Kapitel 6 Folgen und Stetigkeit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 6 Folgen und Stetigkeit"

Transkript

1 Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226

2 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n und schreiben abkürzend (x n ):=(x 0,x,...,x k,...) für die Sammlung aller Bilder. x n heißt n-tes Folgenglied. Bemerkung: Manchmal macht es Sinn den Definitionsbereich einzuschränken, dieser sollte allerdings dann keine Lücken haben. Beispiele: (n) hat den Definitionsbereich 0. n hat den Definitionsbereich. hat den Definitionsbereich 5. (n+)(n 4) Mathematischer Vorkurs TU Dortmund Seite 77 / 226

3 Technisches Hilfsmittel zur Beschreibung des Verhaltens von Zahlenfolgen: Definition ("-Umgebung) Für a 2 und "> 0 heißt das o ene Intervall ]a ", a + "[= {x 2 x a <"} die "-Umgebung von a und wird mit U " (a) bezeichnet. Mathematischer Vorkurs TU Dortmund Seite 78 / 226

4 Was bedeutet Eine Folge läuft gegen einen festen Wert? Definition 6.3 (Konvergenz von Zahlenfolgen) Eine Folge (x n ) heißt konvergent gegen den Grenzwert a, wenn gilt 8" >0 9n n n 0 : x n a <". Wir schreiben: lim n! x n = a oder manchmal auch x n! a (n!) und sagen: (x n ) geht gegen a für n gegen unendlich, oder auch: (x n ) konvergiert gegen a. Satz 6.4 Eine konvergente Folge besitzt einen eindeutigen Grenzwert. 2 lim x n = a ist gleichbedeutend mit lim x n a =0. n! n! 3 Ist lim n! y n =0und 0 apple x n apple y n für alle n, so gilt lim n! x n =0. Mathematischer Vorkurs TU Dortmund Seite 79 / 226

5 Und nun halten wir noch fest, was es bedeutet, wenn eine Folge nicht konvergiert. Von Nicht-Konvergenz gibt es verschiedene Abstufungen. Definition 6.5 (Divergenz). Eine Folge, die nicht konvergent ist, heißt divergent. 2. Eine Folge (x n ) heißt uneigentlich konvergent, wenn gilt 8M 2 9n n n 0 : x n >M Wir schreiben in diesem Fall lim n! x n = oder x n!(n!). Analog macht man das für. Mathematischer Vorkurs TU Dortmund Seite 80 / 226

6 Beispiele 6.6: Jede Folge, die konstant wird (d.h. es gibt eine Zahl m 2,sodass x n = x m für alle n m), ist konvergent. 2 Die Folge n =, 2, 3,... konvergiert gegen 0. Genausoauchdie Folge (falls k>0). n k 3 Ist die Folge (x n ) uneigentlich konvergent und ist x n 6=0für alle n, so konvergiert die Folge x n gegen 0. 4 Die Folge ( ) n ist divergent. Mathematischer Vorkurs TU Dortmund Seite 8 / 226

7 Definition 6.7 (Teilfolge) Eine Teilfolge einer Folge erhält man, indem man aus ihr eine beliebige Anzahl von Gliedern weg lässt (keines, endlich oder unendlich viele), wobei aber unendlich viele Glieder übrigbleiben müssen. Satz 6.8 (Eigenschaften von Teilfolgen) Ist eine Folge konvergent gegen a, so konvergiert jede Teilfolge ebenfalls gegen a. 2 Hat eine Folge zwei Teilfolgen, die gegen unterschiedliche Grenzwerte konvergieren, dann ist die Folge divergent. Mathematischer Vorkurs TU Dortmund Seite 82 / 226

8 Satz 6.9 (Rechenregeln für konvergente Folgen) Es seien (x n ) bzw. (y n ) konvergente Folgen und außerdem sei c 2. Dann gilt lim (x n ± y n )= lim x n ± lim y n. n! n! n! 2 lim (c x n)=c lim x n. n! n! 3 lim n! (x n y n )= lim n! x n lim n! y n. 4 lim n! x n y n = lim n! x n lim n! y n (hierbei sei y n 6=0und lim n! y n 6= 0). 5 Ist x n apple y n oder x n <y n, dann gilt lim n! x n apple lim n! y n. Mathematischer Vorkurs TU Dortmund Seite 83 / 226

9 Definition 6.0 (Grenzwert einer Funktion) Es sei D eine Teilmenge und ˆx 2 D. Weiterseif : D \{ˆx}! eine Funktion. f hat in ˆx den Grenzwert ŷ wenn gilt: Für jede Folge (x n ) in D \{ˆx} mit lim n! x n =ˆx gilt lim n! f(x n)=ŷ. Man schreibt dann lim x!ˆx f(x) =ŷ. Die Definition lässt sich auch auf ˆx = ± oder ŷ = ± erweitern. Mathematischer Vorkurs TU Dortmund Seite 84 / 226

10 Definition 6. (Stetigkeit) Es sei f : D! eine Funktion auf der Teilmenge D.Dannheißt stetig in x 0 2 D, wenn lim x!x 0 f(x) =f(x 0 ) 2... stetig, wennf in jedem Punkt aus D stetig ist. Beispiele 6.2:. Die Identität und die Betragsfunktion sind stetig. 2. Die Signum-Funktion :! mit (x) := ist nicht stetig. 8 >< >: falls x>0 0 falls x =0 falls x<0 3. Die Funktion f mit f(x) = ist stetig auf ihrem Definitionsbereich x D = \{0}. 4. Die Wurzelfunktionen f : 0! 0 mit f(x) = np x für n 2 N sind stetig. Mathematischer Vorkurs TU Dortmund Seite 85 / 226

11 Satz 6.3 (Rechenregeln für Grenzwerte) Es seien f,g : D \{x 0 }! lim g(x) =b, sowiec 2 x!x 0 lim x!x 0 f(x) ± g(x) = a ± b. 2 lim x!x 0 c f(x) = c a. 3 lim x!x 0 f(x) g(x) = a b. 4 lim x!x 0 f(x) g(x) = a b Funktionen mit lim f(x) =a und x!x 0. Dann gilt (falls b 6= 0). Beispiele 6.2 [cont.]: 5. Die Potenzfunktionen sind stetig und die Polynome sind stetig. Mathematischer Vorkurs TU Dortmund Seite 86 / 226

12 Satz 6.4 Es seien f,g : D! stetig in x 0 2 D und c 2.Dannsindauch f ± g, c f, f g und f g stetig (wobei im letzten Fall g(x) 6= 0für alle x 2 D vorausgesetzt werden muss). 2 Ist f : D! stetig in x 0 2 D und g : ˆD! mit f(d) ˆD stetig in f(x 0 ) 2 ˆD, soistg f stetig in x 0. Satz 6.5 Die Winkelfunktionen und ihre Umkehrfunktionen sind stetig auf ihren Definitionsbereichen. Beispiele 6. [cont.]: 6. f : x 7! p x 2 +ist stetig. 7. x 7! arctan sin(x) ist stetig. Mathematischer Vorkurs TU Dortmund Seite 87 / 226

13 Nullstellensatz 6.6 Ist f :[a, b]! eine stetige Funktion mit f(a) f(b) < 0, so gibt es ein x 2 [a, b] mit f(x) =0. Beispiel: Das Polynom f mit f(x) =x 3 +2x 2 x 2 erfüllt f( 3) = 8 < 0 und f(2) = 2, hatalsoeinenullstellein[ 3, 2] (sogar drei: 2, und ). Zwischenwertsatz 6.7 Es sei f :[a, b]! eine stetige Funktion und es gelte f(a) 6= f(b). Dann gibt es zu jedem y zwischen f(a) und f(b) ein x 2 [a, b], sodassf(x) =y. Beispiel [cont.]: Das Polynom f mit f(x) =x 3 +2x 2 x 2 nimmt sogar jeden Wert in [ 8, 2] im Intervall [ 3, 2] an. Mathematischer Vorkurs TU Dortmund Seite 88 / 226

14 Kapitel 7 Di erenzierbarkeit Kapitel 7 Di erenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite 89 / 226

15 Kapitel 7 Di erenzierbarkeit Definition 7. (Di erenzierbarkeit) Es sei f : I! eine Funktion auf dem o enen Intervall I. f heißt differenzierbar in dem Punkt x 0 2 I, wenndergrenzwert des Differenzenquotienten f(x) f(x 0 ) f(x 0 + h) f(x 0 ) lim =lim x!x 0 x x 0 h!0 h 2 existiert. Dieser Wert wird dann mit f 0 (x 0 ) bezeichnet und heißt die Ableitung von f an der Stelle x differenzierbar auf I, wennf an jeder Stelle x 2 I di erenzierbar ist. Mathematischer Vorkurs TU Dortmund Seite 90 / 226

16 Kapitel 7 Di erenzierbarkeit Grundlegende Beispiele 7.2: f(x) f 0 (x) c 0 x x 2 2x x n n x n, n 2 f(x) x x n sin x cos x f 0 (x) x 2 n x n+, n 2 cos x sin x Wichtige Beobachtung: In der rechten Spalte taucht x = x nie auf! Mathematischer Vorkurs TU Dortmund Seite 9 / 226

17 Kapitel 7 Di erenzierbarkeit Die Ableitung einer Funktion f kann man auch geometrisch interpretieren. y T Die Steigung der Tangente T im Punkt a ist der Grenzwert der Sekantensteigungen. a x Definition 7.3 (Tangente) Die Gerade mit der Gleichung y = f(x 0 )+f 0 (x 0 ) (x x 0 ) heißt Tangente an den Graphen von f im Punkt x 0,f(x 0 ) (kurz auch: Tangente an f in x 0 ). Mathematischer Vorkurs TU Dortmund Seite 92 / 226

18 Kapitel 7 Di erenzierbarkeit Bemerkung: Di erenzierbarkeit in x 0 bedeutet also anschaulich, dass sich die Funktionswerte von f in einer kleinen Umgebung von x 0 gut durch die Werte der Tangente annähern lassen. Man sagt auch: f ist linear approximierbar. Genauer: Satz 7.4 (Lineare Approximation) Es sei f : I! eine Funktion auf dem o enen Intervall I und x 0 2 I. Dann sind folgende Aussagen äquivalent:. f ist di erenzierbar in x Es gibt eine Zahl c 2 und eine Funktion : I! mit (x) =0und lim x!x 0 In diesem Fall ist c = f 0 (x 0 ). f(x) =f(x 0 )+c (x x 0 )+ (x) (x x 0 ). Mathematischer Vorkurs TU Dortmund Seite 93 / 226

19 Kapitel 7 Di erenzierbarkeit Satz 7.5 Ist f : I! di erenzierbar in x 0 2 I, soistf auch stetig in x 0. Definition 7.6 (Höhere Ableitungen). Ist f auf I di erenzierbar, so heißt die Funktion f 0 : I! mit x 7! f 0 (x) die Ableitung von f. 2. Ist f di erenzierbar, und f 0 stetig auf I so nennt man f stetig differenzierbar. 3. Sind f und f 0 di erenzierbar auf I, dann nennt man die Funktion f 00 := (f 0 ) 0 die zweite Ableitung von f. 4. Ebenso definiert man höhere Ableitungen f 000, f (4), f heißt k-mal stetig differenzierbar, wennf (k) existiert und stetig ist. 6. f heißt glatt, wennfür alle k 2 die Ableitung f (k) existiert und stetig ist. Mathematischer Vorkurs TU Dortmund Seite 94 / 226

20 Kapitel 7 Di erenzierbarkeit Satz 7.7 (Di erentiationsregeln). Summenregel (f + g) 0 (x) =f 0 (x)+g 0 (x) 2. Produktregel (f g) 0 (x) =f 0 (x) g(x)+f(x) g 0 (x) f 0 3. Quotientenregel (x) = f 0 (x)g(x) f(x)g 0 (x) g g 2 (x) 4. Kettenregel (f g) 0 (x) =f 0 g(x) g 0 (x) Mathematischer Vorkurs TU Dortmund Seite 95 / 226

21 Kapitel 7 Di erenzierbarkeit Satz 7.8 (Ableitung der Umkehrfunktion) Es sei f auf dem Intervall I streng monoton und di erenzierbar und es gelte f 0 6=0. Dann ist die Umkehrfunktion f di erenzierbar auf J := f(i). Für y = f(x) 2 J, alsox = f (y), gilt dann f 0 (y) = f 0 (x). Beispiel: Wir berechnen die Ableitung von f(y) = arcsin(y). Dann ist f (x) =sinx und wegen Satz 7.8 gilt arcsin 0 (sin x) = cos x = p sin 2 x, mit y =sinx also schließlich arcsin 0 (y) = p y 2. Mathematischer Vorkurs TU Dortmund Seite 96 / 226

22 Kapitel 7 Di erenzierbarkeit Grundlegende Beispiele 7.2 [cont.] f(x) f 0 (x) p x 2 p x np x tan x arcsin x arccos x arctan x n np x n n 2 + tan 2 x = cos 2 x p x 2 p x 2 +x 2 Mathematischer Vorkurs TU Dortmund Seite 97 / 226

23 Kapitel 7 Di erenzierbarkeit Weitere Folgerungen 7.9. (f 2 ) 0 (x) =2 f(x) f 0 (x). 2. (f n ) 0 (x) =n f n (x) f 0 (x) (x) = f 0 (x) f f 2 (x). Mathematischer Vorkurs TU Dortmund Seite 98 / 226

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Kapitel 5 GRENZWERTE

Kapitel 5 GRENZWERTE Kapitel 5 GRENZWERTE Fassung vom 3. Februar 2006 Mathematik für Humanbiologen und Biologen 69 5. Der Begri des Grenzwertes 5. Der Begri des Grenzwertes An den Messungen der Hefevermehrung (vgl. Beispiel

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 211 Willkommen an der TU Dortmund Organisatorisches Mathematischer Vorkurs

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

6.1 Die Ableitung einer reellwertigen Funktion

6.1 Die Ableitung einer reellwertigen Funktion 6 Differenzierbarkeit In diesem Kapitel sind alle Funktionen, sofern nicht anders angegeben, reellwertige Funktionen, die auf Intervallen definiert sind. Es bezeichnet I in diesem Kapitel stets ein Intervall.

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Differentialrechnung

Differentialrechnung KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

Steven Köhler. Tutorium: Analysis und lineare Algebra. Konvergenz, Stetigkeit & Differenzierbarkeit. mathe.stevenkoehler.

Steven Köhler. Tutorium: Analysis und lineare Algebra. Konvergenz, Stetigkeit & Differenzierbarkeit. mathe.stevenkoehler. Tutorium: Analysis und lineare Algebra Konvergenz, Stetigkeit & Differenzierbarkeit Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 2011 Steven Köhler Definition der Konvergenz Eine Folge

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3 SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 3 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Mathematik I. Vorlesung 27. Differenzierbare Funktionen. In diesem Abschnitt betrachten wir Funktionen f :D K, wobei D K eine offene Menge in K ist.

Mathematik I. Vorlesung 27. Differenzierbare Funktionen. In diesem Abschnitt betrachten wir Funktionen f :D K, wobei D K eine offene Menge in K ist. Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 27 Differenzierbare Funktionen In diesem Abschnitt betrachten wir Funktionen, wobei D K eine offene Menge in K ist. Definition 27.1. Sei

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Reelle/komplexe Zahlen und Vollständigkeit

Reelle/komplexe Zahlen und Vollständigkeit Die folgenden Fragen/Aussagen sind mit ja / wahr oder nein / falsch zu beantworten. Da wir den Stoff der Analysis 1 behandeln, ist im weiteren davon auszugehen dass die Folgen, Reihen, Definitionsbereiche

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3 Stetigkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Vorstellung, Definition und Folgerungen 1.1 Stetigkeitscharakterisierung durch Folgen......................... 3 Regeln zur Stetigkeit an einer Stelle

Mehr

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976)

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976) Kapitel 9 Folgen und Reihen 9.1 Folgen 9.1.1 Was ist eine Folge? Abbildungen, die auf N definiert sind (mit Werten z.b. in R), heißen (unendliche) Folgen. Abb., die auf einer endlichen Menge aufeinander

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Linearisierung einer Funktion Tangente, Normale

Linearisierung einer Funktion Tangente, Normale Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Funktionen. D. Horstmann: Oktober

Funktionen. D. Horstmann: Oktober Funktionen D. Horstmann: Oktober 2016 128 Funktionen Definition 9. Eine Funktion f ist eine Rechenvorschrift, die jedem Element einer Menge D genau ein Element einer Zielmenge Z zuweist. Die Menge D heißt

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 7 4 DIFFERENZIERBARKEIT Sei dazu 0 < ρ < s < r. Dann gilt lim sup k k a k

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Stetigkeit und Dierenzierbarkeit im R n

Stetigkeit und Dierenzierbarkeit im R n Stetigkeit und Dierenzierbarkeit im R n 1 Stetigkeit Wir übertragen den Stetigkeitsbegri auf mehrstellige reellwertige Funktionen. Denition 1. Sei M R n. Eine Funktion f : M R heiÿt stetig in a M gdw.

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit KAPITEL 3 Grenzwerte und Stetigkeit 3.1 Grenzwerte..................................... 49 3.2 Stetigkeit....................................... 57 Lernziele 3 Grenzwerte ε-δ-definition des Grenzwerts,

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

9 Grenzwerte von Funktionen

9 Grenzwerte von Funktionen 9 Grenzwerte von Funktionen 29 9 Grenzwerte von Funktionen Den Begriff der Funktion oder Abbildung haben wir bereits im ersten Semester kennengelernt Ab jetzt wollen wir reelle Funktionen f : D R mit Definitionsbereich

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr