2 Kryptografie. Kryptografie in unserer Welt. Ein namhaftes Werk zur deutschen Rechtschreibung schreibt in seiner Auflage von 2006 das Folgende:

Größe: px
Ab Seite anzeigen:

Download "2 Kryptografie. Kryptografie in unserer Welt. Ein namhaftes Werk zur deutschen Rechtschreibung schreibt in seiner Auflage von 2006 das Folgende:"

Transkript

1 2 Kryptografie Abb. 2.1 Anzapfen der Kommunikation nützt nichts Kryptografie in unserer Welt Ein namhaftes Werk zur deutschen Rechtschreibung schreibt in seiner Auflage von 2006 das Folgende: Kryp to gra fie, die;-,...ien (Psychol. absichtslos entstandene Kritzelzeichnung bei Erwachsenen; Disziplin der Informatik; veraltet für Geheimschrift) Dieselbe arg unvollkommene Definition enthält das Fremdwörterbuch desselben Verlages, aber auch das Rechtschreibwerk eines anderen großen Herstellers. Der Brockhaus allerdings beschreibt Kryptografie und Kryptologie in seiner Auflage von 1990 schon zutreffend als die Lehre von der Entwicklung und Bewertung von Verschlüsselungsverfahren zum Schutz von Daten. Jedenfalls steckt das griechische Wort kryptikos darin, das verborgen, geheim heißt. Kryptografie ist also das verborgene Schreiben und Kryptologie heißt die Lehre vom Geheimen. Zusammen trifft dies den Sachverhalt auch wirklich. Heute hat sich Kryptografie als allgemeine Bezeichnung durchgesetzt. Beutelspacher et al. formulieren in ihrem Buch [Beutelspacher 2005]denSatz: Kryptografie ist eine öffentliche mathematische Wissenschaft, in der Vertrauen geschaffen, übertragen und erhalten wird. Genau hier liegen die Ziele dieses Kapitels: Sie die Öffentlichkeit sollen so viel verstehen können, dass Sie nicht blind vertrauen müssen. Springer-Verlag Berlin Heidelberg 2016 D. Haftendorn, Mathematik sehen und verstehen, DOI / _2

2 10 2. Kryptografie 2.1 Die alte und die neue Kryptografie Vermutlich haben Menschen schon immer Nachrichten ausgetauscht, die nicht jeder erfahren durfte. Einige einfallsreiche Verfahren der abendländischen Geschichte sind bekannt. Bei der griechischen Skytala wurde ein langes Band um einen Stab gewickelt und dann in Längsrichtung des Stabes beschriftet. Nach dem Abwickeln erschienen die Buchstaben in nicht zu deutender Reihenfolge auf dem Band. Wer aber den passenden Stab hatte, wickelte das Band wieder auf und las bequem die Nachricht. Verschlüsselungen mit Alphabetverschiebung haben eine lange Tradition und sind immer mehr verfeinert worden (dazu mehr im nächsten Absatz). Bei uninformierten Gegenspielern nützte schon das Verwenden erfundener Zeichen anstelle der Buchstaben. Beliebt waren auch immer wieder unsichtbare Tinten, die durch chemische Prozesse sichtbar gemacht werden konnten. Immer aber mussten im Vorhinein Vereinbarungen zwischen Sender und Empfänger der verschlüsselten Nachricht getroffen werden, deren Kenntnis zum Entschlüsseln notwendig war, aber in unberechtigte Hände gelangen konnten. Hier lag die entscheidende Schwachstelle der alten Kryptografie. Bis in die siebziger Jahre des 20. Jahrhunderts konnte man sich eine durchgreifende Lösung dieses Problems auch nicht vorstellen. Seitdem aber gibt es die Kryptografie mit öffentlichen Schlüsseln. Jeder darf diese Schlüssel kennen, auch ein potenzieller Angreifer, der unerlaubt das kryptografische Geheimnis ausspähen will. Dieser Mister X, so wird er oft bezeichnet, darf sogar genau das Verfahren kennen, nach dem Sender und Empfänger vorgehen. Da heute immer Computer im Spiel sind, besteht auch die Sorge, das Anzapfen der Leitungen könnte Mister X etwas nützen. Aber auch das nützt ihm rein gar nichts. Voraussetzung ist allerdings, dass Sender und Empfänger das entsprechende kryptografische Protokoll sinnvoll befolgen, und nicht etwa ihre privaten Schlüssel für jemand anderen zugänglich machen. Auch der Kommunikationspartner, mit dem ein Geheimnis geteilt werden soll, erfährt niemals die privaten Schlüssel. Ein Mindestmaß an Einsicht, was bei der Ver- und Entschlüsselung geschieht, wird deshalb sicher hilfreich sein. Bei der Public-Key-Kryptografie wird mit öffentlichen Schlüsseln die in eine Zahl umgewandelte Nachricht auf besondere Weise verrechnet. Dabei spielen große Primzahlen mit mehr als 150 Stellen eine Rolle. Mit kleinen Primzahlen wie 17 oder 23 sind das Vorgehen und das besondere Rechnen durchaus verstehbar. In diesem Kapitel unternehmeich den Versuch, Ihnendie moderne Kryptografie verständlich zu machen Alphabetische Verschlüsselung Wir werden zunächst die alphabetische Verschlüsselung verfeinern und verwandeln, damit Sie die von der alten Kryptografie nicht überwundene Hürde besser verstehen. Um militärische Informationen geheim zu übermitteln, verwendete Cäsar eine einfache Verschlüsselungsidee: Das Alphabet wurde, wie in Abb. 2.2 gezeigt, um einige Buchstaben verschoben. Die Information, dass aus dem A ein L wird, reichte schon aus, um aus dem Wort MATHE den Geheimtext XLESP zu machen. So konnte dann ein Bote mit einer geheimen Nachricht von VZPWY nach ECTPC reiten. Wenn dem Gegner, der

3 2.1 Die alte und die neue Kryptografie 11 Abb. 2.2 Monoalphabetische Verschlüsselung einen solchen Boten abfing, dieses Prinzip der monoalphabetischen Verschlüsselung bekannt war, konnte er spätestens nach 25 Versuchen den Text lesen. Unsere Computer könnten gleich alle möglichen Rückübersetzungen nennen und der Nutzer wählt die einzige leserliche aus. Ein weiterer Erfolg versprechender Angriff kann über die Buchstabenhäufigkeit erfolgen. Im Deutschen ist E der bei Weitem häufigste Buchstabe. Es folgen N und R. Bei den obigen verschlüsselten Wörtern kommen P und C am häufigsten vor, es könnte sich um E, N oder R handeln. So ist es ja auch. Die Kurzworte IN, AN, UND, AUF,... sind in Kryptogrammen leicht kenntlich, so dass man ohne Wortgrenzen verschlüsseln muss. Damit kann man die Sicherheit ein Abb. 2.3 Vigenère-Quadrat, polyalphabetische Verschlüsselung

4 12 2. Kryptografie wenig erhöhen, bei längeren Geheimtexten kommt man aber dennoch leicht zur Entschlüsselung. Eine bessere Idee sind polyalphabetische Verschlüsselungen. Vigenère schlägt um 1550 die Verwendung eines Buchstabenquadrates vor. Betrachten Sie Abb Ein Schlüsselwort gibt Buchstabe für Buchstabe an, mit welcher Zeile der Klartext verschlüsselt werden soll. Hier wird wegen GALLIA als Erstes die Zeile verwendet, bei der das schwarze G unter dem roten A steht. Damit wird der Klartextbuchstabe K in Q umgewandelt. Als Verständnishilfe sind oben die ersten Schritte nummeriert. So ergibt sich: K L E O P A T R A C O R M E U M Q L P Z X A X J T Q A E U W X U WennKleopatra nunweiß, dasssiedenanfang desbuchesde bello gallico von Cäsar als Schlüsselwort nehmen soll, kann sie das Kryptogramm lesen. Die Vigenère-Verschlüsselung kann bei kurzen Schlüsselwörtern, die dann immer wiederholt werden, recht einfach geknackt werden. Zuerst versucht man die Blöcke zu bilden, die die Länge des Schlüsselwortes haben. Dann nimmt man wieder die Häufigkeitsanalyse. Besonders wegen der Unterstützung durch Computer gilt die polyalphabetische Verschlüsselung mit kurzen Schlüsselwörtern als unsicher. Wenn man aber als Schlüssel den Text aus Cäsars Buch immer weiter fortlaufend verwendet, dann klappt dieser Angriff nicht. Noch besser wäre es, statt des Buchtextes eine zufällige Buchstabenfolge zu nehmen. Leider müssen dann aber Sender und Empfänger dieselbe Folge haben. Das ist schwer zu bewerkstelligen. Nimmt man Zahlen statt Buchstaben, kann man leichter zufällige Folgen bilden und übermitteln, wie wir unten sehen werden. Um einen Text in Zahlen zu übersetzen, kann man einfach dasselbe Verfahren verwenden, das sowieso bei unseren Computern üblich ist. Der sogenannte ASCII-Code (American Standard Code for Information Interchange) reicht in seinem Grundtyp bis zur Nummer 127. Hier ist von der ASCII- Nummer die Zahl 28 abgezogen, damit die Verschlüsselung mit zweistelligen Zahlen möglich ist. Mit höheren Nummern als sie Abb. 2.4 entsprechen folgen noch die Kleinbuchstaben und andere Zeichen. Abb. 2.4 ASCII-Code minus 28 Nun verschlüsseln wir mit Abb. 2.5 die Ziffern einzeln. Sei m die Nachricht (message), als Wort istes RABE, s der Schlüssel und c die verschlüsselte Nachricht (ciphertext), der Code. Die Vorgehensweise ist eigentlich dieselbe wie beim Vigenère-Quadrat aus Abb. 2.3, nur haben wir es jetzt durch die Zahlen bequemer als mit den Buchstaben. Wir müssennur einzeln zu jeder Ziffer der Nachricht m die darunter stehende Ziffer des Schlüssels addieren und dabei die Zehnerüberträge ignorieren. Man nennt dieses Vorgehen auch Addition modulo 10.InAbschnitt2.3 widmen wir uns ausführlich dem modulo-rechnen.

5 2.1 Die alte und die neue Kryptografie 13 Abb. 2.5 Vigenère-Quadrat mit Zahlen Bemerkenswert ist, wie sich das antike Alphabetverschieben in ein mathematisches Vorgehen verwandelt hat Verschlüsseln mit dem One-Time-Pad Die verschlüsselte Nachricht könnte der Angreifer gern abfangen, sie enthält für jemanden, der den Schlüssel nicht kennt, keinerlei Information. Denn jede andere Nachricht m kann bei passendem Schlüssel s genau diese verschlüsselte Nachricht c ergeben. Machen Sie sich anhand der Abb. 2.6 klar, dass zur Textnachricht MAUS ein Schlüssel s konstruiert werden kann, der auch zu c führt. Abb. 2.6 Auch MAUS wird zum Code von RABE Hier ist der Schlüssel acht Stellen lang und das Verfahren kann Worte mit vier Buchstaben unknackbar verschlüsseln. Bleibt man auch bei längeren Nachrichten bei einem so kurzen Schlüssel, so kann ein Angreifer die Schlüssellänge herausbekommen und dann doch mit der Beachtung der Buchstabenhäufigkeiten Erfolg haben. Also nimmt man keine kurzen Schlüssel.

6 14 2. Kryptografie Das One-Time-Pad ist eine Verschlüsselungsmethode, bei der jede Schlüsselziffer nur einmal zum Verschlüsseln einer Ziffer der Nachricht verwendet wird. Abb. 2.7 One-Time-Pad als Abreißkalender Wenn jeder Schlüssel möglich ist, ist das One-Time-Pad mit unserer obigen Überlegung als sicher nachgewiesen. Die Zahlenfolge für den Schlüssel muss so lang sein wie die Nachricht. Und der Angreifer darf keine Schlüsselziffer vorhersagen können. Stellen Sie sich vor, zufällige Schlüsselziffern stünden auf einem Abreißkalender wie in Abb. 2.7, dessen Blätter Sie einzeln verwenden und dann wegwerfen. Nun widmen wir uns der Schwierigkeit, dass der Empfänger eine identische Kopie dieses Abreißkalenders braucht. Quasizufällige Zahlenfolgen kann man mit Computern leicht erzeugen. Mit quasizufällig meint man, dass die Zahlenfolge für einen Angreifer nicht erratbar ist, dass sie aber in Wahrheit durch einen Algorithmus, ein Rechenverfahren, erzeugt wird. Es eignen sich z. B. die Ziffern der Kreiszahl π von irgendeiner Startstelle aus, sagen wir ab der Stelle Die beiden Kommunikationspartner starten dann die π-berechnung oder allgemeiner einen Zufallszahlengenerator an derselben Stelle. Nun haben wir also den identischen Abreißkalender mit zufällig erscheinenden Ziffern, aber es bleibt noch das Problem, wie die Startstelle unangreifbar sicher übermittelt werden kann. Genau hier kommt die alte Kryptografie nicht weiter haben Diffie und Hellman das Problem der sicheren Schlüsselvereinbarung gelöst, wie Sie in Abschnitt sehenundverstehen können.damitistdas Zeitalter der modernen Kryptografie eingeläutet, die sich vollständig von der Idee der verborgenen Muster löst undals Werkzeuge große Primzahlenund das modulo-rechnen etabliert. 2.2 Primzahlen Ein natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler hat, nämlich die 1 und sich selbst. Damit ist 2 die kleinste Primzahl und auch die einzige gerade Zahl unter den Primzahlen. Alle anderen geraden Zahlen haben ja die 2 als dritten möglichen Teiler. Die nachfolgenden Primzahlen sind 3, 5, 7, 11, 13, 17, 19,..., dabei sagen die drei Pünktchen nur, dass noch weitere Primzahlen folgen. Nicht gemeint ist, dass nun die 21 folgt,

7 2.2 Primzahlen 15 es gilt nämlich 21 = 3 7, und 21 ist daher keine Primzahl. Es gibt gar keine nützliche Formel zur Erzeugung der Primzahlenfolge. Man kann sich nur die Primzahlkandidaten ansehen und dann auf irgendeine Weise entscheiden, ob es sich um eine Primzahl handelt oder nicht. Bei 35 sieht man es sofort. Bei meiner Autonummer 731 ist es schon weniger intuitiv zu sehen, mit Suchen findet man 731 = 17 43, also ist 731 keine Primzahl. Bei großen Zahlen wird es immer schwieriger Faktoren zu finden Faktorensuchen ist schwer Was heißt hier große Zahlen? In der Kryptografie werden Zahlen von etwa 300 Stellen Länge verwendet. Überlegen wir, wie viele Prüfungen man wohl braucht, um eine große Zahl in der Nähe von in Faktoren zu zerlegen. Wenn die Zahl ungerade ist, braucht man keine geraden Zahlen als mögliche Faktoren mehr zu testen. Man hat aber immer noch Kandidaten. Vielleicht reduziert sich die Zahl der möglichen Faktoren erheblich, wenn man nur Primzahlen als Testkandidaten nimmt? Das ist aber nicht der Fall, denn nach einer Abschätzung von Euler gibt es unterhalb einer großen Zahl x etwa x ln(x) Primzahlen. Hier ist ln (10300 ) 690, also reduziert sich die Zahl durch diesen Gedanken nur um 3 Zehnerpotenzen auf Dabei ist noch unberücksichtigt, dass man für die Testzahlen erstmal wissen muss, ob sie Primzahlen sind oder nicht. Ein weiterer Reduzierungsgedanke ist, dass man nur bis zur Wurzel der zu testenden Zahl prüfen muss. Bei meiner Autonummer 713 wäre das ,05. Tatsächlich hat man durch Suchen den Primfaktor 17 kleiner als 27 gefunden, der andere Primfaktor 43 ergibt sich dann durch Division. Wenn nämlich x = a b gilt, dann sind entweder die beiden Faktoren gleich und damit gleich der Wurzel aus x oder einer der Faktoren ist 10 kleiner als diese Wurzel. Es gibt nun also ungefähr 150 ln( ) Primzahlen kleiner als die Wurzel aus Diese muss man aber bei dem vorgestellten Suchverfahren nun wirklich testen. Überlegen wir, wie lange das dauert. Gehen wir davon aus, dass ein Computer Prüfungen pro Sekunde ausführen kann. Dann schafft er bei Dauerbetrieb im Jahr Prüfungen. Damit würde dieser Computer etwa ( ) = = Jahre brauchen. Die Astronomen geben das Alter unserer Welt seit dem Urknall mit Jahren an. Wenn jeder Mensch vom Baby in China bis zum Greis in Island einen solchen Computer für diese Prüfung beisteuern würde und reiche Menschen sogar zwei, kämen wir vielleicht auf zehn Milliarden solcher Computer. Wenn dann auch noch jeder Computer 1000-mal so schnell wie die heute schnellstenwäre,danndürftenwirvonder128nureine13abziehen.derzeitbedarf bleibt aberwitzig lang. Das Suchen von Faktorisierungen durch diese Art von Testen kann bei den Zahlen, die in der Kryptografie verwendet werden, nicht klappen. Allenfalls könnten sich die Mathematiker bessere Verfahren ausdenken. Das haben sie nach Kräften getan, aber sie sind dabei nicht drastisch genug besser geworden. Zurzeit sind die Mathematiker der Ansicht, dass Faktorisieren zu der großen Gruppe der nicht effizient lösbaren Probleme zählt. Mehr über Berechenbarkeit könnensie in Abschnitt 8.6 erfahren.

8 16 2. Kryptografie Die Menge der Primzahlen Bis jetzt habe ich Ihnen noch nicht gezeigt, wozu man die Primzahlen braucht. Das kann auch erst wirklich deutlich werden, wenn wir in Abschnitt 2.5 zu deneigentlichenverfahren der modernen Kryptografie kommen. Primzahlen spielten schon im Altertum eine Rolle. Überliefert von dem griechischen Mathematiker Euklid (um 300 v. Chr.) ist folgender Satz: Satz 2.1: Primzahlsatz von Euklid Es gibt unendlich viele Primzahlen. Die Denkweise des Euklid hat das Denken der Mathematiker über mehr als 2000 Jahre geprägt. Daher möchte ich Ihnen seinen Beweis nicht vorenthalten. Er führt diesen Beweis indirekt. Bei einem indirekten Beweis nimmt man zu Beginn des Beweises das Gegenteil der Behauptung an und erzeugt dann auf logischem, unanfechtbarem Weg einen Widerspruch. Indirekter Beweis des Primzahlsatzes Wenn es nur endlich viele Primzahlen gibt, dann denken wir uns alle in eine endliche Liste geschrieben. Wir bilden eine Zahl m, indem wir das Produkt aller Zahlen der Primzahlliste bilden und dann noch eine 1 addieren. Die Zahl m ist dann durch keine der verwendeten Primzahlen teilbar. Das ist klar, denn wenn wir z. B. ein Vielfaches von 7 haben, erreichen wir das nächste Vielfache von 7 erst, wenn wir 7 hinzuzählen. Addieren wir nur 1, ist die Zahl nicht durch 7 teilbar. Für die obige Zahl m gibt es nun nur zwei Möglichkeiten: 1. Sie ist nicht in Faktoren zerlegbar. Dann ist sie aber eine Primzahl, die nicht in unserer angeblich vollständigen Liste ist. 2. Sie ist in Faktoren zerlegbar. Diese Faktoren, die sicher beide kleiner sind als m,können dann aber auch keine Primzahlen unserer Liste als Teiler haben. Für sie gibt es wieder nur die zwei Möglichkeiten 1. und 2. Da wir nur endlich viele natürliche Zahlen für die immer kleiner werdenden Faktoren zur Verfügung haben, endet diese Überlegung schließlich immer bei Nummer 1. Also gibt es immer mindestens noch eine Primzahl, die nicht in unserer angeblich vollständigen Liste ist. Das ist ein Widerspruch. Damit existiert niemals eine vollständige endliche Liste von Primzahlen. q. e. d. Übrigens ist q. e. d. die Abkürzung der lateinischen Worte quod erat demonstrandum, zu Deutsch: was zu beweisen war. Die Erkenntnisse über Primzahlen und die Teilbarkeit der anderen ganzen Zahlen gehören zu dem mathematischen Arbeitsgebiet der Zahlentheorie. Dabeisinddie ganzen Zahlen Z ={... 2, 1, 0, 1, 2, 3...} gemeint. Das Wort teilbar bezieht sich in der Zahlentheorie ausschließlich auf das Teilen ohne Rest. Bruchrechnung kommt in der Zahlentheorie also nicht vor.

9 2.3 Restklassen modulo n 17 Satz 2.2: Fundamentalsatz der Zahlentheorie Jede ganze Zahl hat ihre eindeutig bestimmte Zerlegung in Primfaktoren. Die Reihenfolge der Faktoren ist unwesentlich. Anstelle eines Beweises machen wir uns klar, was dieses beispielhaft bedeutet. Die folgenden Zahlen können auf die angegebene Weise in Primfaktoren zerlegt werden und anders nicht: 731 = 17 43, = , 360 = Wenn ich von einer Zahl weiß, dass sie durch 2 und auch durch 5 teilbar ist, dann enthält ihre Primfaktorzerlegung mindestens eine 2 und eine 5, also hat die Zahl am Ende mindestens eine 0. Wenn ein Produkt a b von einer Primzahl, sagen wir der 7, geteilt wird, dann enthält mindestens einer der Faktoren diese Primzahl, also die 7. So ein Satz gilt nicht für Nichtprimzahlen. Wenn ein Produkt a b von 6 geteilt wird, dann muss nicht einer der Faktoren von 6 geteilt werden: 18 = 2 9, aber weder 2 noch 9 werden von 6 geteilt, obwohldie18von6geteiltwird.auf der Website gibt es eine interaktive Datei, die Ihnen jede (vernünftige) Zahl in Primfaktoren zerlegt. Es gibt viele einfach zu verstehende Aussagen der Zahlentheorie. Zum Teil sind sie Schulstoff für elfjährige Kinder. Andererseits gibt es gerade in der Zahlentheorie etliche noch unbewiesene Vermutungen. Die für die Kryptografie wichtigste ist die Riemannsche Vermutung über die Verteilung der Primzahlen. Seit ihrer Formulierung durch Bernhard Riemann Mitte des 19. Jahrhunderts trotzt sie allen Beweisanstrengungen. Seit dem Jahr 2000 winken demjenigen, der sie beweist, eine Million Dollar. Oben wurde gezeigt, dass das Finden der Primfaktorzerlegung für große Zahlen i. A. schwer ist. Will man lediglich mit hoher Wahrscheinlichkeit entscheiden, ob eine Zahl Primzahl ist oder nicht, gibt es zum Glück auch Primzahltests, die nicht auf der Faktorzerlegung von Zahlen beruhen. Einen davon werden wir auf Seite 27 kennenlernen. 2.3 Restklassen modulo n Sie sehen in Abb. 2.8 die Zahlen 0, 1, 2, 3, 4 an die Punkte eines Kreises geschrieben. Stellen Sie sich einen Mathekäfer vor, der bei 0 startet und auf dem Fünfeck zur 1, dann zur 2, 3 und 4 krabbelt. Wenn er nach der 4 wieder bei 0 ankommt, ist er fünf Strecken gelaufen, daher steht neben der 0 noch eine kleine 5. Bei seinem nächsten 0-Durchgang ist er 10, dann 15,... Strecken gelaufen. Wenn er rückwärts läuft und diese Strecken auch negativ zählt, dann kommen die Zahlen 5, 10,... auch bei den 0-Durchgängen vor. Ebenso kann man all die anderen Zahlen deuten. Wenn er bei der 2 vorbeikommt, isterentwedersiebenstreckengelaufenoder12oderdreirückwärtsusw. Die 2 entsteht bei allen diesen Zahlen als Rest, wenn man vollständige Runden nicht berücksichtigt. Die Zahlen {2,7,12,17,..., 3, 8,...} heißen darum die Restklasse der 2 in diesem Fünfeck oder die Restklasse der 2 modulo 5.

10 18 2. Kryptografie Abb. 2.8 Visualisierung der Restklassen modulo 5 In diesem Abschnitt zeige ich Ihnen ausführlich das modulo-rechnen,dasmanfür die Kryptografie unbedingt braucht. Hier ist die Idee: Man rechnet wie immer und nimmt als Ergebnis aber die Zahl am entsprechenden roten Punkt. Das ist die kleinste positive Zahl in derselben Restklasse. Also , in Worten: (3+4) modulo 5 ist gleich 2. Bevor wir in die Einzelheiten 5 5 gehen, kommt die Programmvorschau Vorschau auf die kryptografischen Rechnungen Es wird in der Kryptografie in so einem Kreis wie in Abb. 2.8 gerechnet. Er hat aber nicht fünf, sondern n Punkte und n ist unvorstellbar groß, in der Größenordnung Auf einen Kreisrand, der unser bekanntes Universum umfassen könnte, passen allenfalls Atome. Wäre das Universum eine Kugel voller Atome, kämen wir uns gäbe es dann gar nicht auch erst auf die Größenordnung von Atomen. Das lateinische Wort potentia heißt Macht und es ist schon erstaunlich, dass wir eine Potenz wie so einfach hinschreiben können, obwohl die Größe solcher Zahlen unsere menschliche Vorstellungskraft sprengt. Vorstellen im Sinne von vor uns hinstellen können wir uns das nicht. Aber mit mathematischem Denkwerkzeug bezwingen wir diese Riesigkeit, sogar noch Potenzen dieser Zahlen. Als Vorschau zeige ich Ihnen einen typischen Vorgang, dessen Richtigkeit Sie jetzt überhaupt noch nicht verstehen können. Zunächst die formelmäßige Darstellung: Berta: c n m e Anton: c d n (m e ) d n m Nun dasselbe als Text: Berta will eine Nachricht m an Anton senden. Sie nimmt Antons öffentliches Schlüsselpaar (n, e). Sie rechnet modulo n die e-te Potenz von m aus und sendet das Ergebnis c an Anton. Dieser potenziert modulo n das c mit seinem privaten Schlüssel d und kann dann m lesen. Wenn ich Ihnen also in den folgenden Abschnitten das modulo-rechnen,besonders das Potenzieren und die Inversenbildung, vorstelle und wenn Sie den mit kleinen Zah-

11

Mathematik sehen und verstehen

Mathematik sehen und verstehen Mathematik sehen und verstehen Schlüssel zur Welt Bearbeitet von Dörte Haftendorn 1. Auflage 2010. Taschenbuch. x, 341 S. Paperback ISBN 978 3 8274 2044 2 Format (B x L): 16,8 x 24 cm Weitere Fachgebiete

Mehr

9. Einführung in die Kryptographie

9. Einführung in die Kryptographie 9. Einführung in die Kryptographie Grundidee: A sendet Nachricht nach B über unsicheren Kanal. Es soll verhindert werden, dass ein Unbefugter Kenntnis von der übermittelten Nachricht erhält. Grundbegriffe:

Mehr

PRIMZAHLEN PATRICK WEGENER

PRIMZAHLEN PATRICK WEGENER PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

Mathematik für alle. Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2014

Mathematik für alle. Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2014 Mathematik für alle 1 Mathematik für Kinder Kroptografie auf der Kinderseite einer Kundenzeitung 2 Mathematik echt leicht 3 Cäsarcode, Urtyp der Kryptografie Schlüssel- Buchstabe MATHE über das A stellen

Mehr

Mathematik für alle. Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2015

Mathematik für alle. Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2015 Mathematik für alle 1 Mathematik für Kinder Kroptografie auf der Kinderseite einer Kundenzeitung 2 Mathematik echt leicht 3 Cäsarcode, Urtyp der Kryptografie Schlüssel- Buchstabe MATHE über das A stellen

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

U. Rausch, 2010 Ganze Zahlen 1

U. Rausch, 2010 Ganze Zahlen 1 U. Rausch, 2010 Ganze Zahlen 1 Ganze Zahlen 1 Einleitung Als ganze Zahlen bezeichnet man die natürlichen Zahlen 1, 2,, 4,..., die Null 0 und die negativen ganzen Zahlen 1, 2,, 4,... Wir verabreden die

Mehr

Kryptographische Grundlagen

Kryptographische Grundlagen Kryptographische Grundlagen Bernhard Lamel Universität Wien, Fakultät für Mathematik 10. Mai 2007 Outline 1 Symmetrische Verschlüsselung 2 Asymmetrische Verschlüsselung 3 Praxis Verschlüsseln und Entschlüsseln

Mehr

MATHE MATHE DRKYV. Mathematik für alle. Mathematik für Kinder. Mathematik echt leicht. Cäsarcode, Urtyp der Kryptografie. Cäsarcode Bastelanleitung

MATHE MATHE DRKYV. Mathematik für alle. Mathematik für Kinder. Mathematik echt leicht. Cäsarcode, Urtyp der Kryptografie. Cäsarcode Bastelanleitung Mathematik für alle Mathematik für Kinder Kroptografie auf der Kinderseite einer Kundenzeitung 1 2 Mathematik echt leicht Cäsarcode, Urtyp der Kryptografie Schlüssel- Buchstabe über das A stellen Kryptogramm-Buchstaben

Mehr

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :

Mehr

Kap. II: Kryptographie

Kap. II: Kryptographie Chr.Nelius: Zahlentheorie (SoSe 2017) 39 Kap. II: Kryptographie 9. Allgemeines und Beispiele Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Das RSA-Verfahren - Einsatz von Standardalgorithmen in der Kryptologie

Das RSA-Verfahren - Einsatz von Standardalgorithmen in der Kryptologie Das RSA-Verfahren - Einsatz von Standardalgorithmen in der Kryptologie 2 Verschlüsseln durch modulares Rechnen modulares Addieren modulares Multiplizieren modulares Potenzieren Verschlüsselung mit öffentl.

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Kryptografie Die Mathematik hinter den Geheimcodes

Kryptografie Die Mathematik hinter den Geheimcodes Kryptografie Die Mathematik hinter den Geheimcodes Rick Schumann www.math.tu-freiberg.de/~schumann Institut für Diskrete Mathematik und Algebra, TU Bergakademie Freiberg Akademische Woche Sankt Afra /

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Kryptografie & Kryptoanalyse. Eine Einführung in die klassische Kryptologie

Kryptografie & Kryptoanalyse. Eine Einführung in die klassische Kryptologie Kryptografie & Kryptoanalyse Eine Einführung in die klassische Kryptologie Ziele Anhand historischer Verschlüsselungsverfahren Grundprinzipien der Kryptografie kennen lernen. Klassische Analysemethoden

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Kryptographie. Katharina

Kryptographie. Katharina Kryptographie Katharina Definition Kryptographie (kryptos=geheim; gráphein=schreiben), =Wissenschaft zur Verschlüsselung von Informationen Ziel: die Geheimhaltung von Informationen Kryptographie, Kryptoanalyse

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

2. Primzahlen. 2.1 Definition, Eigenschaften. Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat.

2. Primzahlen. 2.1 Definition, Eigenschaften. Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat. 1 2. Primzahlen 2.1 Definition, Eigenschaften Definition: Eine natürliche Zahl p heisst Primzahl, wenn p genau zwei Teiler hat. Die Folge der Primzahlen: 2, 3, 5, 7, 11,13, 17, 19, 23, 29,... Die Suche

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) WS 2016/17 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Kryptografie & Kryptoanalyse. Eine Einführung in die klassische Kryptologie

Kryptografie & Kryptoanalyse. Eine Einführung in die klassische Kryptologie Kryptografie & Kryptoanalyse Eine Einführung in die klassische Kryptologie Caesar-Verfahren Wie viele Schlüssel-Möglichkeiten gibt es beim Caesar-Verfahren? 26 (Anzahl Buchstaben des Alphabetes Anzahl

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven

Mehr

Regine Schreier

Regine Schreier Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit

Mehr

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015 Vorkurs für Studierende in Mathematik und Physik Einführung in Kryptographie Kurzskript 2015 Felix Fontein Institut für Mathematik Universität Zürich Winterthurerstrasse 190 8057 Zürich 11. September 2015

Mehr

Funktionsweise des. RSA-Verfahrens

Funktionsweise des. RSA-Verfahrens Funktionsweise des RSA-Verfahrens CrypTool-Team November 2010 Kryptografie wozu? Das Verschlüsseln von Nachrichten hat in der Geschichte der Menschheit schon immer eine wichtige Rolle gespielt. In jedem

Mehr

Public-Key-Kryptographie

Public-Key-Kryptographie Kapitel 2 Public-Key-Kryptographie In diesem Kapitel soll eine kurze Einführung in die Kryptographie des 20. Jahrhunderts und die damit verbundene Entstehung von Public-Key Verfahren gegeben werden. Es

Mehr

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e 1 Rechnen mit ganzen Zahlen Führen Sie die nachfolgenden Berechnungen aus: 1.1 a. 873 112 1718 157 3461 + b. 1578 9553 7218 212 4139 + 1.3 Berechnen Sie: a. 34 89 b. 67 46 c. 61 93 d. 55 11 e. 78 38 1.2

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

1. KRYPTOLOGIE UND ÖFFENTLICHE SCHLÜSSEL 1

1. KRYPTOLOGIE UND ÖFFENTLICHE SCHLÜSSEL 1 1. KRYPTOLOGIE UND ÖFFENTLICHE SCHLÜSSEL 1 1. Kryptologie und öffentliche Schlüssel 1.1. Verschlüsselung mit Alphabeten Eine beliebte Methode der Verschlüsselung (vor allem unter Kindern) ist es, sich

Mehr

Kryptologie Teil 1: Klassische Kryptologie

Kryptologie Teil 1: Klassische Kryptologie Proseminar Informationsübertragung Kryptologie Teil 1: Klassische Kryptologie 5.7.2006 Tobias Hildensperger Inhaltsverzeichnis 1. Begriffserklärungen 2. Geschichtliches 3. Das Prinzip der Geheimhaltung

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Vorkurs Mathematik. Vorlesung 2. Primzahlen

Vorkurs Mathematik. Vorlesung 2. Primzahlen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Vorkurs Mathematik Vorlesung 2 Primzahlen Das Sieb des Eratosthenes liefert eine einfache Methode, eine Liste von Primzahlen unterhalb einer bestimmten Größe

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 12 Man muss auch teilen können. Teilbarkeitseigenschaften Wir besprechen nun die Eigenschaft, dass eine natürliche Zahl eine

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit

Mehr

5 Stellenwertsysteme. Berechne q :=, und setze r := a q b. = 2.25, also q = 2.25 = 2 und = 3. Im Beispiel ergibt sich a b

5 Stellenwertsysteme. Berechne q :=, und setze r := a q b. = 2.25, also q = 2.25 = 2 und = 3. Im Beispiel ergibt sich a b 5 Stellenwertsysteme In diesem kurzen Kapitel werden wir uns mit der übliche Darstellung natürlicher Zahlen dem Dezimalsystem beschäftigen. Grundlage ist die Division mit Rest, die wir zunächst auf die

Mehr

Anwendungen der Linearen Algebra: Kryptologie

Anwendungen der Linearen Algebra: Kryptologie Anwendungen der Linearen Algebra: Kryptologie Philip Herrmann Universität Hamburg 5.12.2012 Philip Herrmann (Universität Hamburg) AnwLA: Kryptologie 1 / 28 No one has yet discovered any warlike purpose

Mehr

3. Vortrag: Das RSA-Verschlüsselungsverfahren

3. Vortrag: Das RSA-Verschlüsselungsverfahren Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 3. Vortrag: Das RSA-Verschlüsselungsverfahren Hendrik

Mehr

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,

Mehr

Kryptographie. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin.

Kryptographie. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin. Kryptographie Teilnehmer: Kevin Huber Philippe Gruse Vera Koldewitz Philipp Jakubahs Julian Zimmert Maximilian Werk Hermann-Hesse-Oberschule Heinrich-Hertz-Oberschule Gruppenleiter: Ulf Kühn Humboldt-Universität

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau. Über Polynome mit Arithmetik modulo m.

Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau. Über Polynome mit Arithmetik modulo m. 19 Fingerprinting Martin Dietzfelbinger Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau Anhang: Über Polynome mit Arithmetik modulo m Dieser Abschnitt ergänzt Kapitel 19 Fingerprinting

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May Kryptologie Verschlüsselungstechniken von Cäsar bis heute Inhalt Was ist Kryptologie Caesar Verschlüsselung Entschlüsselungsverfahren Die Chiffrierscheibe Bestimmung der Sprache Vigenére Verschlüsselung

Mehr

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete

Mehr

Vortrag zum Proseminar: Kryptographie

Vortrag zum Proseminar: Kryptographie Vortrag zum Proseminar: Kryptographie Thema: Oliver Czernik 6.12.2005 Historie Michael Rabin Professor für Computerwissenschaft Miller-Rabin-Primzahltest Januar 1979 April 1977: RSA Asymmetrisches Verschlüsselungssystem

Mehr

Primzahlen. 1.Einführung. Oberstufe Mathematik Projekt Unendlichkeit 2,3,5,7,9,11,13

Primzahlen. 1.Einführung. Oberstufe Mathematik Projekt Unendlichkeit 2,3,5,7,9,11,13 1.Einführung 2,3,5,7,9,11,13 Primzahlen Primzahlen sind natürliche Zahlen, die nur durch 1 und durch sich selbst aber durch sonst keine ganze positive Zahl teilbar sind. Die Zahl 1 zählt, obwohl die obige

Mehr

Der RSA-Algorithmus. 2. Anschließend ist n = p q und ϕ (n) = (p 1) (q 1) zu berechnen.

Der RSA-Algorithmus. 2. Anschließend ist n = p q und ϕ (n) = (p 1) (q 1) zu berechnen. Kapitel 4 Der RSA-Algorithmus Der RSA-Algorithmus ist das heute bekannteste Verfahren aus der Familie der Public-Key-Kryptosysteme. Es wurde 1978 der Öffentlichkeit vorgestellt und gilt bis heute als der

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18 Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

RSA (Rivest, Shamir, Adleman)

RSA (Rivest, Shamir, Adleman) Juli 2012 LB 3 Kryptographie F. Kaden 1/11 1977 von Rivest, Shamir, Adleman am MIT (Massachusetts Institut of Technology) entwickelt asymmetrisches Verschlüsselungsverfahren Ziel: email-verschlüsselung,

Mehr

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 Facharbeit Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 1 Inhaltsverzeichnis 1.) DES 2.) Das Problem der Schlüsselverteilung - Lösung von Diffie, Hellman und Merkle 3.) Die Idee der asymmetrischen

Mehr

Ausgeschriebene Informatik-Unterrichtsmitschrift (inklusive Hausaufgaben) vom 28.02.07 V.2. Valentina Tamer

Ausgeschriebene Informatik-Unterrichtsmitschrift (inklusive Hausaufgaben) vom 28.02.07 V.2. Valentina Tamer Ausgeschriebene Informatik-Unterrichtsmitschrift (inklusive Hausaufgaben) vom 280207 V2 Valentina Tamer RSA-Verschlüsselung Legende M (message) = Nachricht im Klartext p, q = (sehr große) Primzahlen N

Mehr

Proseminar Schlüsselaustausch (Diffie - Hellman)

Proseminar Schlüsselaustausch (Diffie - Hellman) Proseminar Schlüsselaustausch (Diffie - Hellman) Schlüsselaustausch Mathematische Grundlagen Das DH Protokoll Sicherheit Anwendung 23.06.2009 Proseminar Kryptographische Protokolle SS 2009 : Diffie Hellman

Mehr

schreiben, wobei p und q ganze Zahlen sind.

schreiben, wobei p und q ganze Zahlen sind. Schülerinfotag 1. Man zeige, dass keine rationale Zahl ist. Das heißt lässt sich nicht als p q schreiben, wobei p und q ganze Zahlen sind. Proof. Wir werden das Prinzip Beweis durch Widerspruch verwenden.

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Dresden, Wintersemester 2017/2018 Die revolutionäre Idee Diffie und Hellman

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte)

Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte) Universität Ulm Gerhard Baur Bianca Jaud Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag 12.01.2016 Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte) 1) Lesen Sie sich die Texte

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

Wolfgang Goethe-Universität

Wolfgang Goethe-Universität G Johann Wolfgang Goethe-Universität Geheimschriften, Online-Banking und was Mathematik damit zu tun hat R. J. W. G. Universität Frankfurt Tag der Naturwissenschaften 2007 Was dieser Vortrag darstellen

Mehr

2008W. Vorlesung im 2008W Institut für Algebra Johannes Kepler Universität Linz

2008W. Vorlesung im 2008W   Institut für Algebra Johannes Kepler Universität Linz Mathematik Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml Inhalt Definierende Eigenschaften Definition 0 ist eine natürliche Zahl;

Mehr

Der Bote. Anmerkungen erhöhtes Anforderungsniveau vorgesehene Bearbeitungszeit: 150 min

Der Bote. Anmerkungen erhöhtes Anforderungsniveau vorgesehene Bearbeitungszeit: 150 min Der Bote Anmerkungen erhöhtes Anforderungsniveau vorgesehene Bearbeitungszeit: 150 min Aufgabe Im Zeitalter des Absolutismus (17. Jahrhundert) herrscht Ludwig XIV. in Frankreich. Die Kommunikation des

Mehr

Wolfgang Goethe-Universität

Wolfgang Goethe-Universität G Johann Wolfgang Goethe-Universität Geheimschriften, Online-Banking und was Mathematik damit zu tun hat R. J. W. G. Universität Frankfurt Tag der Naturwissenschaften 2007 Was dieser Vortrag darstellen

Mehr

9. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

9. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 9. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 KATHRIN TOFALL, MICHAEL NÜSKEN Die mit * gekennzeichneten Aufgabenteile und Aufgaben sind freiwillig. Die dort erworbenen Punkte werden als

Mehr

Public-Key-Verschlüsselung und Diskrete Logarithmen

Public-Key-Verschlüsselung und Diskrete Logarithmen Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme Modulare Reduktion INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Die basiert auf einer festen ganzen Zahl m > 1, die Modulus

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Klassische Verschlüsselungsverfahren

Klassische Verschlüsselungsverfahren Klassische Verschlüsselungsverfahren Matthias Morak 10. Dezember 2008 Inhaltsverzeichnis 1 Einleitung 2 1.1 Definitionen........................................ 2 1.2 Geschichte.........................................

Mehr

6: Public-Key Kryptographie (Grundidee)

6: Public-Key Kryptographie (Grundidee) 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.

Mehr

Das RSA Verfahren. Die Mathematik von RSA. Ganzzahl Arithmetik. Die Mathematik des RSA-Verfahrens

Das RSA Verfahren. Die Mathematik von RSA. Ganzzahl Arithmetik. Die Mathematik des RSA-Verfahrens Das RSA Verfahren Das RSA-Verfahren beruht auf Modulo-Arithmetik mit riesigen ganzen Zahlen und der Berechnung modularer Potenzen bei der Verschlüsselung. Die genaue Mathematik wird in den folgenden Kapiteln

Mehr

Ideen und Konzepte der Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn

Ideen und Konzepte der Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Ideen und Konzepte der Informatik Wie funktioniert Electronic Banking? Kurt Mehlhorn Übersicht Zwecke der Techniken Symmetrische Verschlüsselung (Caesar, One-time Pad, moderne Blockchiffres, seit 2000

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

Primzahlen: vom antiken Griechenland bis in den Computer

Primzahlen: vom antiken Griechenland bis in den Computer Primzahlen: vom antiken Griechenland bis in den Computer Jakob Stix Institut für Mathematik Goethe Universität Frankfurt am Main 28 April 2016 Girls Day GU-Frankfurt Primzahlen Atome (unteilbar!) der Multiplikation:

Mehr

Bruchrechnen für Fortgeschrittene. 1. Teil. Kürzen, Erweitern Addition, Subtraktion. Zur Wiederholung oder zum Auffrischen. auf etwas höherem Niveau

Bruchrechnen für Fortgeschrittene. 1. Teil. Kürzen, Erweitern Addition, Subtraktion. Zur Wiederholung oder zum Auffrischen. auf etwas höherem Niveau Bruchrechnen für Fortgeschrittene 1. Teil Kürzen, Erweitern Addition, Subtraktion Zur Wiederholung oder zum Auffrischen auf etwas höherem Niveau Die Aufgaben aus diesem Text sind zudem in 10222 ausgelagert.

Mehr

Digitale Signaturen. Andreas Spillner. Kryptografie, SS 2018

Digitale Signaturen. Andreas Spillner. Kryptografie, SS 2018 Digitale Signaturen Andreas Spillner Kryptografie, SS 2018 Ausgangspunkt Digitale Signaturen bieten unter anderem das, was man auch mit einer eigenhändigen Unterschrift auf einem Dokument bezweckt. Beispiel:

Mehr

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind

Mehr

Teil 1. Bruchrechnen in Kurzform DEMO. Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 10

Teil 1. Bruchrechnen in Kurzform DEMO. Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 10 Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

Inhalt 2007W. Vorlesung im 2007W

Inhalt 2007W. Vorlesung im 2007W Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml Inhalt Definierende Eigenschaften 0 ist eine natürliche Zahl; Zu jeder natürlichen Zahl

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr