufallszahlen erzeugen - Methode der linearen Kongruenz

Mehr

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016 to to May 2016 to What is Programming? All computers are stupid. All computers are deterministic. You have to tell the computer what to do. You can tell the computer in any (programming) language) you

Mehr

Unterprogramme: Formalargumente und Übergabeargumente

Unterprogramme: Formalargumente und Übergabeargumente Unterprogramme: Formalargumente und Übergabeargumente SUBROUTINE name(var1,var2,var3) Deklarationen ausführbare Anweisungen name= END SUBROUTINE name Formalargumente Der Aufruf des Unterprogramms: CALL

Mehr

Lineare Kongruenzgeneratoren und Quicksort

Lineare Kongruenzgeneratoren und Quicksort Seminar Perlen der theoretischen Informatik Dozenten: Prof. Johannes Köbler und Olaf Beyersdorff Lineare Kongruenzgeneratoren und Quicksort Ausarbeitung zum Vortrag Mia Viktoria Meyer 12. November 2002

Mehr

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2018

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2018 to to May 2018 to What is Programming? All computers are stupid. All computers are deterministic. You have to tell the computer what to do. You can tell the computer in any (programming) language) you

Mehr

Wertebereich und Genauigkeit der Zahlendarstellung

Wertebereich und Genauigkeit der Zahlendarstellung Wertebereich und Genauigkeit der Zahlendarstellung Sowohl F als auch C kennen bei ganzen und Floating Point-Zahlen Datentypen verschiedener Genauigkeit. Bei ganzen Zahlen, die stets exakt dargestellt werden

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de Vorbesprechung 5. Aufgabe 22. Juni 2017 Human Language Technology

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root. Eric Volkmann

Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root. Eric Volkmann Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root Eric Volkmann Inhalt Mathematische Definition Random Number Generators Wichtige Verteilungen Anwendungsbeispiel: Monte-Carlo Simulation

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Zufallszahlen, Monte Carlo Methoden PD. Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Programm: 1) Zufallszahlen 2) Transformations Methode 3) Monte

Mehr

Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele

Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele 11. Zufallszahlen 1 Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele sind 1. Computersimulationen 2. Optimierungsprobleme und 3. Hochdimensionale Integrale. Problemstellung:

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Generierung von Zufallszahlen gemäß einer vorgegebenen diskreten Verteilung

Generierung von Zufallszahlen gemäß einer vorgegebenen diskreten Verteilung Generierung von Zufallszahlen gemäß einer vorgegebenen diskreten Verteilung Die folgende Fallstudie eignet sich sehr gut zur Einarbeitung in die objektorientierte Programmierung. Es wird zunächst eine

Mehr

7 Zufallszahlen, Simulation

7 Zufallszahlen, Simulation 7 Zufallszahlen, Simulation Es ist nützlich, Folgen von i.i.d. R[0, 1]-verteilten Zufallszahlen auf einem Rechner erzeugen zu können vgl. Simulation, Monte-Carlo-Verfahren). Letztere sind i.a. keine echten

Mehr

Labor Software-Entwicklung 1

Labor Software-Entwicklung 1 Fakultät für Technik STUDIENGANG MEDIZINTECHNIK Labor Software-Entwicklung Vorbereitungsaufgaben zu Versuch 2 C-Programmierung Mathematische Berechnungen Wintersemester 205/206 Seite von 5 Vorbemerkungen

Mehr

PPS: Bits on Air 2. Teil

PPS: Bits on Air 2. Teil Institut für Kommunikationstechnik Prof. Dr. H. Bölcskei Sternwartstrasse 7 CH-8092 Zürich PPS: Bits on Air 2. Teil Markus Gärtner & Felix Kneubühler Revidierte Version vom 16. August 2016 1 Einleitung

Mehr

Grundlagen der Monte-Carlo-Simulation

Grundlagen der Monte-Carlo-Simulation Grundlagen der Monte-Carlo-Simulation Prof. Dr. V. Schmidt und S. Luck j 8. November 2007 page 2 Contents Motivation Erzeugung von SPZZ Software Transformation von SPZZ page 3 Motivation Motivation fur

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Einsatz von Varianzreduktionstechniken II

Einsatz von Varianzreduktionstechniken II Einsatz von Varianzreduktionstechniken II Stratified Sampling und Common Random Numbers Bastian Bluhm Betreuer: Christiane Barz Ausgewählte technische, rechtliche und ökonomische Aspekte des Entwurfs von

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

DAP2 Praktikum Blatt 2

DAP2 Praktikum Blatt 2 Fakultät für Informatik Lehrstuhl 11 / Algorithm Engineering Prof. Dr. Petra Mutzel, Carsten Gutwenger Sommersemester 2009 DAP2 Praktikum Blatt 2 Ausgabe: 28. April Abgabe: 13. 15. Mai Langaufgabe 2.1

Mehr

Erzeugung von Pseudozufallszahlen mit Computern

Erzeugung von Pseudozufallszahlen mit Computern Erzeugung von Pseudozufallszahlen mit Computern Basisgeneratoren und deren Einfluss auf die Qualität der Ergebnisse Lorenz Hauswald IKTP, TU Dresden 7 Dezember 2011 1 / 26 Gliederung Grundlagen 1 Grundlagen

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Babeş-Bolyai Universität Fakultät für Mathematik und Informatik Oktober 2018 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich

Mehr

int i=1; //Integerzahl i anlegen und mit 1 initialisieren float wert; //Floatzahl deklarieren scanf( %f,&wert); //Wert über Tastatur eingeben

int i=1; //Integerzahl i anlegen und mit 1 initialisieren float wert; //Floatzahl deklarieren scanf( %f,&wert); //Wert über Tastatur eingeben Datenfelder (Array) Seite 1 von 7 Bei den bisherigen Programmen wurde für jede verwendete Variable (oder für jedes Objekt) ein eigener Typ und Name vergeben. Die Initialisierung, d.h. die Belegung mit

Mehr

PROGRAMMIERKURS FORTRAN

PROGRAMMIERKURS FORTRAN Literaturempfehlung: Vorlesungsskript von Heidrun Kolinsky zu FORTRAN 90/95: http://www.rz.uni-bayreuth.de/lehre/fortran90/vorlesung/index.html Schmitt, Günter (1996): Fortran 90 Kurs technisch orientiert,

Mehr

Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014

Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014 Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014 Grundfrage und Gliederung Gibt es einen echten Zufall, oder wissen wir einfach nicht genug für eine exakte Vorhersage?

Mehr

2.3 Chaos und Lyapunov-Exponent. d dx f(x) λ = lim n n . (1) Programm. k=0. PROGRAM lyapunov ...

2.3 Chaos und Lyapunov-Exponent. d dx f(x) λ = lim n n . (1) Programm. k=0. PROGRAM lyapunov ... 2.3 Chaos und Lyapunov-Exponent... PROGRAM lyapunov REAL*8 1 λ = lim n n :: a,x,fly n k=0 ln d dx f(x). (1) x=xk DO it=1,itmax+ivor! Schleife Iterationen x=a*x*(1.-x)! log. Abbildung IF(it.GT.ivor.and.ABS(x-.5).GT.1.E-30)

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

Pseudo-Zufallsgeneratoren basierend auf dem DLP

Pseudo-Zufallsgeneratoren basierend auf dem DLP Seminar Codes und Kryptografie SS 2004 Struktur des Vortrags Struktur des Vortrags Ziel Motivation 1 Einleitung Ziel Motivation 2 Grundlegende Definitionen Zufallsgeneratoren 3 Generator Sicherheit 4 Generator

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 2: Generierung von Primzahlen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2018/2019 15.11.2018 Einleitung Einleitung Diese Lerneinheit

Mehr

f Z (z) = 0 sonst = 1

f Z (z) = 0 sonst = 1 Lösungsvorschläge zu Blatt 8) Da das Teilchen sich mit konstanter Winkelgeschwindigkeit bewegt und zufällig gestoppt wird und da Z und Z + kπ, k Z, das gleiche X liefern, kann Z als eine auf [ π, π] gleichverteilte

Mehr

6. Multivariate Verfahren Zufallszahlen

6. Multivariate Verfahren Zufallszahlen 4. Zufallszahlen 6. Multivariate Verfahren Zufallszahlen - werden nach einem determinist. Algorithmus erzeugt Pseudozufallszahlen - wirken wie zufäll. Zahlen (sollen sie jedenfalls) Algorithmus: Startwert

Mehr

1 Zufallszahlen jede Zahl gleichen Wahrscheinlichkeit Zufallszahlenfolge unabhängiger, identisch ver- teilter

1 Zufallszahlen jede Zahl gleichen Wahrscheinlichkeit Zufallszahlenfolge unabhängiger, identisch ver- teilter Zufallszahlen Zufallszahlen werden für viele Anwendungen im Computer benötigt. Hauptanwendungsgebiete sind die Simulation und die Statistik. Besonders bei der Programmierung von Spielen werden Zufallszahlen

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Grundlagen der Fortran Sprache

Grundlagen der Fortran Sprache Kapitel 1 Grundlagen der Fortran Sprache Programmieren bezeichnet das Verfahren, in einer bestimmten Sprache (Syntax) Anweisungen (sog. Quellcode) für den Computer zu schreiben. Dieser Programmcode wird

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Matthias Wieczorek Computer-Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Hausaufgabe Modellierung und Simulation 1

Hausaufgabe Modellierung und Simulation 1 Hausaufgabe Modellierung und Simulation 1 Die Pareto Verteilung Die Pareto-Verteilung ist eine stetige Wahrscheinlichkeitsverteilung in einem rechtsseitig unendlichen Intervall zwischen x min und. Die

Mehr

G. Zachmann Clausthal University, Germany

G. Zachmann Clausthal University, Germany lausthal Informatik II Suchen lausthal University, ermany zach@in.tu-clausthal.de Problemstellung egeben ist eine Menge von Datensätzen {A1,...,An} esucht sind die Datensätze, deren Schlüssel (Key) = A[i].key

Mehr

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute 3.4 PageRank Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute Wichtigkeit von Webseiten; nicht Relevanz bezüglich Benutzeranfrage. Anfrageunabhängiges Ranking. Ausgangspunkt: Eingangsgrad.

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Einführung in die Programmiersprache Julia Vorlesung Computerphysik Sommersemester 2018 Ralf Bulla Universität zu Köln

Einführung in die Programmiersprache Julia Vorlesung Computerphysik Sommersemester 2018 Ralf Bulla Universität zu Köln Einführung in die Programmiersprache Julia Vorlesung Computerphysik Sommersemester 2018 Ralf Bulla Universität zu Köln 1 Einstieg Das erste Programm: a = 1 println(a) Ein Programm ist eine Abfolge von

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Ralf Kirsch Uwe Schmitt. Programmieren inc. Eine mathematikorientierte Einführung. Mit 24 Abbildungen und 13 Tabellen. Springer

Ralf Kirsch Uwe Schmitt. Programmieren inc. Eine mathematikorientierte Einführung. Mit 24 Abbildungen und 13 Tabellen. Springer Ralf Kirsch Uwe Schmitt Programmieren inc Eine mathematikorientierte Einführung Mit 24 Abbildungen und 13 Tabellen Springer Inhaltsverzeichnis Eine Einleitung in Frage und Antwort V 1 Vorbereitungen 1

Mehr

Das Doppelstern-Modell Vorgehen beim Bestimmen der Modellparameter und ihrer Fehler

Das Doppelstern-Modell Vorgehen beim Bestimmen der Modellparameter und ihrer Fehler Das Doppelstern-Modell Vorgehen beim Bestimmen der Modellparameter und ihrer Fehler Udo Backhaus 29. November 2013 1 Hintergrund Das Doppelstern-Modell [1] beschreibt die Helligkeit y(t) zweier sich gegenseitig

Mehr

ECDL MODUL COMPUTING. Syllabus Version 1.0

ECDL MODUL COMPUTING. Syllabus Version 1.0 ECDL MODUL COMPUTING Syllabus Version 1.0 DLGI Dienstleistungsgesellschaft für Informatik Am Bonner Bogen 6 53227 Bonn Tel.: 0228-688-448-0 Fax: 0228-688-448-99 E-Mail: info@dlgi.de, URL: www.dlgi.de In

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Werkstatt Multiplikation Posten: Fakultät. Informationsblatt für die Lehrkraft. ! F a k u l t ät M M % R- CM _ X = hlen

Werkstatt Multiplikation Posten: Fakultät. Informationsblatt für die Lehrkraft. ! F a k u l t ät M M % R- CM _ X = hlen Informationsblatt für die Lehrkraft Fa ltä mi gr en! F a k u l t ät ON/ CA C- CE R- CM _ 7 4 1 0 M 8 5 2. M+ 9 6 3 % : X = + ku t t oss Za hlen Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse:

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 8 (13.5.2016) Hashtabellen I Algorithmen und Komplexität Dictionary mit sortiertem Array Laufzeiten: create: O(1) insert: O(n) find: O(log

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

Übungen zu Theoretische Physik IV

Übungen zu Theoretische Physik IV Physikalisches Institut Übungsblatt 4 Universität Bonn 02. November 2012 Theoretische Physik WS 12/13 Übungen zu Theoretische Physik IV Priv.-Doz. Dr. Stefan Förste http://www.th.physik.uni-bonn.de/people/forste/exercises/ws1213/tp4

Mehr

Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr.

Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr. Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 23 Bergische Universität Wuppertal Autor: Prof. Dr. Roland Pulch Aufgabe: Konstruiere Zufallszahlen aus der Menge {,, 2, 3, 4, 5, 6, 7,

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Probabilistische Algorithmen Zufallszahlen - Monte Carlo - Genetische Programmierung

Probabilistische Algorithmen Zufallszahlen - Monte Carlo - Genetische Programmierung Probabilistische Algorithmen Zufallszahlen - Monte Carlo - Genetische Programmierung 25. Mai 2009 Inhaltsverzeichnis Pseudozufallszahlen Kongruenzmethode Monte-Carlo-Algorithmen Bsp Primzahltest Genetische

Mehr

Stetige Wahrscheinlichkeitsverteilung

Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Gaußsche Normalverteilung [7] S.77 [6] S.7 ORIGIN µ : Mittelwert σ : Streuung :, 9.. Zufallsvariable, Zufallsgröße oder stochastische

Mehr

15.3 Statistische Tests von Pseudozufallszahlen

15.3 Statistische Tests von Pseudozufallszahlen 15.3 Statistische Tests von Pseudozufallszahlen Def. 52 Ein Test ist eine Entscheidungsvorschrift, die über die Akzeptanz genau einer von zwei alternativen Hypothesen entscheidet. Bsp. 109 (Analogie zur

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Motivation. Benötigtes Schulwissen. Wirtschaftswissenschaftliches Zentrum 6 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Wirtschaftswissenschaftliches Zentrum 6 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 6 Universität Basel Statistik Dr. Thomas Zehrt Wahrscheinlichkeitsräume Motivation Das Hauptanliegen der Stochastik liegt darin, Modelle zur (mathematischen Beschreibung

Mehr

Inhalt. Einführung in die Strukturierte Programmierung 15

Inhalt. Einführung in die Strukturierte Programmierung 15 Inhalt Einführung in die Strukturierte Programmierung 15 1.1 Was bedeutet Programmieren? 17 1.2 Was bedeutet Strukturierte Programmierung? 18 1.3 Was ist Pascal? 19 1.4 Was ist PS/k? 20 1.5 Warum wird

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Informationssicherheit III

Informationssicherheit III Zufall im Rechner Präsentation im Rahmen der Lehrveranstaltung Informationssicherheit III WS 2001/2002 Jochen Rondorf 17.01.2002 Zufall im Rechner WS 2001/02 1 Agenda Arten von Zufall Anwendungsgebiete

Mehr

Ü b u n g s b l a t t 12

Ü b u n g s b l a t t 12 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 5. 6. 007 Ü b u n g s b l a t t Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Experimentelle Methoden der Teilchenphysik Sommersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Experimentelle Methoden der Teilchenphysik Sommersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Eperimentelle Methoden der Teilchenphysik Sommersemester 011/01 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut, Westbau,. OG Raum 008 Telefon 0761 03 761 E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr