1.4 Die Ackermannfunktion

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1.4 Die Ackermannfunktion"

Transkript

1 a : N 2 N : Beispiele: a(0, y) = y + 1, a(x, 0) = a(x 1, 1), x > 0, a(x, y) = a(x 1, a(x, y 1)), x, y > 0. Beh.: a(1, y) = y + 2 Bew. durch Induktion über y: a(1, 0) = a(0, 1) = 2 = 0+2. a(1, y + 1) = a(0, a(1, y)) = I.V. a(0, y + 2) = y + 3 = (y + 1)+2. Beh.: a(2, y) = 2y + 3 Bew. durch Induktion über y: a(2, 0) = a(1, 1) = s.o. 3 = a(2, y + 1) = a(1, a(2, y)) = I.V. a(1, 2y + 3) = s.o. 2y + 5 = 2(y + 1)+3. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 63 / 309

2 Lemma 1.20 a ist eine totale Funktion, d.h. a(x, y) ist für alle x, y N definiert. Beweis durch Induktion über x: x = 0 : a(0, y) = y + 1 x 1 x : a(x, y) = a(x 1, a(x, y 1)) = a(x 1, a(x 1, a(x, y 2))) =... = a(x 1,...,a(x 1, a(x, 0))...) = a(x 1,...,a(x 1, a(x 1, 1))...) Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 64 / 309

3 Lemma 1.21 (a) y < a(x, y). (b) a(x, y) < a(x, y + 1). (c) a(x, y + 1) a(x + 1, y). (d) a(x, y) < a(x + 1, y). (b)+(d): x x y y : a(x, y) a(x, y ). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 65 / 309

4 Beweis von (a) durch Induktion über x: I.A.: x = 0 : a(0, y) = y + 1 > y. I.V.: a(x, y) > y für alle y. I.B.: a(x + 1, y) > y für alle y. I.S: Induktion über y: I.A.: y = 0: a(x + 1, 0) = a(x, 1) > I.V. x 1 > 0. I.V.: a(x + 1, y) > y für ein y 0. I.B.: a(x + 1, y + 1) > y + 1. I.S: a(x + 1, y + 1) = a(x, a(x + 1, y)) > I.V. x a(x + 1, y) > I.V. y y, d.h., a(x + 1, y + 1) > y + 1. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 66 / 309

5 Die Funktion f P : N N für ein LOOP-Programm P Sei P ein LOOP-Programm mit den Variablen x 0, x 1,...,x k. Seien n 0, n 1,...,n k die Startwerte für diese Variablen, und seien n 0, n 1,...,n k die Endwerte für diese Variablen. Definiere: f P : N N : f P (n) = max{ i 0 n i i 0 n i n}. Lemma 1.22 Für jedes LOOP-Programm P gibt es eine Konstante k, sodass für alle n folgendes gilt: f P (n) < a(k, n). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 67 / 309

6 Beweis Induktion über den Aufbau von P: (i) x i := x j ± 1 f P (n) 2n+1 < a(2, n), d.h. k = 2. (ii) P 1 ; P 2 I.V.: f P1 (n) < a(k 1, n), f P2 (n) < a(k 2, n). Wähle k 3 := max{k 1 1, k 2 }. Dann : f P (n) f P2 (f P1 (n)) < a(k 2, a(k 1, n)) a(k 3, a(k 3 + 1, n)) = a(k 3 + 1, n+1) a(k 3 + 2, n), d.h. k = k Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 68 / 309

7 (iii) LOOP x i DO Q END I.V.: f Q (n) < a(k 1, n). O.B.d.A.: x i kommt in Q nicht vor. f P (n) = max{ n j n j n} j 0 j 0 Sei m n der Wert von x i bei dem annimmt. m = 0 : f P (n) = n < a(0, n). m = 1 : f P (n) f Q (n) < a(k 1, n). j 0 n j den maximalen Wert Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 69 / 309

8 m 2 : f P (n) f Q (f Q (...(f }{{ Q (n m))...))+m. } m-mal < a(k 1, f Q (f Q (...(f }{{ Q (n m))...)))+m } (m 1)-mal. < a(k 1, a(k 1,...,a(k }{{ 1, n m)...))+m } m-mal f P (n) a(k 1, a(k 1,...,a(k 1, n m)...)) < a(k 1,...a(k }{{ 1, a(k } 1 + 1, n m)...)) (m 1)-mal = a(k 1 + 1, n 1) < a(k 1 + 1, n), d.h. k = k Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 70 / 309

9 Satz 1.23 Die Ackermannfunktion ist nicht LOOP-berechenbar, d.h. sie ist nicht primitiv rekursiv. Beweis (Indirekt): Sei P ein LOOP-Programm, das g(n) := a(n, n) berechnet. Dann gilt g(n) f P (n). Es gibt eine Konstante k mit: n 0 : f P (n) < a(k, n), d.h. g(k) f P (k) < a(k, k) = g(k) Widerspruch! Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 71 / 309

10 Satz 1.24 Die Ackermannfunktion ist eine totale, WHILE-berechenbare Funktion, die nicht LOOP-berechenbar ist. Beweis: Vorüberlegung 1 Gleichungen Rechenregeln a(0, y) = y + 1 (0, y) y + 1 a(x + 1, 0) = a(x, 1) (x + 1, 0) (x, 1) a(x + 1, y + 1) = a(x, a(x + 1, y)) (x + 1, y + 1) (x, x + 1, y) Beispiel: a(2, 1) = a(1, a(2, 0)) = a(1, a(1, 1)) = a(1, a(0, a(1, 0))) =... (2, 1) (1, 2, 0) (1, 1, 1) (1, 0, 1, 0) (1, 0, 0, 1) (1, 0, 2) (1, 3) (0, 1, 2) (0, 0, 1, 1) (0, 0, 0, 1, 0) (0, 0, 0, 0, 1) 4 5 Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 72 / 309

11 Beweis: Vorüberlegung 2 Folgende Operationen müssen realisiert werden: 1 Speichere Folge (x 1,...,x r 1, x r ) von natürlichen Zahlen. 2 Teste, ob Folge die Länge r = 1 hat. 3 Bestimme (und entferne) das letzte Element der Folge. 4 Füge eine Zahl an die Folge an. Hierzu verwenden wir die Speicherstruktur Stack (oder Keller). Ein Stack speichert eine Folge von Elementen (z.b. Zahlen), wobei nur folgende Operationen erlaubt sind: - Initialisieren: Ein leerer Stack wird bereitgestellt. - Test: Ist der Stack leer? - Push: Ein Element auf den Stack legen. - Pop: Das oberste Element des Stacks lesen und vom Stack entfernen. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 73 / 309

12 Beweis von Satz 1.24: Noch z.z.: a(x, y) ist WHILE-berechenbar. 1. Schritt: Ein Programm, das a(x, y) mit Hilfe eines Stacks berechnet: INIT(st) : Stack st initialisieren size(st) : Anzahl der Elemente im Stack st bestimmen PUSH(x, st) : x auf den Stack st legen y := POP(st) : oberstes Element vom Stack st entfernen und an y übergeben Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 74 / 309

13 Ein STACK-Programm zur Berechnung von a(x, y) INPUT(x, y); INIT(stack); PUSH(x,stack); PUSH(y,stack); WHILE size(stack) 1 DO y := POP(stack); x := POP(stack); IF x = 0 THEN PUSH(y + 1,stack) ELSE IF y = 0 THEN PUSH(x 1,stack); PUSH(1,stack) ELSE PUSH(x 1,stack); PUSH(x,stack); PUSH(y 1,stack) END{IF} END{WHILE} result := POP(stack); OUTPUT(result). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 75 / 309

14 Realisierung der Stack-Operationen Sei (n 1, n 2,...,n k ) der aktuelle Stackinhalt. n := c(n k + 1, c(n k 1 + 1,...,c(n 2 + 1, c(n 1 + 1, 0))...)) die Kodierung des Stackinhalts. Operation INIT(stack) n := 0 Realisierung PUSH(a,stack) n := c(a+1, n) y := POP(stack) y := e(n) 1; n := f(n) size(stack) 1 f(n) 0 Also ist a(x, y) WHILE-berechenbar. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 76 / 309

15 Übersicht GOTO WHILE µ-rekursiv LOOP prim. rekursiv Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 77 / 309

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit Die Programmiersprache LOOP (i) Syntaktische Komponenten: Variable: x 0, x 1, x 2,... Konstanten: 0, 1, 2,... Trennsymbole: ; := Operationszeichen: + Schlüsselwörter: LOOP DO END (ii) LOOP-Programme: Wertzuweisungen:

Mehr

Die Ackermannfunktion

Die Ackermannfunktion Die Ackermannfunktion Slide 1 Die Ackermannfunktion Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Die Ackermannfunktion Slide 2 Eine Frage zu Anfang Ist jede intuitiv

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert:

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert: 3. LOOP-, WHILE- und GOTO-Berechenbarkeit 3.1 LOOP-Programme Komponenten: Variablen: x 0, x 1, x 2,, y, z, Konstanten: 0, 1, 2, Trennsymbole: ; := Operationszeichen: +, - Schlüsselwörter: LOOP, DO, END

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Loop-, While- und Goto-Programme sind vereinfachte imperative Programme und stehen für imperative Programmiersprachen, bei denen Programme als Folgen von Befehlen

Mehr

Mitschrift BFS WS 13/14

Mitschrift BFS WS 13/14 Mitschrift BFS WS 13/14 Stand: 4. Juni 2014 Dieses Skript zum Teil Primitive und µ-rekursion der Vorlesung Berechenbarkeit und Formale Sprachen im Wintersemester 2013/14 bei Prof. Wanka wurde von untenstehenden

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14.

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14. Theorie der Informatik 16. April 2014 14. primitive Rekursion und µ-rekursion Theorie der Informatik 14. primitive Rekursion und µ-rekursion 14.1 Einleitung 14.2 Basisfunktionen und Einsetzung Malte Helmert

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Lektion 10: Entscheidbarkeit Kurt-Ulrich Witt Wintersemester 2013/14 Kurt-Ulrich Witt Theoretische Informatik Lektion 10 1/15 Inhaltsverzeichnis Kurt-Ulrich Witt Theoretische Informatik

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N induktiv

Mehr

Primitiv rekursive Funktionen

Primitiv rekursive Funktionen Primitiv rekursive Funktionen Primitiv rekursive Funktionen Historisch: Die Einführung der primitiven Rekursivität war ein erster (und erfolgloser) Versuch, den Begriff der Berechenbarkeit (oft synonym

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Übersicht. Schleifen. Schleifeninvarianten. Referenztypen, Wrapperklassen und API. 9. November 2009 CoMa I WS 08/09 1/15

Übersicht. Schleifen. Schleifeninvarianten. Referenztypen, Wrapperklassen und API. 9. November 2009 CoMa I WS 08/09 1/15 Übersicht Schleifen Schleifeninvarianten Referenztypen, Wrapperklassen und API CoMa I WS 08/09 1/15 CoMa I Programmierziele Linux bedienen Code umschreiben strukturierte Datentypen Anweisungen und Kontrollstrukturen

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

8. Rekursive und primitiv rekursive Funktionen

8. Rekursive und primitiv rekursive Funktionen 8. Rekursive und primitiv rekursive Funktionen In diesem Abschnitt führen wir eine weitere (letzte) Formalisierung des Berechenbarkeitskonzeptes für Funktionen über den natürlichen Zahlen ein. Hatten wir

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

Theoretische Informatik SS 03 Übung 4

Theoretische Informatik SS 03 Übung 4 Fakten aus Übung 3 Theoretische Informatik SS 03 Übung 4 In Übung 3 wurden einigen Fakten bewiesen, die für diese Übung benötigt werden. Folgende Konstrukte können mit LOOP-Programmen simuliert werden:

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Grundlagen der Theoretischen Informatik II

Grundlagen der Theoretischen Informatik II 1 Grundlagen der Theoretischen Informatik II Till Mossakowski Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Sommersemester 2015 2 Prädikate Eine Funktion, die nur die Werte 0 und 1 annimmt,

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Die Registermaschine (random access machine, RAM) 0 I 0 1 I 1 2 I 2 m I m Programm

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 15. primitive Rekursion und µ-rekursion Malte Helmert Gabriele Röger Universität Basel 22. April 2015 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit auf N ohne Maschinenmodelle

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

11. Übungsblatt. x y(top(push(x, y)) = y)

11. Übungsblatt. x y(top(push(x, y)) = y) Logik, Berechenbarkeit und Komplexität Sommersemester 2012 Hochschule RheinMain Prof. Dr. Steffen Reith 11. Übungsblatt 1. Ein Keller (engl. stack) ist eine bekannte Datenstruktur. Sei die Signatur S =

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Paarweise Unabhängigkeit vs. Unabhängigkeit

Paarweise Unabhängigkeit vs. Unabhängigkeit Paarweise Unabhängigkeit vs. Unabhängigkeit Beispiel: Wir betrachten das Szenario von zuvor. Wissen bereits, dass A 1, A 2 und A 1, B unabhängig sind. Analog folgt, dass A 2 und B unabhängige Ereignisse

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 13. LOOP-, WHILE- und GOTO-Berechenbarkeit Malte Helmert Gabriele Röger Universität Basel 9. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

= 7 (In Binärdarstellung: = 0111; Unterlauf) = -8 (In Binärdarstellung: = 1000; Überlauf)

= 7 (In Binärdarstellung: = 0111; Unterlauf) = -8 (In Binärdarstellung: = 1000; Überlauf) Musterlösung Übung 2 Aufgabe 1: Große Zahlen Das Ergebnis ist nicht immer richtig. Die Maschine erzeugt bei Zahlen, die zu groß sind um sie darstellen zu können einen Über- bzw. einen Unterlauf. Beispiele

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2

Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2 Primitive Rekursion Basisfunktionen: Konstante Funktion: const Stelligkeit. Wert des Ergebnisses. Unabhängig von den Parametern. const (,, pr,(g,h) (,)) Stelligkeit. Projektion: proj Gibt die Komponente

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

Speicher und Adressraum

Speicher und Adressraum Linearer Speicher (Adressraum) Technische Universität München Speicher und Adressraum Freie Speicherhalde (Heap) Freier Speicherstapel (Stack) Globale Variablen Bibliotheksfunktionen Laufzeitsystem Programmcode

Mehr

LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2

LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2 LOOP-Programme 1 LOOP-Programme verwenden (jeweils) endlich viele Variablen aus VAR := {X 0,X 1,X 2,...}, oft nur mit X,Y,Z,U,V,W bezeichnet, die als Register fungieren. Slide 1 Def (Meyer/Ritchie). LOOP-Programme

Mehr

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie (Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie 1) Schreiben Sie ein LOOP-Programm, das die Funktion f: N \ {0} N, f (n) = n n berechnet. Sie dürfen in Ihrem Programm die Multiplikation

Mehr

Programmieren für Fortgeschrittene

Programmieren für Fortgeschrittene Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2011/12 Programmieren für Fortgeschrittene Rekursive Spezifikationen Die folgende

Mehr

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Eine partielle Funktion ist eine Relation f A B; für jedes x dom(f) gibt es ein y range(f) mit x f y; wir schreiben statt f A B und x

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 7. Albert-Ludwigs-Universität Freiburg Bernhard Nebel 31. Oktober 2014 1 31. Oktober 2014 B. Nebel Info I 3 / 20 Um zu, muss man zuerst einmal. Abb. in Public

Mehr

Berechenbarkeitsmodelle

Berechenbarkeitsmodelle Berechenbarkeit 2 Endliche Automaten erkennen nicht alle algorithmisch erkennbaren Sprachen. Kontextfreie Grammatiken erzeugen nicht alle algorithmisch erzeugbaren Sprachen. Welche Berechnungsmodelle erlauben

Mehr

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält

Mehr

Mathematische Maschinen

Mathematische Maschinen Mathematische Maschinen Ziel: Entwicklung eines allgemeinen Schemas zur Beschreibung von (mathematischen) Maschinen zur Ausführung von Algorithmen (hier: (partiellen) Berechnungsverfahren). Mathematische

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #2 Phillip Keldenich, Arne Schmidt 10.11.2016 Organisatorisches Fragen? Checkliste: Anmeldung kleine Übungen Anmeldung Mailingliste Dies ersetzt nicht die Prüfungsanmeldung!

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

C- Kurs 04 Anweisungen

C- Kurs 04 Anweisungen C- Kurs 04 Anweisungen Dipl.- Inf. Jörn Hoffmann jhoffmann@informa@k.uni- leipzig.de Universität Leipzig Ins@tut für Informa@k Technische Informa@k Ausdrücke Institut für Informatik Anweisungen C-Programm

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Slide 1 Primitiv rekursive und µ-rekursive Funktionen Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Primitiv rekursive

Mehr

Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart)

Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart) Taxonomie + Schwierigkeit Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart) Beurteilen Synthese Konstruktion

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V7, 3.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

Schnittstellen, Stack und Queue

Schnittstellen, Stack und Queue Schnittstellen, Stack und Queue Schnittstelle Stack Realisierungen des Stacks Anwendungen von Stacks Schnittstelle Queue Realisierungen der Queue Anwendungen von Queues Hinweise zum Üben Anmerkung: In

Mehr

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden Maike Buchin 8. Februar 26 Stef Sijben Probeklausur Theoretische Informatik Bearbeitungszeit: 3 Stunden Name: Matrikelnummer: Studiengang: Geburtsdatum: Hinweise: Schreibe die Lösung jeder Aufgabe direkt

Mehr

Elementare Konzepte von

Elementare Konzepte von Elementare Konzepte von Programmiersprachen Teil 2: Anweisungen (Statements) Kapitel 6.3 bis 6.7 in Küchlin/Weber: Einführung in die Informatik Anweisungen (statements) in Java Berechnung (expression statement)

Mehr

HEUTE. Effizienzbeispiel: bekannte Version (Übung 04.11.04) Mathematik: Was ist Effizienz? vollständige Induktion

HEUTE. Effizienzbeispiel: bekannte Version (Übung 04.11.04) Mathematik: Was ist Effizienz? vollständige Induktion 17.11.04 1 HEUTE 17.11.04 3 Effizienzbeispiel: bekannte Version (Übung 04.11.04) Mathematik: was ist Effizienz? vollständige Induktion JAVA: Arrays die for -Schleife die Sprunganweisungen break und continue

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 22: Mima-X Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen 6. Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N

Mehr

Zusammenfassung Grundzüge der Informatik 4

Zusammenfassung Grundzüge der Informatik 4 Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1

Mehr

Programmieren in C. Rekursive Strukturen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Strukturen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Strukturen Prof. Dr. Nikolaus Wulff Rekursive Strukturen Häufig müssen effizient Mengen von Daten oder Objekten im Speicher verwaltet werden. Meist werden für diese Mengen

Mehr

Lösungsvorschläge zu Blatt Nr. 6

Lösungsvorschläge zu Blatt Nr. 6 Institut für Algorithmen und Kognitive Systeme Dr. Jörn Müller-Quade Carmen Kempka Christian Henrich Nico Döttling Vorlesung Informatik III Lösungsvorschläge zu Blatt Nr. 6 Aufgabe 1 (K) (4 Punkte) i.)

Mehr

Behauptung: Es gibt unendlich viele Primzahlen.

Behauptung: Es gibt unendlich viele Primzahlen. Behauptung: Es gibt unendlich viele Primzahlen. 1 Der Beweis von Euklid Annahme: Es gibt endlich viele Primzahlen {p 1,..., p r }. Wir bilden die Zahl n = p 1... p r + 1. Nun gibt es zwei Möglichkeiten.

Mehr

Rekursive Funktionen Basisfunktionen

Rekursive Funktionen Basisfunktionen Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P

Mehr

Einführung in Approximative Algorithmen und Parametrisierte Komplexität

Einführung in Approximative Algorithmen und Parametrisierte Komplexität Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr