a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile.

Größe: px
Ab Seite anzeigen:

Download "a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile."

Transkript

1 Elektromagnetische Wellen Wintersemester 2016/2017 Prof. Thomas Mussenbrock ID 1/131 Website: Übungsaufgaben Aufgabe 1 Diskutieren Sie den Helmholtz-Zerlegungssatz. Aufgabe 2 a) Zeigen Sie, dass gilt δ(x) = lim d l (x x 0 ), wobei d l (x) = 1 ( exp x2 l 0 2πl 2 2l 2 1 b) Zeigen Sie weiterhin, dass gilt δ(x) = lim exp l 0 2π Aufgabe 3 Zeigen Sie, dass gilt 2 1 r r = 4πδ( r r ). Aufgabe 4 ( l2 k 2 Geben Sie die Fourier-Reihe der periodischen Funktion f(x) = Sie dazu die entsprechenden Fourier-Koeffizienten. Aufgabe 5 2 ). ) exp (ixk) dk. p= δ(x 2πp) an. Berechnen Analysieren Sie das Funktionensystem U n (x) = 1 π cos(nx) für n = 1, 2, 3,..., U 0 (x) = 1 2π für n = 0 und V n (x) = 1 π sin(nx) für n = 1, 2, 3,... im Intervall π x π. a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile. b) Wie müssen die Koeffizienten a n und b n gewählt werden, um eine beliebige Funktion f(x) im gegebenen Intervall durch f(x) = a 0 U 0 + n=1 a nu n (x) + b n V n (x) auszudrücken? c) Diskutieren Sie eine Verallgemeinerung auf das Intervall d/2 x d/2. Aufgabe 6 Zeigen Sie, dass die folgenden Relationen gelten: a) V = 0 b) ( A B) = A B A B + B A B A c) V V = 2 V d) (f g) = f g + g f e) (f g) = f g g f

2 Aufgaben, Elektromagnetische Wellen, WS 2016/2017, Prof. T. Mussenbrock 2 Aufgabe 7 Gegeben sind die drei nicht komplanaren Vektoren a, b und c für die also gilt a ( b c) 0. Zeigen Sie, dass dann die drei reziproken Vektoren auch nicht komplanar sind und dass gilt: a) a a = b b = c c = 1 a = b c a ( b c), b c a = a ( b c), c = a b a ( b c) b) a b = a c = b a = b c = c a = c b = 0 c) Wenn a ( b c) V, dann a ( b c ) 1/V Aufgabe 8 Gegeben seien die allgemeinen Koordinaten q 1, q 2 und q 3. Zeigen Sie, dass r/ q 1, r/ q 2, r/ q 3 und q 1, q 2, q 3 zwei reziproke Systeme von Vektoren bilden und dass { ( r r r )} { q 1 ( q 2 q 3 )} = 1. q 1 q 2 q 3 Aufgabe 9 Gegeben seien die allgemeinen Koordinaten q 1, q 2 und q 3 und eine beliebige Funktion φ(q 1, q 2, q 3 ). Geben Sie den Gradienten φ in der allgemeinen Basis e qi an. Aufgabe 10 Gegeben seien die allgemeinen Koordinaten q 1, q 2 und q 3 und ein beliebiges Vektorfeld A(q 1, q 2, q 3 ). Geben Sie die Divergenz A in den allgemeinen Koordinaten q i an. Aufgabe 11 Gegeben seien die allgemeinen Koordinaten q 1, q 2 und q 3 und ein beliebiges Vektorfeld A(q 1, q 2, q 3 ). Geben Sie die Rotation A in der allgemeinen Basis e qi an. Aufgabe 12 Gegeben seien die allgemeinen Koordinaten q 1, q 2 und q 3 und eine beliebige Funktion ψ(q 1, q 2, q 3 ). Geben Sie den Deltaoperator ψ = 2 ψ = ψ in den allgemeinen Koordinaten q i an.

3 Aufgaben, Elektromagnetische Wellen, WS 2016/2017, Prof. T. Mussenbrock 3 Aufgabe 13 Die zylindrischen Koordinaten q i sind definiert durch die Transformation x = q 1 cos q 2, y = q 1 sin q 2, z = q 3. Die Koordinaten sind definiert im Bereich q 1 0, 0 q 2 < 2π und < q 3 <. a) Skizzieren Sie die Koordinatenlinien für q 1 = konst. und q 2 = konst. in der xy-ebene. b) Zeigen Sie, dass die Transformation eine orthogonale Transformation ist. c) Berechnen Sie die Lamé-Koeffizienten h i = r q i und drücken Sie die Basis ( e 1, e 2, e 3 ) durch die kartesische Basis ( e x, e y, e z ) aus. d) Zeigen Sie, dass die krummlinige Basis ( e 1, e 2, e 3 ) eine orthonormale Basis ist. Aufgabe 14 Die sphärischen Koordinaten q i sind definiert durch die Transformation x = q 1 cos q 2 sin q 3, y = q 1 sin q 2 sin q 3, z = q 1 cos q 3. Die Koordinaten sind definiert im Bereich q 1 0, 0 q 2 < 2π und 0 q 3 π. a) Skizzieren Sie die Koordinatenlinien für q 1 = konst. und q 2 = konst. in der xy-ebene. b) Zeigen Sie, dass die Transformation eine orthogonale Transformation ist. c) Berechnen Sie die Lamé-Koeffizienten h i = r q i und drücken Sie die Basis ( e 1, e 2, e 3 ) durch die kartesische Basis ( e x, e y, e z ) aus. d) Zeigen Sie, dass die krummlinige Basis ( e 1, e 2, e 3 ) eine orthonormale Basis ist. Aufgabe 15 Die elliptisch zylindrischen Koordinaten q i sind definiert durch die Transformation x = q 1 q 2, y = (q1 2 l2 )(1 q2 2), z = q 3. l > 0 ist ein Parameter für die Transformation. Die Koordinaten sind definiert im Bereich q 1 l > 0, q 2 1 und q 3 <. a) Skizzieren Sie die Koordinatenlinien für q 1 = konst. und q 2 = konst. in der xy-ebene. b) Zeigen Sie, dass die Transformation eine orthogonale Transformation ist. c) Berechnen Sie die Lamé-Koeffizienten h i = r q i und drücken Sie die Basis ( e 1, e 2, e 3 ) durch die kartesische Basis ( e x, e y, e z ) aus. d) Zeigen Sie, dass die krummlinige Basis ( e 1, e 2, e 3 ) eine orthonormale Basis ist.

4 Aufgaben, Elektromagnetische Wellen, WS 2016/2017, Prof. T. Mussenbrock 4 Aufgabe 16 Leiten Sie das Additionstheorem der Kugelflächenfunktionen her. Aufgabe 17 Gegeben ist eine Kugelschale mit dem Radius r 0. Die obere Hälfte liegt auf dem Potential V 0 und die untere Schale liegt auf dem Potential V 0. Berechnen Sie das Potential im Innern der Schale sowie im Außenraum. Berechnen Sie außerdem die Oberflächenladungsdichte auf der oberen Halbkugelschale. Aufgabe 18 Berechnen Sie das Magnetfeld B(r) eines unendlich langen, dünnen Drahtes, der von einem Gleichstrom I durchflossen wird, indem Sie a) das Biot-Savart-Integral auswerten. b) das Vektorpotential direkt auswerten. Aufgabe 19 Berechnen Sie das Vektorpotential A( r) sowie das Magnetfeld B( r) einer unendlich dünnen Kreisschleife mit dem Radius R 0, die von einem Gleichstrom I durchflossen wird. Aufgabe 20 Zeigen Sie, dass für die Zeitableitung eines Flussintegrals der folgende Ausdruck gilt: [ d B B d s = ( dt S(t) S(t) t + B ) ( v v B) ] d s Aufgabe 21 Leiten Sie aus den Maxwell-Gleichungen für Vakuum mit Quellen jeweils eine Wellengleichung für das elektrische Feld E und das magnetische Feld B her und diskutieren Sie den d Alembert- Operator.

5 Aufgaben, Elektromagnetische Wellen, WS 2016/2017, Prof. T. Mussenbrock 5 Aufgabe 22 Nehmen Sie an, dass Φ und A die Bedingungen der Lorenz-Eichung erfüllen. a) Welcher Gleichung muss χ genügen, damit Φ = Φ χ t erfüllt wie Φ? dieselbe inhomogene Wellengleichung b) Welcher Gleichung muss χ genügen, damit A = A+ χ dieselbe inhomogene Wellengleichung erfüllt wie A? c) Welche Gleichung muss χ erfüllen, so dass A = A+ χ und Φ = Φ χ t sind, die die Bedingungen der Lorenz-Eichung erfüllen? ebenfalls Potentiale Aufgabe 23 Zeigen Sie, dass man die Lösung der elektrodynamischen Potentiale auf die Lösung einer einzigen skalaren Wellengleichung zurückführen kann. Machen Sie hierzu den Ansatz A( r, t) = u( r, t) s. Dabei ist s ein beliebiger, aber konstanter Vektor. Aufgabe 24 Als Zwischenergebnis bei der Berechnung der Green-Funktion zur Wellengleichung findet man mit τ = t t und R = r r den bereichsweise definierten Ausdruck { G( R, 0 für τ < 0 τ) = c 1 2π 2 k sin(ckτ)ei k R d 3 k für τ > 0. Zeigen Sie, dass die Integration dieses Ausdrucks führt auf: ( ) G( R, δ t t r r c τ) = r r Aufgabe 25 Diskutieren Sie allgemein die d Alembert-Lösungen zur Wellengleichung. Aufgabe 26 Zeigen Sie, dass der Ausdruck E( r, t) = 1 (2π) 4 Ê( k, ω)e i( k r ωt) dωd 3 k (1) eine Lösung der Wellengleichung für das elektrische Feld im Vakuum ist. Nutzen Sie hierzu die d Alembert-Lösungen. Aufgabe 27 Leiten Sie die Randbedingungen für elektrische und magnetische Felder am Übergang zweier unterschiedlicher Medien her. Aufgabe 28 Berechnen Sie zur Ladungsdichte ρ( r, t) = N k=1 q kδ( r r k (t)) die Stromdichte j so, dass die Kontinuitätsgleichung erfüllt ist.

6 Aufgaben, Elektromagnetische Wellen, WS 2016/2017, Prof. T. Mussenbrock 6 Aufgabe 29 Die magnetostatische Gleichung B = µ 0 j ist nicht konsistent mit der Kontinuitätsgleichung für den Fall, dass die Ladungsdichte von der Zeit abhängt. Zeigen Sie, dass Konsistenz erreicht werden kann durch B ( ) = µ 0 j + j D und geben Sie einen sinnvollen Ausdruck für j D an. Aufgabe 30 Machen Sie sich noch einmal den aus der Mechanik stammenden Begriff Drehimpuls klar. Aufgabe 31 Gegeben ist ein Plattenkondensator. Das elektrische Feld zwischen den Elektroden ist durch E = E e z gegeben. Berechnen Sie die Kraft, die pro Flächenelement zwischen den Elektroden wirkt. Aufgabe 32 Zeigen Sie, dass die beiden Felder E( r, t) = E ( k r ckt) und B( r, t) = 1 c e k E ( r, t) alle vier Maxwell-Gleichungen erfüllen. Aufgabe 33 Zeigen Sie, dass mit E( r, t) = Ee i( k r ωt) und B( r, t) = Be i( k r ωt) für die elektromagnetische Energiedichte der folgende Zusammenhang gilt: Aufgabe 34 u em = 1 ( 2 ɛ E 2 + c 2 B 2) = 1 4 ɛ ( E E + c 2 B B ) ɛ Re [( E E + c 2 B B ) e 2i( k r ωt) ] Betrachten Sie eine monochromatische ebene Welle in einem unbegrenzten, isotropen, homogenen und nicht-leitenden Medium. Leiten Sie die folgenden Ausdrücke her: a) S = 1 [ 2 Re E H ] = 1 ɛ E 2 µ 2 n b) u em = 1 (ɛ E 4 E + 1µ ) B B = ɛ E 2 2 Aufgabe 35 Das elektrische Feld einer sogenannten evaneszenten Welle ist gegeben durch E = e y E 0 e i(hz ωt) κx a) Wie hängen die Parameter h, κ und ω zusammen? b) Berechnen Sie das zugehörige magnetische Feld. c) Unter welchen Bedingungen ist das magnetische Feld fast zirkular polarisiert? d) Berechnen Sie den zeitlich gemittelten Poynting-Vektor.

7 Aufgaben, Elektromagnetische Wellen, WS 2016/2017, Prof. T. Mussenbrock 7 Aufgabe 36 Eine ebene Welle ist gegeben durch die Phasoren der elektrischen und der magnetischen Feldstärke ( E = e x E 1 + e y E 2 e iψ) e ikz H = 1 ) ( e x E 2 e iψ + e y E 1 e ikz Z wobei Z der Feldwellenwiderstand und ψ die Phasenverschiebung zwischen der x- und der y- Komponente ist. a) Zeigen Sie, dass die durch die beiden Phasoren definierte ebene Welle die Maxwell-Gleichungen erfüllt. b) Skizzieren Sie die Ortskurve und identifizieren Sie den Polarisationszustand der Welle für die folgenden Parameter: i) E 1 = 1, E 2 = 2, ψ = 0, ii) E 1 = 1, E 2 = 2, ψ = π, iii) E 1 = 1, E 2 = 1, ψ = π/2, iv) E 1 = 1, E 2 = 2, ψ = π/2 und v) E 1 = 1, E 2 = 1, ψ = π/4. Aufgabe 37 Eine zirkular polarisierte Welle mit E 1 breitet sich in positive z-richtung aus und wird an der Stelle z = 0 reflektiert. Bei der reflektierten Welle handelt es sich ebenfalls um eine zirkular polarisierte Welle mit E 1. Der Phasor des gesamten elektrischen Feldes ist gegeben durch E = ( e x + i e y )E 1 e ikz + ( e x ± i e y )E 1e ikz a) Berechnen Sie die komplexen Poynting-Vektor für beide Fälle. b) Welche Wellenwiderstände muss die einfallende Wellen sehen, um die beiden reflektierten Wellen zu erzeugen? Aufgabe 38 Berechnen und beschreiben Sie das elektromagnetische Feld, das zu der Superposition zweier monochromatischer ebener Wellen gleicher Amplitude gehört, die sich in entgegengesetzte Richtungen ausbreiten. a) Die Welle, die sich in positive z-richtung ausbreitet, ist links-zirkular polarisiert. Die andere Wellen ist rechts-zirkular polarisiert. b) Beide Wellen sind links-zirkular polarisiert. Aufgabe 39 Zeigen Sie, dass eine beliebig elliptisch polarisierte ebene Welle dargestellt werden kann durch die Überlagerung zweier gegensinnig zirkular polarisierter ebener Wellen. Aufgabe 40 Diskutieren Sie das Zerfließen eines Wellenpakets beim Durchgang durch ein dispersives Medium.

8 Aufgaben, Elektromagnetische Wellen, WS 2016/2017, Prof. T. Mussenbrock 8 Aufgabe 41 a) Betrachten Sie einen einzelnen, zylindrischen Hohlleiter mit unendlicher Leitfähigkeit. Leiten Sie einen Ausdruck für die sogenannten Cutoff-Frequenz ω λ her und skizzieren Sie die Abhängigkeit der Wellenzahl k λ als Funktion der Frequenz ω für die verschiedenen Moden λ. b) Betrachten Sie nun einen rechteckigen Hohlleiter. Berechnen Sie die Moden, welche innerhalb des Wellenleiters angeregt werden (beziehungsweise sich ausbreiten) können. c) Leiten Sie einen Ausdruck für den Energiefluss und die Dämpfung innerhalb eines Wellenleiters her. d) Berechnen Sie die Moden, welche in zylindrischen Hohlraumresonatoren schwingfähig sind. Aufgabe 42 Entwickeln Sie das Coulomb-Integral nach Multipolen. Aufgabe 43 Berechnen explizite Ausdrücke für die Multipolmomente einer lokalisierten Ladungsverteilung bis zur Ordnung l = 2. Berechnen Sie außerdem die entsprechenden elektrostatischen Potentiale und Felder. Aufgabe 44 a) Berechnen Sie explizit das elektrische und magnetische Feld eines strahlenden Dipols sowohl in Nahfeld- als auch in Fernfeldnäherungen. b) Berechnen Sie die Gesamtstrahlungsleistung sowie die Winkelverteilung der abgestrahlten Leistung einer Linearantenne mit symmetrischer Speisung.

Lehrstuhl für Technische Elektrophysik Technische Universität München

Lehrstuhl für Technische Elektrophysik Technische Universität München Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Polarisationszustände, Polarisation von Materie

Polarisationszustände, Polarisation von Materie Übung 5 Abgabe: 31.03. bzw. 04.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisationszustände, Polarisation von Materie 1

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen

Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen Kapitel 4 Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen Nach Untersuchung des elektrostatischen und magnetostatischen Feldes in den letzen Kapiteln, kehren wir jetzt zum allgemeinen

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Polarisationszustände, Polarisation von Materie

Polarisationszustände, Polarisation von Materie Übung 5 Abgabe: 3.3. bzw. 4.3.27 Elektromagnetische Felder & Wellen Frühjahrssemester 27 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisationszustände, Polarisation von Materie Polarisationszustände

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( L)

Sessionsprüfung Elektromagnetische Felder und Wellen ( L) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10L) 22. August 2013, 14-17 Uhr, HIL F41 Prof. Dr. L. Novotny Bitte Beachten Sie: Diese Prüfung besteht aus 5 Aufgaben und hat 3 beidseitig

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Aufgabe 1 ( 4 Punkte)

Aufgabe 1 ( 4 Punkte) Elektromagnetische Felder und Wellen: zu Klausur 203-2 Aufgabe ( 4 Punkte) Eine kreisförmige Scheibe vom Radius R rotiert mit Umfangsgeschwindigkeit v. Wie groß ist v an einem beliebigen Punkt auf der

Mehr

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x), UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 27 Aufgabe Im freien Raum wird das elektrische Feld E E x a ) 2 ey gemessen. Wie groß ist die elektrische Ladung in einem würfelförmigen

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Wir betrachten hier den Polarisationszustand einer Normalmode

Wir betrachten hier den Polarisationszustand einer Normalmode Kapitel 5 Die Polarisation elektromagnetischer Wellen 5.1 Einführung Der zeitliche Verlauf des reellen elektrischen Feldvektors E r r,t) bestimmt den Polarisationszustand des Feldes. Wir betrachten hier

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, 28. 07. 2008, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Strahlungsdruck, Potentiale

Strahlungsdruck, Potentiale Übung 7 Abgabe: 29.04. bzw. 03.05.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Strahlungsdruck, Potentiale 1 Der Brewsterwinkel

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Formelsammlung Elektrodynamik

Formelsammlung Elektrodynamik Formelsammlung Elektrodynamik SS 2006 RWTH Aachen Prof. Kull Skript Simon Sawallich Inhaltsverzeichnis 1 Allgemeines 3 1.1 Funktionen............................................ 3 Trigonometrische Funktionen..................................

Mehr

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13. 13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,

Mehr

10. Wellenpakete im Vakuum

10. Wellenpakete im Vakuum ω m. Wellenpakete im Vakuum. Informationsübertragung durch elektromagnetische Wellen Ein wichtiger Anwendungsbereich elektromagnetischer Strahlung ist die Informationsübertragung. Monochromatische ebene

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

II. Klassische EM-Felder in Vakuum

II. Klassische EM-Felder in Vakuum Wellengleichung im Vakuum 1 II. Klassische EM-Felder in Vakuum Motivation: Berechnung der Felder ausserhalb von Quellen mittels Rand- bzw. Anfangswerten von Feldverteilungen zb Nahfeld in Nähe der Quelle

Mehr

Magnetostatik. B( r) = 0

Magnetostatik. B( r) = 0 KAPITEL III Magnetostatik Die Magnetostatik ist die Lehre der magnetischen Felder, die von zeitlich konstanten elektrischen Strömen herrühren. Im entsprechenden stationären Regime vereinfachen sich die

Mehr

Die Maxwell-Gleichungen

Die Maxwell-Gleichungen Die Maxwell-Gleichungen 1 Mathematische Grundlagen Wenn man erstmals mit der Elektrodynamik konfrontiert wird, hat man vermutlich mit der ektoranalysis und dem damit verbundenen Auftreten von partiellen

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( L)

Sessionsprüfung Elektromagnetische Felder und Wellen ( L) Sessionsprüfung Elektromagnetische Felder und Wellen (7-5-L) 5. Februar 4, 4.3-7.3 Uhr, ETF E Prof. Dr. L. Novotny Bitte Beachten Sie: Diese Prüfung besteht aus 4 Aufgaben und hat beidseitig bedruckte

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Lfd. Nr.: Matrikelnr. Σ 6 Ruhr-Universität Bochum Lehrstuhl für Hochfrequenztechnik Prof. Dr.-Ing. H. Ermert Prüfungsklausur und Leistungstest im Fach Elektromagnetische Wellen Prüfungsperiode Herbst Datum:.9.

Mehr

Kapitel 6. Elektromagnetische Wellen. 6.1 Lösung der Maxwellschen Gleichungen in einem Isolator

Kapitel 6. Elektromagnetische Wellen. 6.1 Lösung der Maxwellschen Gleichungen in einem Isolator Kapitel 6 Elektromagnetische Wellen 6.1 Lösung der Maxwellschen Gleichungen in einem Isolator In diesem Abschnitt wollen wir uns mit der Lösung der Maxwell Gleichungen in einem Isolator beschäftigen. Wir

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Herbst 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Reibung Ein Teilchen der Masse m bewege sich mit der Anfangsgeschwindigkeit v 0 > 0 in x-richtung und soll durch

Mehr

P d. b a. Die Ringscheibe wird nun mit einer geschlossenen Scheibe mit gleichem Außenradius b ausgetauscht.

P d. b a. Die Ringscheibe wird nun mit einer geschlossenen Scheibe mit gleichem Außenradius b ausgetauscht. Felder und Wellen 1/17 Klausur H14 Aufgabe 1 (16 Punkte) Hinweis: Die Aufgabenteile c) mit d) können unabhängig von den Aufgabenteilen a) und b) gelöst werden. Gegeben ist folgende Anordnung, die eine

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht Kapitel 3 Magnetostatik 3.1 Problemstellung In der Magnetostatik betrachten wir das Magnetfeld ~ B = ~ r ~ A,dasvoneiner gegebenen zeitunabhängigen Stromverteilung ~j (~r ) produziert wird. Die Feldlinien

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester / Anwesenheitsübung -.November Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) ( Punkte) Eine harmonische elektromagnetische

Mehr

24 Herleitung der Maxwell-Gleichungen

24 Herleitung der Maxwell-Gleichungen 24 Herleitung der Maxwell-Gleichungen In dieser Vorlesung werden wir die Maxwell-Gleichungen aus rein theoretischen Erwägungen herleiten. Dabei muß der Begriff Herleitung allerdings mit Vorsicht betrachtet

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Teil IV. Elektromagnetische Strahlung im Vakuum

Teil IV. Elektromagnetische Strahlung im Vakuum Teil IV Elektromagnetische Strahlung im Vakuum 73 Kapitel 9 Das elektromagnetische Feld im Vakuum 9.1 Homogene Wellengleichungen In diesem Kapitel untersuchen wir die Maxwell-Gleichungen E = 0; B = 0;

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Inhaltsverzeichnis Elektrostatische Felder

Inhaltsverzeichnis Elektrostatische Felder Inhaltsverzeichnis 1. Elektrostatische Felder... 1 ZusammenfassungwichtigerFormeln... 1 GrundgleichungenimVakuum... 1 ElementareFeldquellen... 2 Superposition... 2 MaterieimelektrischenFeld... 3 DifferentialgleichungenfürdasPotential...

Mehr

Aufgabe 1 ( 3 Punkte)

Aufgabe 1 ( 3 Punkte) Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 12-13 Prof. Dr. Alexander Mirlin Blatt 10

Mehr

Elektromagnetische Eigenschaften von Metallen, Potentiale

Elektromagnetische Eigenschaften von Metallen, Potentiale Übung 8 Abgabe: 02.05. bzw. 05.05.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektromagnetische Eigenschaften von Metallen, Potentiale

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( S)

Sessionsprüfung Elektromagnetische Felder und Wellen ( S) Vorname Name Matrikelnummer, Departement Mail@Address.com Lfd.Nr.: x/total Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10S) 07. Februar 2017, 09:00-12:00 Uhr, LFW B 1 Prof. Dr. L. Novotny

Mehr

Einführung. in die. Der elektrische Strom Wesen und Wirkungen

Einführung. in die. Der elektrische Strom Wesen und Wirkungen inführung in die Theoretische Phsik Der elektrische Strom Wesen und Wirkungen Teil IV: lektromagnetische Wellen Siegfried Petr Fassung vom 3 Januar 13 I n h a l t : 1 lektromagnetische Wellen in nicht

Mehr

Klassische Theoretische Physik

Klassische Theoretische Physik Josef Honerkamp Hartmann Römer Klassische Theoretische Physik Eine Einführung Zweite Auflage mit 131 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Inhaltsverzeichnis 1. Einleitung

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Theoretische Physik. Klassische. Römer. Eine Einführung. Dritte, durchgesehene und erweiterte Auflage mit 139 Abbildungen und 39 Übungen

Theoretische Physik. Klassische. Römer. Eine Einführung. Dritte, durchgesehene und erweiterte Auflage mit 139 Abbildungen und 39 Übungen 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Römer Klassische Theoretische Physik Eine Einführung Dritte, durchgesehene

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur E x = E 0 cos 2 { ωz c ωt }

Elektromagnetische Felder und Wellen: Lösung zur Klausur E x = E 0 cos 2 { ωz c ωt } Elektromagnetische Felder und Wellen: zur Klausur 202- Aufgabe ( 6 Punkte) Gegeben ist das H-Feld einer elektromagnetischen Welle als H = H 0 exp{i(ωt kz)} e y + ih exp{i(ωt kz)} e x Geben Sie die Polarisation

Mehr

Elektromagnetische Felder

Elektromagnetische Felder Manfred Heino Henke Elektromagnetische Felder 2., bearbeitete Auflage Springer 1. Elektrostatische Felder 1 Zusammenfassung wichtiger Formeln 1 Grundgleichungen im Vakuum 1 Elementare Feldquellen 2 Superposition

Mehr

VII. Inhaltsverzeichnis

VII. Inhaltsverzeichnis VII Inhaltsverzeichnis Vorwort Verzeichnis der verwendeten Symbole 1. FORMELSAMMLUNG 1 1.0 Kurzer Abriß der Vektoranalysis 1 1.0.1 Skalare Felder, Gradient 1 1.0.2 Vektorfelder, Rotation und Divergenz

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Elektrotechnik II Formelsammlung

Elektrotechnik II Formelsammlung Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Übersicht Hohlleiter. Wellenausbreitung. Allgemeine Bemerkungen. Lösung der Maxwell'schen Gleichungen

Übersicht Hohlleiter. Wellenausbreitung. Allgemeine Bemerkungen. Lösung der Maxwell'schen Gleichungen Übersicht Hohlleiter Vergleich: freie Wellen vs. Leitungswellen Ebene Welle im rechteckigen Hohlleiter "Geführte Wellenlänge" Übertragung von Signalen Moden Mathematische Herleitung (Rechteck) Aufteilung

Mehr

Übersicht Hohlleiter. Felder & Komponenten II. Copyright: Pascal Leuchtmann

Übersicht Hohlleiter. Felder & Komponenten II. Copyright: Pascal Leuchtmann Übersicht Hohlleiter Vergleich: freie Wellen vs. Leitungswellen Ebene Welle im rechteckigen Hohlleiter "Geführte Wellenlänge" Übertragung von Signalen Moden Mathematische Herleitung (Rechteck) Aufteilung

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Klausursammlung Grundlagen der Mechanik und Elektrodynamik

Klausursammlung Grundlagen der Mechanik und Elektrodynamik Klausursammlung Grundlagen der Mechanik und Elektrodynamik Fachschaft Physik Stand: Mai 27 Liebe Physik-Studis, hier haltet ihr die Klausursammlung für das Modul Grundlagen der Mechanik und Elektrodynamik

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2011-2 1 Aufgabe 1 Ein unendlich langer gerader Hohlzylinder (r 1, r 2 > r 1 ) führt die homogene Stromdichte j parallel zur z-achse in positiver Richtung.

Mehr

Theoretische Physik II: Elektrodynamik

Theoretische Physik II: Elektrodynamik Theoretische Physik II: Elektrodynamik Studentische Mitschrift in L A TEXvon Felix Kemeth nach Vorlesung von Prof. Weise 19. Juni 2012 Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Ladungen und Ströme...............................

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Ebene elektromagnetische Wellen

Ebene elektromagnetische Wellen Kapitel 5 Ebene elektromagnetische Wellen 5.1 Ebene Wellen in nichtleitendem Medium Eine sehr wichtige Folgerung aus den Maxwell-Gleichungen ist die Existenz von Wellen, die den Energietransport beschreiben.

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 2004 1 Aufgabe 1 Im Zentrum einer metallischen Hohlkugel mit Innenradius R 2 und Außenradius R 3 > R 2 befindet sich eine weitere metallische

Mehr

Green sche Funktionen, Dipolfelder

Green sche Funktionen, Dipolfelder Übung 8 Abgabe: 6.5. bzw..5.26 Elektromagnetische Felder & Wellen Frühjahrssemester 26 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Green sche Funktionen, Dipolfelder Nah- und Fernfelder des

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen Ferienkurs Theoretische Physik 3: Elektrodynamik Ausbreitung elektromagnetischer Wellen Autor: Isabell Groß Stand: 21. März 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Homogene Maxwell-Gleichungen

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Laufende Nr.: Matriel-Nr Seite: Ruhr-Uniersität Bochum Lehrstuhl für Hochfrequenztechni Σ 60 Prüfungslausur im Fach: Eletromagnetische Wellen am 06.0.997, 9:00 bis :00 Bitte die folgenden Hinweise beachten:.

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Elektromagnetische Felder und Wellen: Lösung zu Klausur t = ε 0 εe 0 ω cos{ωt + kx}.

Elektromagnetische Felder und Wellen: Lösung zu Klausur t = ε 0 εe 0 ω cos{ωt + kx}. Elektromagnetische Felder und Wellen: zu Klausur 2012-2 1 Aufgabe 1 ( 6 Punkte) In einem Material mit Dielektrizitätszahl ε wird das elektrische Feld E = E 0 sin{ωt + kx} e x gemessen. Welche Stromdichte

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( )

Sessionsprüfung Elektromagnetische Felder und Wellen ( ) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10) 23. August 2016, 09:00-12:00 Uhr, HIL F15 Prof. Dr. L. Novotny Bitte beachten Sie: Diese Prüfung besteht aus 3 Aufgaben. Die Angabe umfasst

Mehr

Wellenausbreitung inmedien und Brechung

Wellenausbreitung inmedien und Brechung Wellenausbreitung inmedien und Brechung In Kap. 1 haben wir die Ausbreitung von elektromagnetischen Wellen im Vakuum besprochen, unter anderem auch bei Anwesenheit von Hindernissen (Randbedingungen), was

Mehr

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1 Ferienkurs Elektrodynamik WS / Übungsblatt Tutoren: Isabell Groß, Markus Krottenmüller, Martin Ibrügger 9.3. Aufgabe - Geladene Hohlkugel In einer Hohlkugel befindet sich zwischen den Radien r und r eine

Mehr

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 2 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.7.28 Aufgaben. Ein Transformator mit Primärwindungen und 3 Sekundärwindungen wird mit einem Wechselstrom

Mehr