Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten"

Transkript

1 S 1 Ein Quiz zur Wiederholung geometrischer Grundbegriffe Ilse Gretenkord, Ahaus M 1 So geht s Körper und ihre Eigenschaften Quizkarten Bildet Gruppen zu vier bis fünf Schülerinnen bzw. Schülern. Eine Person in der Gruppe ist der Quizmaster. Jede Gruppe bekommt einen Stapel Quizkärtchen. Der jüngste Spieler beginnt, zieht die oberste Karte vom Stapel und beantwortet die Frage. Stoppt die Zeit. Länger als 2 Minuten darf man nicht überlegen. Der Quizmaster kontrolliert die Antwort. Ist die Antwort richtig, so erhält der Spieler einen Punkt und darf das Kärtchen behalten. Die Punkte eines jeden Spielers hält der Quizmaster in einer Tabelle fest. Ist die Antwort falsch, kommt das Kärtchen wieder unter den Stapel. Im Uhrzeigersinn geht es weiter: Der nächste Spieler zieht ein Quizkärtchen vom Stapel und beantwortet die Frage. Das Spiel endet, wenn auf dem Stapel keine Karten mehr liegen. Der Spieler mit den meisten Punkten gewinnt. 1. Gib die Deinition für ein gerades Prisma an. Hier siehst du ein Beispiel. 2. Was ist ein Würfel? 3. Gib die Formel zur Berechnung des Oberlächeninhalts und des Volumens eines Quaders mit quadratischer Grundläche an. 4. Gib die Deinition für einen allgemeinen Quader an, der also keinerlei Besonderheiten aufweist.

2 S 2 5. Zeichne ein Prisma mit einem gleichschenkligen Trapez als Grundläche. Bezeichne die parallelen Seiten des Trapezes mit a und c, dessen beide Schenkel mit b und d. h T sei die Höhe des Trapezes und h P die Höhe des Prismas. Gib Oberlächeninhalt und Volumen des Prismas an. 7. Begründe, warum der abgebildete Körper kein Prisma ist. 6. Entscheide (ja / nein): In jedem Quader sind nur jeweils genau zwei Seitenlächen gleich groß. Falls du dich für nein entscheidest, gib eine Begründung an. 8. Von den folgenden Aussagen sind mehrere richtig. Kreuze sie an. a) Das Volumen eines Quaders verdoppelt sich, wenn man die Länge einer Seite der Grundläche verdoppelt. b) Das Volumen eines Quaders verdoppelt sich, wenn man seine Höhe verdoppelt. c) Das Volumen eines Quaders verdoppelt sich, wenn man beide Seiten der Grundläche verdoppelt. 9. Gib die Anzahl der Ecken, Kanten und Seitenlächen eines Prismas mit fünfeckiger Grundläche an. d) Das Volumen eines Quaders verdoppelt sich, wenn man seine Grundläche verdoppelt und seine Höhe halbiert. 10. Die Grundläche eines Quaders ist aus mehreren Flächen zusammengesetzt (siehe Abb.). Die Höhe des Quaders sei h = 3a. a) Welcher Körper entsteht? b) Wie berechnest du das Volumen des Körpers?

3 S Gib an, aus wie vielen gleich großen Quadern sich die Treppe zusammensetzt. 12. Auf einem Holzwürfel sind die Symmetrieachsen der Deckläche eingezeichnet. Setze die Säge jeweils auf der Symmetrieachse an und säge bis zum Boden durch. 13. Ein Quader hat Kanten der Länge l 1 = a, l 2 = 3 a und l 3 = 1/3a. a) Gib Volumen und Oberlächeninhalt des Quaders an. b) Es gibt noch einen anderen, besonderen Quader, der aber das gleiche Volumen wie der vorgegebene hat. Benenne ihn. Beschreibe so präzise wie möglich, was entsteht. 14. Ein Quader mit quadratischer Grundläche hat den Oberlächeninhalt O = 2a² + 0,5a² + 0,5a². Wie hoch ist der Quader? 15. Gib eine einfache Formel für das Volumen des Prismas an, das folgende Grundläche und die Höhe a hat: 16. Suche den Fehler in der folgenden Berechnung der Oberläche eines Körpers und schreibe die richtige Lösung auf. Vier Würfel aus Holz, die alle das gleiche Volumen V = 27 cm 3 haben, werden so gestapelt, dass sich eine quaderförmige Säule ergibt. Berechne den Oberlächeninhalt der Säule. Aus V = 27 cm 3 folgt: a = 3 cm. Oberlächeninhalt eines Würfels: O = 6a 2 = 54 cm² Oberlächeninhalt der Säule, bestehend aus vier Würfeln: O = 24 a² = 216 cm 2.

4 S 8 Prisma, Zylinder, Pyramide, Kegel wiederhole dein Wissen! Prisma Die Grund- und Deckläche eines Prismas sind kongruente Vielecke (Polygone). Die Seitenlächen sind Parallelogramme. Das Prisma ist gerade, wenn seine Kanten senkrecht auf der Grundläche stehen. Beispiel: Bei diesem geraden Prisma ist die Grundläche kein regelmäßiges, sondern ein allgemeines Vieleck. Zylinder Verschiebt man ein ebenes Flächenstück, das durch eine geschlossene Kurve begrenzt wird, parallel zu sich um eine bestimmte Strecke, dann entsteht ein Zylinder. Erfolgt die Verschiebung rechtwinklig, dann entsteht ein gerader Zylinder (andernfalls ein schiefer). Es handelt sich um einen Kreiszylinder, falls die Grund- und Deckläche Kreislächen sind. Beispiel: gerader Kreiszylinder Pyramide Eine Pyramide wird begrenzt von einem Vieleck (Polygon) beliebiger Eckenzahl n (n 3), der Grundläche, und n Dreiecken, die in einem Punkt (der Spitze der Pyramide) zusammentreffen. Die Gesamtheit der Seitenlächen bezeichnet man als Mantelläche. Beispiel: n = 4 Kegel Verbindet man alle Punkte eines ebenen Flächenstücks geradlinig mit einem Punkt außerhalb der Ebene, der Spitze, so entsteht ein Kegel. Beispiel: Kegel mit kreisförmiger Grundläche

5 S 9 Rund um das Einzelmaterial Klasse: 9 Dauer: Inhalt: 1 Doppelstunden Volumen und Oberlächeninhalt von Würfel, Quader, Prisma, Kegel und Zylinder Ihr Plus: Ein Quiz mit hohem Motivationscharakter; spielerische Überprüfung und Wiederholung von geometrischem Grundwissen Didaktisch-methodische Hinweise Überprüfen Sie mit diesem Quiz auf spielerische Weise den Kenntnisstand Ihrer Lerngruppe. Das Quiz ist als Wettspiel gedacht: Wer ist am schnellsten? Wer weiß am meisten? Es besteht aus vierzig Fragen bzw. Aufgabenstellungen. Es fragt querbeet Kenntnisse zu allen gängigen Eigenschaften geometrischer Flächen und (schwerpunktmäßig) Körper ab, die bis Ende der Klasse 9 behandelt wurden. Das Quiz hat zwar den Charakter eines Wettspiels, es ist aber keine Klassenarbeit. Stellen Sie für den Sieger jeder Gruppe eine kleine Belohnung in Aussicht, um den Ehrgeiz der Schülerinnen und Schüler zu wecken. Gleichzeitig vermeiden Sie Frustrationen bei Schwächeren, indem Sie beispielsweise dem Quizmaster erlauben, kleine Hilfestellungen zu geben. Vorbereitung Ideal ist eine Gruppe von fünf Schülerinnen bzw. Schülern (1 Quizmaster, der die Lösungen kontrolliert und 4 Spieler). Kopieren Sie den Satz Quizkärtchen und die Musterlösungen für jede Gruppe einmal. Schneiden Sie die Kärtchen aus und laminieren Sie sie, damit sie nicht so schnell kaputtgehen. Das Wiederholungsblatt kopieren Sie in Klassenstärke und teilen es an alle Lernenden aus. Ablauf des Quiz Jede Gruppe bekommt einen Stapel Quizkärtchen und soll diese schnell und korrekt bearbeiten. Stoppen Sie die Zeit. Eine maximale Bearbeitungszeit von 2 Minuten pro Aufgabe darf nicht überschritten werden. Der jüngste Spieler beginnt, dann geht es im Uhrzeigersinn weiter. Wenn ein Spieler an der Reihe ist, zieht er ein Quizkärtchen vom Stapel und beantwortet die Frage. Der Quizmaster erhält die Musterlösung. Anhand dieser Lösung beurteilt er, ob eine Antwort richtig oder falsch war. Für jede richtige Antwort gibt es einen Punkt. Die Punkte eines jeden Spielers hält der Quizmaster in einer Tabelle fest. War die Antwort richtig, darf die Schülerin oder der Schüler das Kärtchen behalten, ansonsten kommt das Kärtchen mit der Frage wieder unter den Stapel. Ende des Quiz Das Spiel endet, wenn auf dem Stapel keine Karten mehr liegen oder die Unterrichtsstunde zu Ende ist. Halten Sie für den Sieger jeder Gruppe eine kleine Belohnung bereit. Minimalplan Für das Quiz sollte eine Doppelstunde zur Verfügung stehen. Ist dies nicht möglich, reduzieren Sie die Anzahl der Quizkärtchen.

6 S 10 Bezug zu den Bildungsstandards der Kultusministerkonferenz Allg. mathematische Kompetenz Leitidee Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Anforderungsbereich K 1, K 2, K 4, K 5 L 3 reproduzieren ihre geometrischen Grundkenntnisse und wenden sie an, K 2 L 3 fertigen mit Zirkel und Lineal Zeichnungen und Skizzen an, K 5 L 3 wenden mathematische Formeln an, II K 1 L 3 stellen Zusammenhänge her, deinieren und argumentieren. Abkürzungen Kompetenzen K 1 (Mathematisch argumentieren); K 2 (Probleme mathematisch lösen); K 3 (Mathematisch modellieren); K 4 (Mathematische Darstellungen verwenden); K 5 (Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen); K 6 (Kommunizieren) Leitideen L 1 (Zahl und Zahlbereich); L 2 (Messen und Größen); L 3 (Raum und Form); L 4 (Funktionaler Zusammenhang); L 5 (Daten und Zufall) Anforderungsbereiche I Reproduzieren; II Zusammenhänge herstellen; III Verallgemeinern und Relektieren Lösungen und W Tipps zum Einsatz 1. Ein gerades Prisma ist ein Körper, der sich aus zwei n-ecken als Grund- und Deckläche, die kongruent (= deckungsgleich) und zueinander parallel sind, und einer Mantelläche zusammensetzt. Die Mantelläche besteht aus n Rechtecken, deren eine Seite so lang wie die entsprechende Seite des n-ecks ist und deren andere Seite so lang wie die Höhe des Prismas ist. Der Mantel steht senkrecht auf der Grundläche. 2. Ein Würfel ist ein gerades Prisma mit sechs gleich großen, quadratischen Seitenlächen. 3. Ein Quader mit quadratischer Grundläche besteht aus zwei gleich großen Quadraten und vier gleich großen Rechtecken. Also lauten die Formeln zur Berechnung der Oberläche: O = 2a² + 4a b und des Volumens: V = a² b, wobei a die Seitenlänge eines Quadrates und b die Höhe des Quaders bezeichnen. 4. Ein Quader ist ein gerades Prisma, das aus sechs Rechtecken besteht, von denen jeweils die zwei einander gegenüberliegenden kongruent sind. I, III I, II III

7 S 11 (a + c) ht 5. O Prisma = a h P + c h P + 2 b h P + 2 O Trapez, wobei OTrapez = 2 O Prisma = h P (a + c + 2b) + h T (a + c) V (a + c) h 2 T = h P 6. Nein; denn auch Würfel mit sechs gleich großen Seitenlächen oder Quader mit quadratischer Grundläche sind Quader. 7. In einem Prisma müssen Grund- und Deckläche parallel zueinander sein. 8. Folgende Antworten sind richtig: 9. a) Das Volumen eines Quaders verdoppelt sich, wenn man die Länge einer Seite der Grundläche verdoppelt. b) Das Volumen eines Quaders verdoppelt sich, wenn man seine Höhe verdoppelt. Ecken Kanten Seitenlächen a) Es entsteht ein Würfel. b) V = (3a) = Es entstehen acht gleich große Prismen, die alle ein gleichschenkliges Dreieck als Grundläche haben. Die Höhe der Prismen ist so lang wie die Kantenlänge des Würfels. 13. a) V = a 3a 1/3a = a 3 O = 2 a 3a + 2 a 1 3 a + 2 3a 1 3 a = 26 3 a² b) Würfel 14. Die Höhe beträgt 0,25a. 15. A Dreieck = 1 2 g h = a a a = 2 4

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren Das komplette Material finden Sie hier: Download bei

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen!

Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! S 1 Primitiv? Primzahlen und Primfaktoren schätzen lernen Dr. Heinrich Schneider, Wien M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! Die natürlichen Zahlen n 1, 2, 3, 4, 5, heißen natürliche Zahlen.

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Hinweise zur Abschlussprüfung im Fach Mathematik in der Realschule, Schuljahrgang 10, im Schuljahr 2009 / 2010

Hinweise zur Abschlussprüfung im Fach Mathematik in der Realschule, Schuljahrgang 10, im Schuljahr 2009 / 2010 Hinweise zur Abschlussprüfung im Fach Mathematik in der Realschule, Schuljahrgang 10, im Schuljahr 2009 / 2010 Organisation Der Termin der schriftlichen Abschlussprüfung im Fach Mathematik ist der 18.05.2010

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5 Seite 1 von 8 Schulinternes Curriculum Mathematik Jahrgang 5 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene bereiche inhaltsbezogene bereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Den Satz des Pythagoras in der Architektur entdecken

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Den Satz des Pythagoras in der Architektur entdecken Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Den Satz des Pythagoras in der Architektur entdecken Das komplette Material finden Sie hier: School-Scout.de S 1 Den Satz des Pythagoras

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Ist doch logo! Markenzeichen mathematisch betrachtet. Wolfgang Göbels, Bergisch Gladbach. M 1 Firmenlogos mit Mathe-Piff ausgewählte Beispiele

Ist doch logo! Markenzeichen mathematisch betrachtet. Wolfgang Göbels, Bergisch Gladbach. M 1 Firmenlogos mit Mathe-Piff ausgewählte Beispiele S 1 Ist doch logo! Markenzeichen mathematisch betrachtet Wolfgang Göbels, Bergisch Gladbach M 1 Firmenlogos mit Mathe-Piff ausgewählte Beispiele Schau dir die sechs Logos genau an. Schreibe alle mathematischen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Ein Stationenzirkel zum Thema "Quader"

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Ein Stationenzirkel zum Thema Quader Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Ein Stationenzirkel zum Thema "Quader" Das komplette Material finden Sie hier: School-Scout.de S 1 Ein Stationenzirkel zum Thema Quader

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben Aufgaben zu Merkmalen und Eigenschaften von Körpern 1 Sicheres Wissen und Können am Ende der Klasse 6 1 Allgemeine Merkmale vergleichen und beschreiben 1. Die folgenden Zeichnungen zeigen Körper. Fülle

Mehr

VORANSICHT IV/A. Ganz exakt im Koordinatensystem Bilder zeichnen. M 1 Glückspilz hinter Gittern Koordinaten gesucht!

VORANSICHT IV/A. Ganz exakt im Koordinatensystem Bilder zeichnen. M 1 Glückspilz hinter Gittern Koordinaten gesucht! S 1 Ganz exakt im Koordinatensystem Bilder zeichnen Wolfgang Göbels, Bergisch Gladbach M 1 Glückspilz hinter Gittern Koordinaten gesucht! Gib die Koordinaten aller Eckpunkte des Pilzes an. Der Punkt O

Mehr

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de S 1 Dr. Beate Bathe-Peters, Berlin Käseteller Muffins backen Fotos im gesamten

Mehr

Jahresarbeitsplan denkstark 1 ( )

Jahresarbeitsplan denkstark 1 ( ) Jahresarbeitsplan denkstark 1 (978-3-507-84815-3) Schulwoche Zeitraum Leitidee Projekte und Inhalt denkstark 1 (978-3-507-84815-3) Kompetenzen Denkstark 1 1-2 2 Wochen Raum und Form Projekt: Kunst und

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA Mathematik: Mag. Schmid Wolfgang Areitslatt 9. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen haen deckungsgleiche (kongruente), parallele und eckige Grund- und Deckflächen.

Mehr

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 In dieser Anfangsphase sollen die Schülerinnen und Schüler keine Wiederholung des Grundschulstoffs durchmachen, sondern bereits

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Bei formalen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung Das komplette Material finden Sie hier: School-Scout.de S 1 Das Pizza-Problem

Mehr

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes 2012 A 1e) Verschiedenes Schreiben Sie die Namen der drei Vierecke auf. 2011 A 1e) Verschiedenes Wie heißen diese geometrischen Objekte? Lösungen: Aufgabe Lösungsskizze BE 2012 A 1e) Rechteck Parallelogramm

Mehr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5 6 Wochen mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen erläutern Lösungswege beschreiben, begründen und Mit symbolischen, formalen

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Natürliche Zahlen und Größen - große Zahlen - Stellentafel - Zahlenstrahl - Runden - Geld, Länge, Gewicht,Zeit

Mehr

In Lernteams zum Erfolg! Eine Lerntheke zur Körperberechnung

In Lernteams zum Erfolg! Eine Lerntheke zur Körperberechnung III Form und Raum Beitrag 29 Lerntheke zur Körperberechnung 1 von 42 In Lernteams zum Erfolg! Eine Lerntheke zur Körperberechnung Ein Beitrag von Jessica Retzmann, Astheim Mit Illustrationen von Julia

Mehr

Verlauf Material LEK Glossar Lösungen. Passend konstruiert ein Puzzle aus Dreiecken und Vierecken. Wolfgang Göbels, Bergisch Gladbach VORANSICHT

Verlauf Material LEK Glossar Lösungen. Passend konstruiert ein Puzzle aus Dreiecken und Vierecken. Wolfgang Göbels, Bergisch Gladbach VORANSICHT Reihe 5 S 1 Verlauf Material Passend konstruiert ein Puzzle aus Dreiecken und Vierecken Wolfgang Göbels, Bergisch Gladbach Klasse: 7 9 (G8) Dauer: Inhalt: 3 4 Stunden In ein Puzzle eingekleidete Dreiecks-

Mehr

Mathematik Schuleigener Arbeitsplan Klasse 5 (Stand: Februar 2016)

Mathematik Schuleigener Arbeitsplan Klasse 5 (Stand: Februar 2016) stellen Fragen, äußern Vermutungen und bewerten erläutern mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen. nutzen verschiedene

Mehr

12.1 Jeder Körper hat einen Namen

12.1 Jeder Körper hat einen Namen 1207 Quader, Zylinder, 2 mal dreiseitiges Prisma 1208 Quader 1210 Grundfläche, Deckfläche, parallel und deckungsgleich, Vorder-,Rück-, Seitenfläche, 12 Prismen 12.1 Jeder Körper hat einen Namen Sara und

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Funktionen und ihre Graphen Helfer im Alltag

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Funktionen und ihre Graphen Helfer im Alltag Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Funktionen und ihre Graphen Helfer im Alltag Das komplette Material finden Sie hier: School-Scout.de S 1 Funktionen und ihre Graphen

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Geometrische Körper Fragebogen zum Film - Lösung B1

Geometrische Körper Fragebogen zum Film - Lösung B1 Geometrische Körper Fragebogen zum Film - Lösung B Fragen zum Film Geometrische Körper (BR Alpha) ) Ergänze mit den passenden Begriffen! Eine _Kante_ entsteht dort, wo zwei _Flächen_ zusammenstoßen. Eine

Mehr

Mein Tipp: Das stimmt.

Mein Tipp: Das stimmt. Station P: Prismen aus Netzen bauen 1 a) Gib einen Tipp ab. Ergeben die folgenden Netze ein Prisma? Trage deine Meinung in die folgende Liste ein. Stelle dir gedanklich vor, wie die Netze geklappt werden

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Hinweise zur Abschlussprüfung im Fach Mathematik in der Hauptschule, Schuljahrgang 10, im Schuljahr 2010 / 2011

Hinweise zur Abschlussprüfung im Fach Mathematik in der Hauptschule, Schuljahrgang 10, im Schuljahr 2010 / 2011 Hinweise zur Abschlussprüfung im Fach Mathematik in der Hauptschule, Schuljahrgang 10, im Schuljahr 2010 / 2011 Organisation Der Termin der schriftlichen Abschlussprüfung im Fach Mathematik ist der 19.05.2011

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Gedankenlesen mit Termen und Gleichungen Rätsel lösen. Wolfgang Göbels, Bergisch Gladbach. Mit Termen und Gleichungen umgehen VORANSICHT

Gedankenlesen mit Termen und Gleichungen Rätsel lösen. Wolfgang Göbels, Bergisch Gladbach. Mit Termen und Gleichungen umgehen VORANSICHT S 1 Gedankenlesen mit Termen und Gleichungen Rätsel lösen Wolfgang Göbels, Bergisch Gladbach M 1 Mit Termen und Gleichungen umgehen Zur Erinnerung: Die wichtigsten Gesetze auf einen Blick Für alle rationalen

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet.

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.2 Erkläre wie man ein Parallelogramm in ein Rechteck verwandeln kann und somit auch dessen Fläche berechnen kann. 90X.3 Erkläre wie man

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h) Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 6 09.10.2014 09:00-17:00 Uhr 1 (1) Vorbereitung Abschlussdokumentation (2) Modul 10 (3) Modul 11 (4) Modul 12

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 8

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 8 Klettbuch 978-3-12-740481-4 Arithmetik/Algebra 1 Rechnen mit Termen Verbalisieren Reflektieren Erläutern die Arbeitsschritte bei einfachen mathematischen Verfahren (Konstruktionen, Rechenverfahren, Algorithmen)

Mehr

Bundestag. Diagramm 1: Diagramm 2: Sitzverteilung im Bundestag. Mathematik: Musteraufgabe 2006/ Bundestag 16. Bundestag

Bundestag. Diagramm 1: Diagramm 2: Sitzverteilung im Bundestag. Mathematik: Musteraufgabe 2006/ Bundestag 16. Bundestag Bundestag Daniel hat für ein Politikreferat im Internet nach der Sitzverteilung im aktuellen 16. Bundestag recherchiert. Zurzeit regiert eine Koalition aus CDU/CSU und SPD. Vor der Wahl hat im 15. Bundestag

Mehr

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges an Stationen Übungsmaterial zu den Bildungsstandards Downloadauszug aus dem Originaltitel: an Stationen Übungsmaterial zu den Bildungsstandards Dieser Download ist ein

Mehr

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen Schulcurriculum Mathematik Hauptschule Klassse 8 Hauptschule Lehrwerk: Maßstab Band 8 Verlag: Schrödel ISBN: 3-507-84304-8 Inhalte Medien e gemäß Kerncurriculum Thema 1 LB S. 8-21 Zahlen und Größen Addition

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Hinweise für das Fach Mathematik

Hinweise für das Fach Mathematik Kompetenztest für Schülerinnen und Schüler der Klassenstufe 6 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Hinweise für das Fach Mathematik Inhalt: -

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Sich gegenseitig prüfen Tandembögen. Irmgard Letzner, Berlin. M 1 Auf dem Weg zum Rechenmeister die Grundrechenarten

Sich gegenseitig prüfen Tandembögen. Irmgard Letzner, Berlin. M 1 Auf dem Weg zum Rechenmeister die Grundrechenarten S Sich gegenseitig prüfen Tandembögen Irmgard Letzner, Berlin M Auf dem Weg zum Rechenmeister die Grundrechenarten Addition, Subtraktion, Multiplikation und Division alles noch präsent? Hier trainierst

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Teilen leicht gemacht - Teilbarkeit, Teiler und Vielfache natürlicher Zahlen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Teilen leicht gemacht - Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Teilen leicht gemacht - Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Das komplette Material finden Sie hier: School-Scout.de

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Neue Aufgabenformen in der Mathematik. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Neue Aufgabenformen in der Mathematik. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Neue Aufgabenformen in der Mathematik Das komplette Material finden Sie hier: School-Scout.de Thema: Neue Aufgabenformen in der Mathematik

Mehr

Stationenlernen Raumgeometrie

Stationenlernen Raumgeometrie Lösung zu Station 1 a) Beantwortet die folgenden Fragen. Begründet jeweils eure Antwort. Frage 1: Hat jede Pyramide ebenso viele Ecken wie Flächen? Antwort: Ja Begründung: Eine Pyramide mit einer n-eckigen

Mehr

Schulinternes Curriculum im Fach Mathematik Hauptschule (Jahrgang 7-9) (zur Erprobung) Stand: 02/2016

Schulinternes Curriculum im Fach Mathematik Hauptschule (Jahrgang 7-9) (zur Erprobung) Stand: 02/2016 Schulinternes Curriculum im Fach Mathematik Hauptschule (Jahrgang 7-9) (zur Erprobung) Stand: 02/2016 1 Horizontale und vertikale Steuerung der Kompetenzanbahnung Fach: Mathematik/ Hauptschule Jahrgangsstufe:

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Übungsserie 1: Würfel und Quader

Übungsserie 1: Würfel und Quader Kantonsschule Solothurn Stereometrie RYS Übungsserie 1: Würfel und Quader 1. Berechne die fehlenden Quadergrössen: a b c V O a) 7 cm 11 cm 3 cm b) 8 mm 12.5 cm 45 cm 3 c) 3 cm 4 cm 108 cm 2 d) 54 cm 16.4

Mehr

Mathematik Klasse 6. Übungsbausteine mit Kompetenzerwerb, abgestimmt auf das Leitbild der Schule Verantwortungsbereitschaft.

Mathematik Klasse 6. Übungsbausteine mit Kompetenzerwerb, abgestimmt auf das Leitbild der Schule Verantwortungsbereitschaft. Mathematik Klasse 6 Inhalt/Thema von Maßstab Band 2 1. Fit nach den Sommerferien Runden und Überschlagen Große Zahlen Zahlen am Zahlenstrahl Rechnen mit Größen Schriftliche Rechenverfahren 2. Brüche und

Mehr

Stoffverteilungsplan Mathematik 5 für den G9-Zweig

Stoffverteilungsplan Mathematik 5 für den G9-Zweig Stoffverteilungsplan Mathematik 5 für den G9-Zweig prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lehrbuch Argumentieren / Darstellungen (Text, Bild, Tabelle) mit eigenen Worten Begriffe, Regeln

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Mit Tangram Flächen vergleichen ein entdeckender Zugang. Christian van Randenborgh, Bielefeld. Wie du ein Tangram selbst herstellst (Hausaufgabe)

Mit Tangram Flächen vergleichen ein entdeckender Zugang. Christian van Randenborgh, Bielefeld. Wie du ein Tangram selbst herstellst (Hausaufgabe) S 1 Mit Tangram Flächen vergleichen ein entdeckender Zugang Christian van Randenborgh, Bielefeld M 1 Wie du ein Tangram selbst herstellst (Hausaufgabe) So geht s Bastelanleitung Male jede Fläche in einer

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

Stoffverteilungsplan Mathematik Klasse 5 RS,

Stoffverteilungsplan Mathematik Klasse 5 RS, Stoffverteilungsplan Mathematik Klasse 5 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Die natürlichen Zahlen Unsere neue Klasse 1 Strichlisten und Diagramme

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 5 Reihen- Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen folge Die Schülerinnen und Schüler

Mehr

Daten erfassen und darstellen

Daten erfassen und darstellen MAT 05-01 Leitidee: Daten und Zufall Daten erfassen und darstellen Thema im Buch: Meine Klasse und ich - Zahlenangaben sammeln und vergleichen Daten in Ur-, Strichlisten und Häufigkeitstabellen zusammenfassen.

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr