Universität des Saarlandes

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Universität des Saarlandes"

Transkript

1 Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn WiSe 2015/2016 Übungen zu Ideen der Informatik Beispielklausur Abgabeschluss: Bitte beachten Sie, dass der Umfang dieser Beispielklausur nicht dem Umfang der End- und Nachklausur entspricht. Diese Beispielklausur bemüht sich darum, in der Art und Weise der Aufgabenstellungen, ähnlich zur End- und Nachklausur zu sein. Selbstverständlich sind Themen, die in den kommenden Wochen noch in der Vorlesung behandelt werden, genauso für die End- und Nachklausur relevant, wie alle bereits behandelten. Aufgabe 1 (10 Punkte) a) Erklären Sie das Teile und Herrsche - Prinzip anhand von Binärsuche. (3 Punkte) b) Erörtern Sie die Voraussetzung für die Anwendbarkeit von Binärsuche und nennen Sie die Laufzeit des Verfahrens. (2 Punkte) c) Demonstrieren Sie den Algorithmus anhand des folgenden Beispiels [Neon, Argon, Helium, Xenon, Radon, Krypton] indem Sie das einzige radioaktive Edelgas (Radon) suchen. (Denken Sie daran nötigenfalls die Voraussetzung aus b) zu schaffen.) Illustrieren Sie sämtliche Schritte! (3 Punkte) d) Welchen Aufwand müssen Sie im Allgemeinen betreiben um die Voraussetzung aus b.) zu schaffen? (2 Punkte) Lösung: a) Teile und Beherrsche zerlegt ein Problem in ein oder mehrere Teilprobleme der gleichen Art und löst diese dann rekursiv. Triviale Probleme werden direkt gelöst. Bei der Binärsuche nach x in einer sortierten Folge L bedeutet das folgendes. Wenn L leer ist (triviales Problem), dann erklären wir die Suche erfolglos. Wenn L nicht leer ist und n Elemente hat, vergleichen wir x mit L[m], wobei m = n/2 (notfalls aufrunden). Falls x = L[m] ist die Suche erfolgreich. Falls x < L[m], setzen wir die Suche auf L[1..m 1] fort. Falls x > L[m], setzen wir die Suche auf L[m + 1..n] fort. b) Die Folge L muss aufsteigend sortiert sein. Binärsuche braucht dann eine logarithmische Anzahl von Vergleichen, nämlich k Vergleiche auf einer Folge der Länge n = 2 k 1.

2 c) Wir sortieren und erhalten [Argon, Helium, Krypton, Neon, Radon, Xenon] Die Liste hat 6 Elemente. Wir vergleichen Radon mit dem 3ten Element der Liste und erhalten Krypton < Radon. Daher suchen wir in [Neon, Radon, Xenon] weiter. Die Liste hat nun 3 Elemente und wir vergleichen Radon mit dem 2ten Element. Die Suche endet erfolgreich. d) Sortieren durch Mischen sortiert n elemente mit n log n Vergleichen. Aufgabe 2 (5 Punkte) a) Nennen Sie eine Methode zur von Lösung linearer Optimierungs Problemen. (1 Punkt) b) Auf welchen Graphen funktioniert Dijkstra s Algorithmus und was muss man bei den Kantengewichten beachten? (1 Punkt) c) Nennen Sie ein asymmetrisches Verschlüsselungsverfahren. (1 Punkt) d) Nennen Sie eine Errungenschaft von Alan Turing. (1 Punkt) e) Mit welchem Algorithmus kann man die Wichtigkeit von Webseiten berechnen? (1 Punkt) Lösung: a) Fourier-Motzkin oder Simplexmethode. b) Gerichtete Graphen mit nichtnegativen Kantengewichten. c) RSA oder El-Gamal Verfahren. d) Erfinder der Turingmaschine, Brechen der Verschlüsselung der deutschen Wehrmacht, Erklärung der Musterbildung in der Biologie. e) Pagerankalgorithmus. Dazu erstellt man ein Gleichungssystem für die Wichtigkeit von Webseiten und löst es entweder iterativ oder mit Gausselimination.

3 Aufgabe 3 (10 Punkte) Der folgende Algorithmus nennt sich Breitensuche. Als Eingabe dient ein Startknoten s und ein ungerichteter Graph G = (V, E), wobei V die Knoten- und E die Kantenmenge bezeichnen. Algorithmus 1 : Breitensuche Eingabe : G = (V, E) sowie ein Startknoten s 1 färbe alle Knoten weiß 2 färbe s schwarz 3 L = eine leere Liste 4 für jeden Nachbarn w von s tue 5 hänge (s, w) ans Ende von L an. 6 solange L nicht leer ist tue 7 Sei (u, v) der erste Eintrag in L 8 wenn v weiß ist dann 9 färbe v schwarz 10 für jeden Nachbarn w von v tue 11 Hänge (v, w) an L an. 12 Lösche den ersten Eintrag aus L a) Führen Sie den Algorithmus auf dem folgenden Graphen aus. Beginnen Sie am Knoten a. Wenn Sie über die Nachbarn eines Knoten iterieren, so tun Sie dies immer in alphabethischer Reihenfolge. Markieren Sie in der Abbildung die schwarzen Knoten und die Reihenfolge, in der sie schwarz gefärbt wurden. (5 Punkte) d f e a c f b g b) Überlegen Sie sich eine Abschätzung an den Aufwand des Algorithmus abhängig von n = V und m = E. Überlegen Sie sich dazu, wie oft eine Kante zu L hinzugefügt werden kann und wieviel Aufwand der Algorithmus für jede Kante in L betreibt. (5 Punkte)

4 Lösung: a) Ich gebe die Schritte an, wie sie nacheinander ausgeführt werden. (a) Alle Knoten werden weiß gefärbt. (b) a wird schwarz gefärbt. (c) L = leere Liste (d) a hat nur einen Nachbarn, nämlich c. Ich hänge (a, c) an L an. Also L = [(a, c)]. (e) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (f) Das erste Element von L ist (a, c) (g) c is weiß; ich trete also in den Rumpf der inneren Schleife ein. (h) c wird nun schwarz gefärbt. (i) c hat die Nachbarn a, b und e. Ich hänge (c, a), (c, b) und (c, e) an L an und erhalte L = [(a, c), (c, a), (c, b), (c, e)]. (j) Ich lösche den ersten Eintrag von L und erhalte L = [(c, a), (c, b), (c, e)]. (k) L ist nicht leer, ich trete also wieder in den Rumpf der Schleife ein. (l) Der erste Eintrag von L ist (c, a). (m) Da a bereits scharz ist, trete ich nicht in dem Rumpf der inneren Schleife ein. (n) Ich lösche den ersten Eintrag von L und erhalte L = [(c, b), (c, e)]. (o) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (p) Das erste Element von L ist (c, b) (q) b is weiß; ich trete also in den Rumpf der inneren Schleife ein. (r) b wird nun schwarz gefärbt. (s) b hat die Nachbarn c, und g. Ich hänge (b, c), (b, g) an L an und erhalte L = [(c, b), (c, e), (b, c), (b, g)]. (t) Ich lösche den ersten Eintrag von L und erhalte L = [(c, e), (b, c), (b, g)]. (u) L ist nicht leer, ich trete also wieder in den Rumpf der Schleife ein. (v) Der erste Eintrag von L ist (c, e). (w) e is weiß; ich trete also in den Rumpf der inneren Schleife ein. (x) e wird nun schwarz gefärbt. (y) e hat die Nachbarn c, d und f. Ich hänge (e, c), (e, d) und (e, f) an L an und erhalte L = [(c, e), (b, c), (b, g)(e, c), (e, d), (e, f)]. (z) Ich lösche den ersten Eintrag von L und erhalte L = [(b, c), (b, g)(e, c), (e, d), (e, f)]. (a) L ist nicht leer, ich trete also wieder in den Rumpf der Schleife ein. (b) Der erste Eintrag von L ist (b, c). (c) Da c bereits scharz ist, trete ich nicht in dem Rumpf der inneren Schleife ein. (d) Ich lösche den ersten Eintrag von L und erhalte L = [(b, g)(e, c), (e, d), (e, f)].

5 (e) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (f) Das erste Element von L ist (b, g) (g) g is weiß; ich trete also in den Rumpf der inneren Schleife ein. (h) g wird nun schwarz gefärbt. (i) g hat die Nachbarn b, und f. Ich hänge (g, b), (g, f) an L an und erhalte L = [(b, g)(e, c), (e, d), (e, f), (g, b), (g, f)]. (j) Ich lösche den ersten Eintrag von L und erhalte L = [(e, c), (e, d), (e, f), (g, b), (g, f)]. (k) L ist nicht leer, ich trete also wieder in den Rumpf der Schleife ein. (l) Der erste Eintrag von L ist (e, c). (m) Da c bereits scharz ist, trete ich nicht in dem Rumpf der inneren Schleife ein. (n) Ich lösche den ersten Eintrag von L und erhalte L = [(e, d), (e, f), (g, b), (g, f)]. (o) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (p) Das erste Element von L ist (e, d) (q) d is weiß; ich trete also in den Rumpf der inneren Schleife ein. (r) d wird nun schwarz gefärbt. (s) d hat den Nachbarn e..ich hänge (d, e) an L an und erhalte L = [(e, d), (e, f), (g, b), (g, f), (d, e)]. (t) Ich lösche den ersten Eintrag von L und erhalte L = [(e, f), (g, b), (g, f), (d, e)]. (u) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (v) Das erste Element von L ist (e, f) (w) f is weiß; ich trete also in den Rumpf der inneren Schleife ein. (x) f wird nun schwarz gefärbt. (y) f hat die Nachbarn e und g. Ich hänge (f, e) und (f, g) an L an und erhalte L = [(e, f), (g, b), (g, f), (d, e), (f, e), (f, g)]. (z) Ich lösche den ersten Eintrag von L und erhalte L = [(g, b), (g, f), (d, e), (f, e), (f, g)]. (a) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (b) Das erste Element von L ist (g, b) (c) b ist schwarz. Ich trete also nicht in den Rumpf der inneren Schleife ein. (d) Ich streiche das erste Element von L und erhalte L = [(g, f), (d, e), (f, e), (f, g)]. (e) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (f) Das erste Element von L ist (g, f) (g) f ist schwarz. Ich trete also nicht in den Rumpf der inneren Schleife ein. (h) Ich streiche das erste Element von L und erhalte L = [(d, e), (f, e), (f, g)]. (i) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (j) Das erste Element von L ist (d, e) (k) e ist schwarz. Ich trete also nicht in den Rumpf der inneren Schleife ein.

6 (l) Ich streiche das erste Element von L und erhalte L = [(f, e), (f, g)]. (m) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (n) Das erste Element von L ist (f, e) (o) e ist schwarz. Ich trete also nicht in den Rumpf der inneren Schleife ein. (p) Ich streiche das erste Element von L und erhalte L = [(f, g)]. (q) L ist nicht leer, ich trete in dem Rumpf der Schleife ein. (r) Das erste Element von L ist (f, g) (s) g ist schwarz. Ich trete also nicht in den Rumpf der inneren Schleife ein. (t) Ich streiche das erste Element von L und erhalte L = []. (u) L ist leer und der Algorithmus endet. Alle Knoten werden schwarz gefärbt und zwar in der Reihenfolge: a, c, b, e, g, d, f. Anmerkung KM: Die Ausführung dieses Programms ist zu lang. Das nächste Mal nehmen wir einen kleineren Graphen oder ein schnelleres Programm. Etwa. Algorithmus 2 : Breitensuche Eingabe : G = (V, E) sowie ein Startknoten s 1 färbe alle Knoten weiß 2 L = eine Liste bestehend aus dem Element s. solange L nicht leer ist tue 3 Sei v der erste Eintrag in L 4 wenn v weiß ist dann 5 färbe v schwarz 6 für jeden Nachbarn w von v tue 7 Falls w weiß ist und nicht bereits in L enthalten ist, hänge w an L an. 8 Lösche den ersten Eintrag aus L b) Jede Kante wird zweimal zu L hinzugefügt und zwar einmal in jeder Richtung. Ein Knoten kann nur einmal von weiß nach schwarz umgefärbt werden. Wenn wir einen Knoten umfärben, nehmen wir alle ausgehenden Kanten in L auf. Also wird jede Kante zweimal zu L hinzugefügt und zwar einmal in jeder Richtung. Wenn wir eine Kante aus L entfernen, überprüfen wir die Farbe eines Endpunkts. Falls der Knoten umgefärbt wird, dann laufen wir über wie oben erwähnt über die Nachbarn. Also ist der Aufwand proportional zur Anzahl der Knoten und Kanten.

Suchen und Sortieren

Suchen und Sortieren Ideen und Konzepte der Informatik Suchen und Sortieren Ordnung ist das halbe Leben Antonios Antoniadis (Basierend auf Folien von Kurt Mehlhorn und Konstantinos Panagiotou) 6. November 2017 6. November

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Suchen und Sortieren

Suchen und Sortieren Ideen und Konzepte der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn (viele Folien von Kostas Panagiotou) Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die nformatik 2 raphenexploration Sven Kosub A Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdurchläufe Maike Buchin 22. und 27.6.2017 Graphexploration Motivation: Für viele Zwecke will man den gesamten Graphen durchlaufen, zb. um festzustellen ob er (stark) zusammenhängt.

Mehr

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/2007 12. April 2007 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Klausur Theoretische Informatik I WS 2004/2005

Klausur Theoretische Informatik I WS 2004/2005 Technische Universität Chemnitz Chemnitz, den 22.02.2005 Fakultät für Informatik Prof. Dr. Andreas Goerdt Klausur Theoretische Informatik I WS 2004/2005 Studiengang Mechatronik Aufgabe 1 (2+2+2 Punkte)

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 svorschlag Aufgabe 1

Mehr

Komplexität von Algorithmen:

Komplexität von Algorithmen: Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Schnellste Wege Wie funktioniert ein Navi?

Schnellste Wege Wie funktioniert ein Navi? Schnellste Wege Wie funktioniert ein Navi? Kurt Mehlhorn und Adrian Neumann Max-Planck-Institut für Informatik Vorlesung Ideen der Informatik Schnellste Wege Routenfinden im Navi Karten und Graphen Algorithmen

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdarstellungen Maike Buchin 0.6.017 Graphen Motivation: Graphen treten häufig als Abstraktion von Objekten (Knoten) und ihren Beziehungen (Kanten) auf. Beispiele: soziale

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn Ideen und Konzepte der Informatik Programme und Algorithmen Kurt Mehlhorn 26. Oktober 2015 Programme und Algorithmen Programmiersprache = Kunstsprache mit genau definierter Syntax (was ist ein zulässiger

Mehr

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung

Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung Konstantin Clemens Johanna Ploog Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Viertes

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Ideen und Konzepte der Informatik Websuche

Ideen und Konzepte der Informatik Websuche Ideen und Konzepte der Informatik Websuche Antonios Antoniadis (Basierend auf Folien von Kurt Mehlhorn) 13. Nov. 2017 13. Nov. 2017 1/29 Suchmaschinen 1990: Archie (sehr elementar)... 1995: AltaVista 1998:

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16)

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) Berlin, 14. April 2016 Name:... Matr.-Nr.:... Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) 1 / 10 2 / 10 3 / 11 4 / 9 5 / 10 Σ / 50 Einlesezeit: Bearbeitungszeit:

Mehr

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965). 5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 11. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen Safe

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Tiefensuche: Die globale Struktur Der gerichtete oder ungerichtete Graph G werde durch seine Adjazenzliste A repräsentiert. Im Array besucht wird vermerkt,

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2009 11. Vorlesung Uwe Quasthoff Universität Leipzig Institut für Informatik quasthoff@informatik.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen

Mehr

Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend

Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend Organisatorisches VL-18: Matching (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11:15 12:00 Übungen: Tim Hartmann,

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 13, Donnerstag, 30.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 13, Donnerstag, 30. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 0 / 04 Vorlesung, Donnerstag, 0. Januar 0 (Kürzeste Wege, Dijkstras Algorithmus) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Tutoraufgabe 1 (Starke Zusammenhangskomponenten):

Tutoraufgabe 1 (Starke Zusammenhangskomponenten): für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Datenstrukturen und Algorithmen SS1 Übungsblatt (Abgabe 4.0.01) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/42 Graphische Darstellung von Zusammenhängen schon an vielen Stellen

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Prioritätswarteschlangen Mariano Zelke Datenstrukturen 2/28 Der abstrakte Datentyp Prioritätswarteschlange : Füge Elemente (mit Prioritäten) ein und entferne

Mehr

Nachklausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Nachklausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 25. März 2013 Name:... Matr.-Nr.:... Nachklausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers

Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers Graphalgorithmen 2 Oleksiy Rybakov 3. Juni 2015 Betreuer: Tobias Werth, Daniel Brinkers 1 / 40 Inhaltsverzeichnis 1 Minimale Spannbäume und Datenstrukturen 2 Kürzeste Wege 3 Spezielle Graphen 2 / 40 Minimale

Mehr

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Die Klausur besteht aus 6 Aufgaben und umfasst 60 Punkte. Bitte schreiben Sie die Lösungen auf die Aufgabenblätter. Vergessen

Mehr

Kapitel 1 Einleitung. Definition: Algorithmus nach M. Broy: aus: Informatik: Eine grundlegende Einführung, Band 1, Springer-Verlag, Berlin

Kapitel 1 Einleitung. Definition: Algorithmus nach M. Broy: aus: Informatik: Eine grundlegende Einführung, Band 1, Springer-Verlag, Berlin Kapitel 1 Einleitung 1.1. Begriff des Algorithmus Eine der ältesten Beschreibungstechniken für Abläufe: Benannt nach dem Mathematiker Al-Khwarizmi (ca. 780...840), der am Hof der Kalifen von Bagdad wirkte.

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Kürzeste und Schnellste Wege

Kürzeste und Schnellste Wege Kürzeste und Schnellste Wege Wie funktionieren Navis? André Nusser (Folien inspiriert von Kurt Mehlhorn) Struktur Straßennetzwerke Naiver Algorithmus Dijkstras Algorithmus Transitknoten Nachbemerkungen

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2011

Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2011 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 86.72 Algorithmen und Datenstrukturen VL 4.0 2. Übungstest SS 20 0. Juni 20 Machen

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

2. Übungsblatt zu Algorithmen II im WS 2016/2017

2. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe

Mehr

3. Übungsblatt zu Algorithmen I im SoSe 2017

3. Übungsblatt zu Algorithmen I im SoSe 2017 Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline

Mehr