Statistik, Datenanalyse und Simulation

Größe: px
Ab Seite anzeigen:

Download "Statistik, Datenanalyse und Simulation"

Transkript

1 Dr. Michael O. Distler Mainz, 16. November 2009

2 2. Monte Carlo-Methoden 2.1 Zufallszahlen - Warum? 2.2 Zahlendarstellung im Rechner 2.3 Generatoren Linear kongruente Generatoren (LCG) Multiplikativ linear kongruente Generatoren (MLCG) Kombination mehrerer MLCGs

3 2.4. Qualität von Generatoren Spektraltest Bilde Paare aus benachbarten Zahlen (x j, x j+1 ) j = 0, 1,..., n 1 Darstellung als Punkte in einem 2dim kartesischen Koordinatensystem: a = 3, m = 7 : 1, 3, 2, 6, 4, 5, 1,... (1, 3), (3, 2), (2, 6), (6, 4), (4, 5), (5, 1) Punkte eines MLCG bilden regelmäßiges Gitter. Warum? Im Wertebereich 0 x j < m gibt es m 2 Zahlenpaare. MLCG liefert aber nur m 1 Zahlenpaare

4 Beispiele: Spektraltest 6 a=3 m=7 5 4 x i x i

5 Beispiele: Spektraltest 90 a=29 m= x i x i

6 Beispiele: Spektraltest 90 a=23 m= x i x i

7 Beispiele: 1 Spektraltest a=29 m= x i x i

8 Beispiele: 1 Spektraltest a=23 m= x i x i

9 Umrechnung auf Gitter 0 x j m < 1. Voll besetztes Gitter hat Linienabstand d = 1 m Unser Gitter hat bei gleichmäßiger Verteilung bestenfalls: d m 1/2 für 2 Dimensionen Ungleichmäßige Abstände: d m 1/2 Theoretische Überlegungen liefern obere Grenzen für die kleinstmöglichen Gitterabstände in t Dimensionen: d t d t = c t m 1/t c 2 = 4 3/4, c 3 = 6 1/2, c 4 = 4 1/2, c 5 = 2 0,3

10 2.4.2 Test auf gleichmäßige Verteilung Das Intervall [0, 1] wird in k gleiche Unterintervalle der Länge 1/k unterteilt. N Zufallszahlen werden erzeugt. N i fallen in das Unterintervall i. k Ni = N, N i = N k, (N i N/k) 2 = χ 2 N/k i=1 sollte einer χ 2 -Verteilung mit (k 1) Freiheitsgraden folgen.

11 2.4.3 Sequenz-(up-down-)Test Vergleiche x i und x i+1 { 1 für xi < x Erzeuge Bitfolge mit i+1 0 für x i > x i+1 Zähle die Folgen von Nullen und Einser der Länge k: N(k) N k N(k) = N für N + 1 Zufallszahlen k=1 Für unkorrelierte Zufallszahlen erwartet man: N(1) = 5N+1 12 N(2) = 11N N(3) = 19N N(k) = (k 2 +3k+1)N (k 3 +3k 2 k 4) (k+3)!/ N(1) = 5 (6,75) N(2) = 4 (2,75) N(3) = 1 (0,58)

12 2.4.4 Random Walk-Test Wähle ein kleine Zahl 0 < α 1. Bilde eine große Zahl von Zufallszahlen und registriere die Zahl r der Fälle, in denen eine Zufallszahl kleiner α erscheint. Man erwartet eine Binomialverteilung für r mit p = α. Diese Test sollte auch gemacht werden für Zufallszahlen, die größer als (1 α) sind.

13 2.4.5 Lücken-(gap)Test Wähle zwei Zahlen 0 α < β 1. Erzeuge (r + 1) Zufallszahlen im Intervall [0, 1]. Die Wahrscheinlichkeit, dass die ersten r Zahlen ausserhalb des Intervalls (α, β) liegen und die (r + 1)ste innerhalb, sollte sein: P r = p (1 p) r

14 2.4.6 Collision-Test Teile das Intervall [0, 1) in d gleiche Segmente. Teile entsprechend [0, 1) t in k = d t Hyperkuben. Erzeuge n zufällige Punkte in [0, 1) t. Wir definieren eine neue Zufallsvariable C, in dem wir zählen, wie oft wir eine Zahl in eine Hyperkubus füllen, der schon besetzt ist. Wir erwarten für C eine Poisson-Verteilung um den Mittelwert: λ C = n2 (k groß) 2k

15 2.4.7 Birthday-Spacing-Test Teile den Wertebereich in k gleich Intervalle (Hyperkuben). Definiere eine Ordnungsfunktion für die Zellen, damit für die gefüllten Zellen gilt: I (1) I (2)... I (n) Definiere den Abstand S j = I (j+1) I (j) j = 1,..., n 1. Die neue Zufallsvariable Y zählt die Fälle (Kollisionen), für die gilt: S (j+1) = S (j). Wir erwarten für Y eine Poisson-Verteilung um den Mittelwert: λ Y = n3 (k groß) 4k Der Name stammt von dem Geburtstagsparadoxon (n Personen, das Jahr hat k Tage). papers/wsc01rng.pdf

16 2.5 Zufallszahlen für beliebige Verteilungen Kontinuierliche Zufallsvariable f (x) dx = U(0, 1) du x f (t) dt = F(x) = u x = F ( 1) (u) Diskrete Zufallsvariable Bei endlichem Wertebereich, kumulative Wahrscheinlichkeit tabellieren und anschließend binären Suchalgorithmus anwenden Verfahren mit roher Gewalt Zufallszahlen für spezielle Verteilungen Übungen

17 2.6 Monte-Carlo Integration Vergleich mit numerischer Integration - Trapezregel Vergleich mit numerischer Integration - Simpson Monte Carlo Integration in einer Dimension Varianzreduzierende Methoden: Importance Sampling Kontroll-Funktion Partitionierung (MC-) Integration in mehreren Dimensionen

18 2.6.5 Quasi-Zufallszahlen (Sequenzen) Warum zeigen (echte und Pseudo-) Zufallszahlen ein so schlechte Konvergenzverhalten? Fehler bei Integration: n 1/ Antwort: Zufallszahlen klumpen

19 Gibt es Sequenzen (von n-tupeln), die ein n-dimensionales Volumen besser füllen als (Pseudo-) Zufallszahlen? Quasi-Zufallszahlen (Sequenzen) Fehler bei Integration: n 1 Pseudo Random Sequence 1.0 Quasi Random Sequence Eigenschaften: Neue Punkte fallen immer zwischen die vorherigen Punkte. Hier: Gleichmäßige Füllung der Fläche.

20 van der Corput-Sequenzen Publiziert 1935 von dem holländischen Mathematiker Johannes Gualtherus van der Corput (Rotterdam, September 4, Amsterdam, September 16, 1975). Richtgröße: n = m j=0 a j(n) B j van der Corput-Sequenz, Basis n: x(n) = m j=0 a j(n) B j 1 Beispiel: Basis 3: 0, 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27, 10/27, 19/27,...

21 Halton Sequenz Publiziert 1960 von John H. Halton, Professor an der University of North Carolina at Chapel Hill. van der Corput-Sequenzen mit anderer Primzahlbasis für jede Dimension. Primzahlen: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,... Nachteil: Sequenzlänge, um Intervall [0, 1] zu füllen, steigt für hohe Dimensionen extrem an.

22 Halton Sequenzen in hohen Dimensionen

23 Sobol Sequenzen Basis 2 für alle Dimensionen spezieller Algorithmus, um Bits zu mischen Beispiel: Gray-Code Siehe William H. Press et al.: Numerical recipes in C, Cambridge University Press (1992)

24 Arbeiten mit Quasi-Zufallssequenzen Nur für MC-Integration geeignet Benötigt große Disziplin des Programmierers Dimension des Problems kann nicht nachträglich verändert werden Um die Genauigkeit der Integration zu verbessern, muss die Sequenz an der Stelle fortgeführt werden, an der sie abgebrochen wurde Fehler n 1 statt n 1/2

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 11. Mai 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 13. Juli 2011 Ziel der Vorlesung Vermittlung von Grundkenntnissen der Statistik, Simulationstechnik und numerischen Methoden (Algorithmen) Aufgabe:

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 2. November 2009 Poisson-Verteilung Die Poisson-Verteilung ist gegeben durch: P(r) = µr e µ r! Der Mittelwert ist: r = µ Die Varianz ergibt sich aus

Mehr

Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen

Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen Gott würfelt nicht Monte-Carlo-Methode mit Pseudo- und Quasizufallszahlen Inhaltsverzeichnis Pseudo- und Quasizufallszahlen Monte-Carlo- Monte-Carlo- Monte-Carlo-Methode Bekannt nach Stadt Monte Carlo

Mehr

Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken

Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken 25. Juni 2015 1 / 37 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance

Mehr

7 Zufallszahlen, Simulation

7 Zufallszahlen, Simulation 7 Zufallszahlen, Simulation Es ist nützlich, Folgen von i.i.d. R[0, 1]-verteilten Zufallszahlen auf einem Rechner erzeugen zu können vgl. Simulation, Monte-Carlo-Verfahren). Letztere sind i.a. keine echten

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

15 Grundlagen der Simulation

15 Grundlagen der Simulation 15 Grundlagen der Simulation 15.1 Einführung Komplexe Problemstellungen, die einer analytischen Behandlung nur sehr schwer oder gar nicht zugänglich sind Lösung von diskreten (oder analytischen) Optimierungsaufgaben,

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen

Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen Vorwort zur fünften Auflage Liste der Beispiele Häufig benutzte Symbole und Bezeichnungen v xiv xvii 1 Einleitung 1 1.1 Typische Aufgaben der Datenanalyse 1 1.2 Zum Aufbau dieses Buches 2 1.3 Zu den Programmen

Mehr

Simulationstechniken in Finanz- und Versicherungsmathematik

Simulationstechniken in Finanz- und Versicherungsmathematik Simulationstechniken in Finanz- und Versicherungsmathematik 10. Januar 2010 1 Motivation 2 Monte Carlo Methoden 3 Quasi-Monte Carlo Methoden 4 Folgen kleiner Diskrepanz Motivation Mortgage-backed Security

Mehr

Pseudozufallsgeneratoren

Pseudozufallsgeneratoren Pseudozufallsgeneratoren In welchen kryptographischen Verfahren werden keine Zufallszahlen benötigt? Wie generiert man Zufallszahlen in einer deterministischen Maschine wie dem Computer? Wenn man eine

Mehr

Inhaltsverzeichnis. Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen

Inhaltsverzeichnis. Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen Vorwort zur fünften Auflage Liste der Beispiele Häufig benutzte Symbole und Bezeichnungen v xiv xvii 1 Einleitung 1 Typische Aufgaben der Datenanalyse 1 1.2 Zum Aufbau dieses Buches 2 Zu den Programmen

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Anhang 1: Lamellare Strukturen in Systemen mit Bolaamphiphilen

Anhang 1: Lamellare Strukturen in Systemen mit Bolaamphiphilen Anhang 1: Lamellare Strukturen in Systemen mit Bolaamphiphilen Charakteristische Konfigurationen von Systemen aus 1848 6-segmentigen Bolaamphiphilen (10 Vol%) im Bereich stabiler Schichtphasen. Dunkle

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 8. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 29. Oktober 2007 1. Statistik 1.1 Wahrscheinlichkeit Pragmatisch: p(e) = n(e) N für N sehr groß Kombination von Wahrscheinlichkeiten p(a oder B) =

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

W-Rechnung und Statistik für Ingenieure Übung 8

W-Rechnung und Statistik für Ingenieure Übung 8 W-Rechnung und Statistik für Ingenieure Übung 8 Aufgabe 1 : Motivation Anhand von Daten soll eine Aussage über die voraussichtliche Verteilung zukünftiger Daten gemacht werden, z.b. die Wahrscheinlichkeit

Mehr

Zufallszahlen in AntBrain

Zufallszahlen in AntBrain Zufallszahlen SEP 291 Zufallszahlen in AntBrain Spezifikation, Teil II: Zum Beispiel könnte ein Objekt vom Typ Match die Spielfelder nach jeweils 1000 Spielrunden speichern; bei einer Anfrage nach den

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 6. Vorlesung - 2018 Diskrete ZG eine diskrete ZG X wird vollständig durch ihre Wahrscheinlichkeitsverteilung beschrieben ( ) x1 x X 2... x i... = p 1 p 2... p i... P(X (a, b]) = und die Verteilungsfunktion

Mehr

Datenanalyse für Naturwissenschaftler und Ingenieure

Datenanalyse für Naturwissenschaftler und Ingenieure Siegmund Brandt Datenanalyse für Naturwissenschaftler und Ingenieure Mit statistischen Methoden und Java-Programmen 5. Auflage 4y Springer Spektrum Inhaltsverzeichnis Vorwort zur fünften Auflage Liste

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 8. Mai 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden,

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden, Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Einführung in die Simulation Dr. Christoph Laroque Wintersemester 11/12 Dresden, 11.10.2011 01.11.2011 Einführung

Mehr

Zufallszahlen in Testbetten und Simulationen

Zufallszahlen in Testbetten und Simulationen Zufall Wofür brauchen wir Zufallszahlen? Zufall Wofür brauchen wir Zufallszahlen? Simulation von Dingen, die wir nicht genau beschreiben wollen Zufall Wofür brauchen wir Zufallszahlen? Simulation von Dingen,

Mehr

Erzeugung von Pseudozufallszahlen mit Computern

Erzeugung von Pseudozufallszahlen mit Computern Erzeugung von Pseudozufallszahlen mit Computern Basisgeneratoren und deren Einfluss auf die Qualität der Ergebnisse Lorenz Hauswald IKTP, TU Dresden 7 Dezember 2011 1 / 26 Gliederung Grundlagen 1 Grundlagen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Informationssicherheit III

Informationssicherheit III Zufall im Rechner Präsentation im Rahmen der Lehrveranstaltung Informationssicherheit III WS 2001/2002 Jochen Rondorf 17.01.2002 Zufall im Rechner WS 2001/02 1 Agenda Arten von Zufall Anwendungsgebiete

Mehr

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen Zufallszahlen Zufallszahlengeneratoren Transformation von Zufallszahlen Test von Zufallszahlengeneratoren Otto-von-Guericke-Universität Magdeburg Thomas Schulze Zufallszahlengeneratoren - Zufallszahlen

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

f Z (z) = 0 sonst = 1

f Z (z) = 0 sonst = 1 Lösungsvorschläge zu Blatt 8) Da das Teilchen sich mit konstanter Winkelgeschwindigkeit bewegt und zufällig gestoppt wird und da Z und Z + kπ, k Z, das gleiche X liefern, kann Z als eine auf [ π, π] gleichverteilte

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten Markov-Chain Monte-Carlo Verfahren Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Übersicht 1 Einführung

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Master Seminar Mathematik Monte-Carlo Integration. Stephan Napierala 06. Juli 2017

Master Seminar Mathematik Monte-Carlo Integration. Stephan Napierala 06. Juli 2017 Master Seminar Mathematik Stephan Napierala 12 Inhaltsverzeichnis 1. Geschichtlicher Hintergrund 2. Stochastische Grundbegriffe 3. 4. Vorteile gegenüber anderen Verfahren 5. Konvergenzbeschleunigung Geschichtlicher

Mehr

Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr.

Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr. Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 23 Bergische Universität Wuppertal Autor: Prof. Dr. Roland Pulch Aufgabe: Konstruiere Zufallszahlen aus der Menge {,, 2, 3, 4, 5, 6, 7,

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Experimentelle Methoden der Teilchenphysik Sommersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Experimentelle Methoden der Teilchenphysik Sommersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Eperimentelle Methoden der Teilchenphysik Sommersemester 011/01 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut, Westbau,. OG Raum 008 Telefon 0761 03 761 E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

Messprotokoll: Aufnahme der Quantenzufallszahl

Messprotokoll: Aufnahme der Quantenzufallszahl Messprotokoll: Aufnahme der Quantenzufallszahl Am 19. Juni 2009 wurden für Max Mustermann um 8:35 Uhr mit Hilfe von einzelnen Photonen 993.097 Zufallszahlen generiert. Der Zufallsgenerator steht im Quantenoptiklabor

Mehr

Zufallszahlenerzeugung

Zufallszahlenerzeugung Zufallszahlenerzeugung Anwendunsgebiete: z.b.: - Computerspiele - Kryptographie - Monte-Carlo-Methoden - Simulation Melanie Kaspar, Prof. Dr. B. Grabowski 1 Wie erzeuge ich Zufallszahlen, die sich so verhalten,

Mehr

Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root. Eric Volkmann

Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root. Eric Volkmann Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root Eric Volkmann Inhalt Mathematische Definition Random Number Generators Wichtige Verteilungen Anwendungsbeispiel: Monte-Carlo Simulation

Mehr

2.1 Importance sampling: Metropolis-Algorithmus

2.1 Importance sampling: Metropolis-Algorithmus Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem

Mehr

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx D-MATH Numerische Methoden FS 217 Dr. Vasile Gradinaru Luc Grosheintz Serie 4 Abgabedatum: Di./Mi. 2.3/21.3 in den Übungsgruppen oder im HG J68 Koordinatoren: Luc Grosheintz, HG J 46, luc.grosheintz@sam.ethz.ch

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 8 Zufallszahlen Generatoren Anwendungen Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Computer in der Wissenschaft

Computer in der Wissenschaft Dr. Michael O. Distler distler@uni-mainz.de Mainz, 8. Januar 2014 Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der kleinsten

Mehr

IT-Security. Teil 15: Zufall

IT-Security. Teil 15: Zufall IT-Security Teil 15: Zufall 09.05.17 1 Literatur [15-1] http://de.wikipedia.org/wiki/kryptographisch_sicherer_zufallszahlen generator [15-2] https://gnupg.org/documentation/manuals/gcrypt/fips-prng- Description.html

Mehr

Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele

Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele 11. Zufallszahlen 1 Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele sind 1. Computersimulationen 2. Optimierungsprobleme und 3. Hochdimensionale Integrale. Problemstellung:

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Lösungshinweise zur Klausur. Mathematik für Informatiker III. (Dr. Frank Hoffmann) 18. Februar 2008

Lösungshinweise zur Klausur. Mathematik für Informatiker III. (Dr. Frank Hoffmann) 18. Februar 2008 Lösungshinweise zur Klausur Mathematik für Informatiker III (Dr. Frank Hoffmann) 8. Februar 8 Aufgabe Algebraisches I /6++ (a) Rechnen Sie zunächst nach, dass die Menge B = {,, von Vektoren eine Basis

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Zufallsvariablen Beschreibung von Ereignissen

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Sabrina Kallus, Eva Lotte Reinartz, André Salé

Sabrina Kallus, Eva Lotte Reinartz, André Salé Sabrina Kallus, Eva Lotte Reinartz, André Salé } Wiederholung (Zufallsvariable) } Erwartungswert Was ist das? } Erwartungswert: diskrete endliche Räume } Erwartungswert: Räume mit Dichten } Eigenschaften

Mehr

Statistische Inferenz

Statistische Inferenz Statistische Inferenz Prinzip der statistischen Inferenz Datensätze = Stichproben aus einer Gesamtpopulation (meistens) Beispiel : Messung der Körpertemperatur von 106 gesunden Individuen man vermutet,

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 2: Generierung von Primzahlen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2018/2019 15.11.2018 Einleitung Einleitung Diese Lerneinheit

Mehr

2. AuD Tafelübung T-C3

2. AuD Tafelübung T-C3 2. AuD Tafelübung T-C3 Simon Ruderich 3. November 2010 Organisatorisches Bearbeitung der Praxisaufgaben Bereits vorhandene Klassen, Methoden, Variablen,... dürfen nicht verändert werden! Eigene Klassen,

Mehr

Einsatz von Varianzreduktionstechniken II

Einsatz von Varianzreduktionstechniken II Einsatz von Varianzreduktionstechniken II Stratified Sampling und Common Random Numbers Bastian Bluhm Betreuer: Christiane Barz Ausgewählte technische, rechtliche und ökonomische Aspekte des Entwurfs von

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 25 Überblick Überblick Metropolis-Algorithmus

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Gesetz der großen Zahlen

Gesetz der großen Zahlen Gesetz der großen Zahlen Marie Reichstein Technische Universität Wien 19. Jänner 2012 Übersicht Geschichte Fragestellung schwaches Gesetz der großen Zahlen starkes Gesetz der großen Zahlen Null-Eins-Gesetze

Mehr

Computergestütztes wissenschaftliches Rechnen SoSe 2004

Computergestütztes wissenschaftliches Rechnen SoSe 2004 Computergestütztes wissenschaftliches Rechnen SoSe 2004 Alexander K. Hartmann, Universität Göttingen 28. April 2004 2.4 Numerik 2.4.1 Zahlendarstellung Analogrechner (Rechenschieber, Op-Amp): Zahlen entsprechen

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger Hausdorff-Maß und Hausdorff-Dimension Jens Krüger Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen aus der Maßtheorie 3 3 Die Konstruktion des Hausdorff-Maßes 4 4 Eigenschaften des Hausdorff-Maßes und Hausdorff-Dimension

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Oktober 2007 1. Statistik Wir denken an Experimente, bei deren Durchführung die Variable X, um die es dabei geht, verschiedene Werte annehmen

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 5. Juli 2011 Zunächst: PCA (Hauptkomponentenanalyse) ist eine mathematische Prozedur, die eine Anzahl von (möglicherweise korrelierten) Variablen

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Stream Processing II

Stream Processing II Stream Processing II K-Buckets Histogram Histogramme sind graphische Darstellungen der Verteilung von numerischen Werten Werden durch Intervalle, die sich nicht überlappen, dargestellt Ein Intervall wird

Mehr

Exponentielle Suche 4/26/10. Beweis für. Situation: Idee: suche zunächst "rechten Rand" r, so dass k < Ar Algo: Analyse:

Exponentielle Suche 4/26/10. Beweis für. Situation: Idee: suche zunächst rechten Rand r, so dass k < Ar Algo: Analyse: Beweis für 9 Exponentielle Situation: n sehr groß esuchtes i, mit Ai = k, ist relativ klein Idee: suche zunächst "rechten Rand" r, so dass k < Ar Algo: 1 2 4 8 i 16 Index r = 1 while A[r] < key: r *= 2

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 7 1 Inhalt der heutigen Übung Statistik und Wahrscheinlichkeitsrechnung Vorrechnen der Hausübung D.9 Gemeinsames Lösen der Übungsaufgaben D.10: Poissonprozess

Mehr

Wahrscheinlichkeitsräume und Zufallsvariablen

Wahrscheinlichkeitsräume und Zufallsvariablen Kapitel Wahrscheinlichkeitsräume und Zufallsvariablen. W-Raum Unter einem Zufallsexperiment verstehen wir einen vom Zufall beeinflussten Vorgang, der ein entsprechend zufälliges Ergebnis hervorbringt.

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Grundlagen der Monte-Carlo-Simulation

Grundlagen der Monte-Carlo-Simulation Grundlagen der Monte-Carlo-Simulation Prof. Dr. V. Schmidt und S. Luck j 8. November 2007 page 2 Contents Motivation Erzeugung von SPZZ Software Transformation von SPZZ page 3 Motivation Motivation fur

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 =

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 = Binomialverteilung Für X Bin(n, p) gilt nach der binomischen Formel G X (s) = E[s X ] = n ( ) n p k (1 p) n k s k = (1 p + ps) n. k Geometrische Verteilung Sei X eine geometrisch verteilte Zufallsvariable

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Kodierung Genetische Algorithmen und Simulated Annealing

Kodierung Genetische Algorithmen und Simulated Annealing Kodierung Genetische Algorithmen und Simulated Annealing Referenten Dipl.-Ing. (FH) Dipl.-Ing. (FH) 1 Agenda Erklärung des Genetischen Algorithmus f(x)=x² (2-dimensional) Verschiedene Codierungen Binärcode,

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik Bearbeitet von Karl Mosler, Friedrich Schmid 4., verb. Aufl. 2010. Taschenbuch. XII, 347 S. Paperback ISBN 978 3 642 15009 8 Format

Mehr