Einführung in die objektorientierte Programmierung mit C++

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die objektorientierte Programmierung mit C++"

Transkript

1 Prof. Dr. Thomas Klinker FB Elektrotechnik und Informatik Projekt im 4. Semester Elektrotechnik: Einführung in die objektorientierte Programmierung mit C++ Aufgabe 1: Schreiben Sie ein Programm, dass alle Rechenoperationen ermöglicht, die mit Matrizen ausgeführt werden können. Die Größe der Matrizen soll dabei beliebig sein, d.h. Sie benötigen dynamische Speicherverwaltung. Konstruieren Sie eine geeignete Klasse Matrix, die alle Elemente der Matrix, als dynamische Datenstruktur enthält. Es soll dann möglich sein, durch Überladen von Operatoren folgende Operationen mit Matrizen auszuführen: - Matrix-Addition, - Matrix-Subtraktion, - Matrix-Multiplikation und - die Multiplikation einer Matrix mit einem Skalar sowohl von links als auch von rechts. Bei der Ausführung dieser Operationen muss natürlich zuerst geprüft werden, ob die Dimensionen der beteiligten Matrizen die jeweilige Operation überhaupt erlauben. Matrix- Addition ist beispielsweise nur möglich, wenn die Dimensionen (Zahl der Zeilen und Zahl der Spalten) der beiden Matrizen identisch sind. Oder bei der Matrix-Multiplikation muss die Zahl der Spalten des linken Operanden gleich der Zahl der Zeilen des rechten Operanden sein. Bei dieser Aufgabe soll insbesondere der Umgang mit Klassen geübt werden, die dynamisch Speicher allokieren. Sorgen Sei also dafür, dass die Klasse Matrix über einen geeigneten Konstruktor und einen geeigneten Destruktor, sowie einen geeigneten Kopierkonstruktor und einen geeigneten Zuweisungsoperator verfügt. (Bei den beiden letzteren muss unbedingt ein deep copying durchgeführt werden!) Für die Ein- und Ausgabe der Matrizen sollen in geeigneter Weise der Ausgabeoperators << und der Eingabeoperators >> überladen werden. 1

2 Aufgabe 2: Schreiben Sie ein Programm, dass in einem Fenster ein Labyrinth darstellt und alle Wege aus diesem Labyrinth findet. Wenn man mit der Maus ein Startfeld anklickt, sucht das Programm von diesem Startpunkt aus alle Wege, die aus dem Labyrinth zu irgendeinem der möglichen Ausgänge hinausführen. Der Ablauf der Suche soll sich dabei auf dem Bildschirm verfolgen lassen. Auf der übernächsten Seite ist dargestellt, wie die graphische Darstellung des Labyrinths bzw. die Benutzeroberfläche des Programms aussehen sollte. Mit einem Mausklick bei gedrückter rechter Maustaste soll das Labyrinth auch noch editiert werden können. Lösungshinweis: Man kann das Labyrinth beispielsweise in einem zweidimensionalen char- Feld, char lab[maxz][maxs], speichern. Das Feld enthält z.b. jeweils ein Leerzeichen ' ' für ein freies Feld und ein 'X' für eine unpassierbare Mauer. Am einfachsten ist es, damit man sich insbesondere in der Testphase die manuelle Eingabe des Labyrinths erspart, das Labyrinth zu Beginn des Programmablaufs aus einer Textdatei, z.b. "labyrinth.txt" einzulesen, siehe nachfolgendes Beispiel. Die Zahlen in den ersten beiden Zeilen geben die Größe des Labyrinths an XXXXX XXXXXXX X X X X XX X XXXX X X X X X X X X XX XXXX X X X X X XXX X XX XXXX X X X X XX X XX XX XX XX X X XX X XXXXXX XX X X XX X XXXXXX XXXXXX Damit Sie sich vorrangig auf das Erstellen der graphischen Oberfläche konzentrieren können, ist die entscheidende Komponente für die Wegesuche, die rekursive Funktion wegsuchen() nachfolgend aufgeführt. Es handelt sich dabei um einen sogenannten "backtracking Algorithmus", der typisch für derartige Wegesuchen ist. Solche Algorithmen finden beispielsweise auch Anwendung bei der Suche nach einer optimalen Eisenbahnverbindung zwischen zwei Städten. 2

3 void wegsuchen(int i, int j) if (lab[i][j] == ' ') Sleep(MILLISEC); lab[i][j] = '.'; // Falls Platz (i,j) frei // Timedelay // Platz (i,j) betreten, d.h. mit // Punkt markieren // Platz (i,j) in der Graphik als besetzt markieren if ((i%(maxzeilen-1) == 0) (j%(maxspalten-1) == 0)) loesungen++; // Lösungszähler hochzählen // Ausgabe einer Massagebox, in der gemeldet wird, // dass eine Lösung gefunden wurde. Sleep(2000); else wegsuchen(i, j+1); // weitere Suche nach rechts wegsuchen(i-1, j ); // weitere Suche nach oben wegsuchen(i, j-1); // weitere Suche nach links wegsuchen(i+1, j ); // weitere Suche nach unten Sleep(MILLISEC); lab[i][j] = ' '; // Platz (i,j) wieder verlassen, // d.h. mit ' ' markieren // Platz (i,j) in der Graphik als frei markieren Sie müssen diese Funktion ergänzen und an geeigneter Stelle in Ihr Projekt einbauen. Die graphische Oberfläche sollte so aussehen wie, nachfolgend dargestellt: 3

4 Abb. 1 Graphische Darstellung des Labyrinths. Bei Mausklick auf ein freies Feld, soll die Wegesuche beginnen und der Ablauf der Suche soll sich dabei verfolgen lassen. Mit einem Mausklick bei gedrückter rechter Maustaste soll das Labyrinth auch noch editiert werden können. 4

5 Aufgabe 3: In dieser Aufgabe soll ein Programm geschrieben werden, welches die Berechnung und graphische Darstellung der Mandelbrotmenge erlaubt. Bei dieser Menge handelt es sich um ein Fraktal, eine Menge deren geometrische Struktur äußerst kompliziert ist. Der Rand der Menge ist so zerfasert, dass ihm eine gebrochenzahlige (fraktale) Dimension zugeordnet werden kann. Die Menge entsteht aber auf ganz einfache Weise. Man muss lediglich folgende iterierte Abbildung betrachten: z n+1 = z n 2 + c, (1) wobei sowohl z n als auch c komplexe Zahlen sind. Die Mandelbrotmenge entsteht, wenn man als Starwert der Folge z 0 = 0 wählt, und dem Parameter c einen Wert gibt, für den beispielsweise gilt -3 <= Re c <= 2 und -2 <= Im c <= 2. Für jeden fest gewählten Wert von c aus diesem Rechteck in der komplexen Zahlenebene und den speziell gewählten Startwert z 0 = 0 bestimmt man nun, ob die Folge z n gemäß Gl. (1) gegen Unendlich geht oder nicht (in letzterem Fall läuft die Folge auf einen Grenzzyklus mit unterschiedlicher Periodenlänge zu). Ob die Folge gegen Unendlich geht, bestimmt man einfach dadurch, dass man prüft, ob die Folge nach N (z.b. N = 128) Iterationen einen Kreis um den Ursprung mit dem Radius r = 5 verlassen hat oder nicht. Anders ausgedrückt, man prüft bei jeder Iteration n nach, ob noch z n < r gilt oder nicht. Ist dies bei einer bestimmten Iteration n nicht mehr der Fall, läuft die Folge also für den so gewählten c-wert nach Unendlich, so färbt man den entsprechenden Punkt in der komplexen c-ebene mit der n-ten Farbe aus einer bestimmten, von Ihnen festzulegenden Farbpalette ein. Bleibt aber z n < r für alle Iterationen n (n = 1,...,N) so wird der entsprechende Punkt in der komplexen c-ebene schwarz eingefärbt. Man kann nun sehr deutlich erkennen, wie kompliziert der Rand der Menge ist. Um dies noch besser sichtbar zu machen, kann man eine Zoomfunktion implementieren. Es soll also möglich sein, mit der Maus einen Rechteckbereich der Mandelbrotmenge zu markieren und für den so gekennzeichneten Ausschnitt die Mandelbrotmenge neu zu berechnen und in dem gesamten Fenster darzustellen. Mittels dieses Vergrößerungsmechanismus lassen sich die Randstrukturen der Mandelbrotmenge noch genauer untersuchen. Insbesondere erkennt man die Selbstähnlichkeit der Mandelbrotmenge, d.h. die gesamte Menge enthält sich selbst immer wieder in verkleinertem Maßstab. Dies ist eine wesentliche Eigenschaft, die allen Fraktalen gemeinsam ist. In den folgenden Abbildungen ist die originale Mandelbrotmenge (Auch Apfelmännchen genannt) zusammen mit einem vergrößerten Ausschnitt zu sehen. Durch das Wählen verschiedener Farbpaletten lassen sich immer wieder neue interessante Farbdarstellung der Mandelbrotmenge erzeugen. Hier kann man also regelrecht künstlerisch tätig werden. 5

6 Abb 2. Die Mandelbrotmenge (oberes Diagramm) und die Vergrößerung eines Ausschnitts (unteres Diagramm) aus dem Bereich der Antenne der oberen Bildes. 6

Praktikum: Objektorientierte Programmierung mit Java

Praktikum: Objektorientierte Programmierung mit Java Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Informations- und Elektrotechnik Prof. Dr. Thomas Klinker Praktikum: Objektorientierte Programmierung

Mehr

Programmierung mit C Zeiger

Programmierung mit C Zeiger Programmierung mit C Zeiger Zeiger (Pointer)... ist eine Variable, die die Adresse eines Speicherbereichs enthält. Der Speicherbereich kann... kann den Wert einer Variablen enthalten oder... dynamisch

Mehr

Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 2

Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 2 Fakultät Verkehrswissenschaften Friedrich List, Professur für Verkehrsbetriebslehre und Logistik Modul Entscheidungsunterstützung in der Logistik Einführung in die Programmierung mit C++ Übung 2 SS 2016

Mehr

Die Involutfunktion Inhalt

Die Involutfunktion Inhalt Die Involutfunktion Inhalt Inhalt...1 Grundlagen... Basic-Programm...3 Programm-Ablaufplan Involut rekursiv...3 Programm Involut rekursiv...4 Programme für CASIO fx-7400g PLUS...5 Involutfunktion...5 Involut

Mehr

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier FRAKTALE Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier I. Fraktale allgemein a. Mathematischer Algorithmus i. Komplexe Zahlen b. Konvergieren und Divergieren i. Bei Mandelbrotmengen

Mehr

Übung Datenstrukturen. Objektorientierung in C++

Übung Datenstrukturen. Objektorientierung in C++ Übung Datenstrukturen Objektorientierung in C++ Aufgabe 1a - Farben Schreiben Sie eine Klasse COLOR zur Beschreibung von Farben. Eine Farbe werde hierbei additiv durch ihren Rot-, Grün- und Blauanteil

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

G Schriftliche Kommunikation Excel-Einführung

G Schriftliche Kommunikation Excel-Einführung G Schriftliche Kommunikation Excel-Einführung Der Einsatz des Computers ist für mathematische Berechnungen bzw. Darstellungen unentbehrlich geworden. Mit Hilfe von Tabellenkalkulationen (TK) werden in

Mehr

PIWIN 1 Übung Blatt 5

PIWIN 1 Übung Blatt 5 Fakultät für Informatik Wintersemester 2008 André Gronemeier, LS 2, OH 14 Raum 307, andre.gronemeier@cs.uni-dortmund.de PIWIN 1 Übung Blatt 5 Ausgabedatum: 19.12.2008 Übungen: 12.1.2009-22.1.2009 Abgabe:

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Grundlagen der Informatik I (Studiengang Medieninformatik)

Grundlagen der Informatik I (Studiengang Medieninformatik) Grundlagen der Informatik I (Studiengang Medieninformatik) Thema: 3. Datentypen, Datenstrukturen und imperative Programme Prof. Dr. S. Kühn Fachbereich Informatik/Mathematik Email: skuehn@informatik.htw-dresden.de

Mehr

Informationsverarbeitung im Bauwesen

Informationsverarbeitung im Bauwesen V14 1 / 30 Informationsverarbeitung im Bauwesen Markus Uhlmann Institut für Hydromechanik WS 2009/2010 Bemerkung: Verweise auf zusätzliche Information zum Download erscheinen in dieser Farbe V14 2 / 30

Mehr

Schleifenanweisungen

Schleifenanweisungen Schleifenanweisungen Bisher: sequentielle Abarbeitung von Befehlen (von oben nach unten) Nun: Befehle mehrfach ausführen (= Programmschleife): for-anweisung - wenn feststeht, wie oft z.b.: eine Berechnung

Mehr

Dateiname Name(n) und Matrikelnr. des/der Bearbeiter Tel.-Nr. und E-Mail-Adresse für den Fall, dass die Diskette nicht lesbar ist.

Dateiname Name(n) und Matrikelnr. des/der Bearbeiter Tel.-Nr. und E-Mail-Adresse für den Fall, dass die Diskette nicht lesbar ist. Matrizenrechner Schreiben Sie ein CProgramm, das einen Matrizenrechner für quadratische Matrizen nachbildet. Der Matrizenrechner soll mindestens folgende Berechnungen beherrschen: Transponieren, Matrizenaddition,

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

GemBrowser Geografisches Informationssystem

GemBrowser Geografisches Informationssystem GemBrowser Geografisches Informationssystem Kurzanleitung aktualisiert: 8. Februar 2010 1 Inhaltsverzeichnis 1 Einleitung 3 2 Aufbau und Funktionalität 3 2.1 Titel.......................................

Mehr

Dokumentation CT TG13 Labview. 1.1 Drehregler: 0 C bis 100 C, Anzeige analog und als Zahlenwert

Dokumentation CT TG13 Labview. 1.1 Drehregler: 0 C bis 100 C, Anzeige analog und als Zahlenwert Übungsaufgaben Labview 1 Simulation Temperaturerfassung mit While-Schleife 1.1 Drehregler: 0 C bis 100 C, Anzeige analog und als Zahlenwert Mit dem Drehregler Temperaturvorgabe wird der Wert zwischen 0

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Texte einfügen und formatieren Einfügen von Text PowerPoint ist kein Textverarbeitungsprogramm, mit dem man beliebig schreiben kann. Um Texte auf die Folie zu bringen, muss ein Platzhalter benutzt oder

Mehr

Microsoft Excel 2007 Basis. Leseprobe

Microsoft Excel 2007 Basis. Leseprobe Microsoft Excel 2007 Basis Kapitel 4 - Mit Formeln und Funktionen arbeiten 4.1 Formeln und Funktionen eingeben 4.1.1 Aufbau von Formeln und mathematische Operatoren in Formeln 4.1.2 Aufbau von Funktionen

Mehr

10:Exkurs MATLAB / Octave

10:Exkurs MATLAB / Octave 10:Exkurs MATLAB / Octave MATLAB (bzw. Octave als freie Version) ist eine numerische Berechnungsumgebung wurde vorrangig zum Rechnen mit Vektoren und Matrizen entworfen ist interaktiv benutzbar, vergleichbar

Mehr

Algorithmen & Programmierung. Ausdrücke & Operatoren (1)

Algorithmen & Programmierung. Ausdrücke & Operatoren (1) Algorithmen & Programmierung Ausdrücke & Operatoren (1) Ausdrücke Was ist ein Ausdruck? Literal Variable Funktionsaufruf Ausdruck, der durch Anwendung eines einstelligen (unären) Operators auf einen Ausdruck

Mehr

Erstellen einer GoTalk-Auflage

Erstellen einer GoTalk-Auflage Erstellen einer GoTalk-Auflage 1. Bei dem Startbild Vorlage öffnen wählen 2. In dem folgenden Fenster Geräte Schablonen doppelt anklicken. - und schon öffnet sich der gesamte Katalog der verfügbaren Talker-Auflagen...eigentlich

Mehr

Einführung in die Programmierung

Einführung in die Programmierung : Inhalt Einführung in die Programmierung Wintersemester 2009/0 : Technik vs. Iteration Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund 2 Definition (einfache,

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Proseminar Computergraphik, 10. Juni 2008 Christoph Dähne Seite 1 Inhalt Polygonnetze 3 Knotenliste 3 Kantenliste 3 Parametrisierte kubische Kurven 4 Definition 4 Stetigkeit

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 26 Einstieg in die Informatik mit Java Felder Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 26 1 Was sind Felder? 2 Vereinbarung von Feldern 3 Erzeugen von Feldern

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Grundlagen Übersicht 1 Kommentare 2 Bezeichner für Klassen, Methoden, Variablen 3 White Space Zeichen 4 Wortsymbole 5 Interpunktionszeichen 6 Operatoren 7 import Anweisungen 8 Form

Mehr

Einführung in die Informatik I (autip)

Einführung in die Informatik I (autip) Einführung in die Informatik I (autip) Dr. Stefan Lewandowski Fakultät 5: Informatik, Elektrotechnik und Informationstechnik Abteilung Formale Konzepte Universität Stuttgart 24. Oktober 2007 Was Sie bis

Mehr

Tutoraufgabe 1 (Zweierkomplement): Lösung: Programmierung WS16/17 Lösung - Übung 2

Tutoraufgabe 1 (Zweierkomplement): Lösung: Programmierung WS16/17 Lösung - Übung 2 Prof. aa Dr. J. Giesl Programmierung WS16/17 F. Frohn, J. Hensel, D. Korzeniewski Tutoraufgabe 1 (Zweierkomplement): a) Sei x eine ganze Zahl. Wie unterscheiden sich die Zweierkomplement-Darstellungen

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen

Mehr

Semestralklausur Einführung in die Programmierung, WS 2005/06, Seite 1/6 Name, Vorname, Matrikelnummer: Gruppe A

Semestralklausur Einführung in die Programmierung, WS 2005/06, Seite 1/6 Name, Vorname, Matrikelnummer: Gruppe A Semestralklausur Einführung in die Programmierung, WS 2005/06, 6.2.2006 Seite 1/6 Name, Vorname, Matrikelnummer: Unterschrift: 1 Grundlagen (5+5 Punkte) Gruppe A a) Schreiben Sie eine Klassenmethode mit

Mehr

OOP und Angewandte Mathematik. Eine Einführung in die Anwendung objektorientierter Konzepte in der angewandten Mathematik

OOP und Angewandte Mathematik. Eine Einführung in die Anwendung objektorientierter Konzepte in der angewandten Mathematik Eine Einführung in die Anwendung objektorientierter Konzepte in der angewandten Mathematik WS 2011/12 Inhalt Test-Besprechung! Ziele verdeutlichen Große Bild von OOP Wiederholung: Einbettung als Technik

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Algorithmen & Programmierung. Rekursive Funktionen (1)

Algorithmen & Programmierung. Rekursive Funktionen (1) Algorithmen & Programmierung Rekursive Funktionen (1) Berechnung der Fakultät Fakultät Die Fakultät N! einer nichtnegativen ganzen Zahl N kann folgendermaßen definiert werden: d.h. zur Berechnung werden

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Softwareentwicklungspraktikum Nebenfach

Softwareentwicklungspraktikum Nebenfach PD Dr. Ulrich Schöpp Ludwig-Maximilians-Universität München Dr. Steffen Jost Institut für Informatik Stephan Barth WS 2016/17 Softwareentwicklungspraktikum Nebenfach Blatt 3 Dieses Arbeitsblatt ist innerhalb

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

S. d. I.: Programieren in C Folie 4-1. im Gegensatz zu Pascal gibt es in C kein Schlüsselwort "then"

S. d. I.: Programieren in C Folie 4-1. im Gegensatz zu Pascal gibt es in C kein Schlüsselwort then S. d. I.: Programieren in C Folie 4-1 4 Anweisungen 4.1 if-anweisung 1) if (Ausdruck) 2) if (Ausdruck) } else im Gegensatz zu Pascal gibt es in C kein Schlüsselwort "then" es wird nur der numerische Wert

Mehr

1 Aufgaben verwalten und delegieren

1 Aufgaben verwalten und delegieren 1 Aufgaben verwalten und delegieren Unter Aufgaben versteht man in Outlook Vorgänge, die keinen festgelegten Zeitrahmen haben, aber dennoch erledigt werden müssen. Sie haben allerdings die Möglichkeit,

Mehr

Ausbildungsziel: Sicherer Umgang mit der Maus

Ausbildungsziel: Sicherer Umgang mit der Maus Ausbildungsziel: Sicherer Umgang mit der Maus Die sichere Mausbedienung ist Grundlage für die schnelle Arbeit am Computer! Am Anfang der Computer gab es keine Maus, da es auch keine graphischen Oberflächen

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 5 Referenzdatentypen - Felder... 5-2 5.1 Eindimensionale Felder - Vektoren... 5-3 5.1.1 Vereinbarung... 5-3 5.1.2 Referenzen sind keine Felder... 5-4 5.1.3 Kopieren eindimensionaler Felder... 5-6

Mehr

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Matrixzugriff Wir wollen nun unsere Einführung in die Arbeit mit Vektoren und Matrizen in MATLAB

Mehr

Die Platzierung im Seitenbehang

Die Platzierung im Seitenbehang Die Platzierung im Seitenbehang easyboard bietet vielfältige Möglichkeiten der Platzierung von Warenträgern und Produkten. So lassen sich Warenträger beispielsweise um 90 oder gar 180 Grad drehen und der

Mehr

5. Elementare Befehle und Struktogramme

5. Elementare Befehle und Struktogramme 5. Elementare Befehle und Struktogramme Programmablauf Beschreibung des Programmablaufs mittel grafischer Symbole Beispiel : Flussdiagramme ja nein Besser : Struktogramme Dr. Norbert Spangler / Grundlagen

Mehr

FH München, FB 03 FA WS 06/07. Ingenieurinformatik. Name Vorname Matrikelnummer Sem.Gr.: Hörsaal Platz

FH München, FB 03 FA WS 06/07. Ingenieurinformatik. Name Vorname Matrikelnummer Sem.Gr.: Hörsaal Platz FH München, FB 03 FA WS 06/07 Ingenieurinformatik Name Vorname Matrikelnummer Sem.Gr.: Hörsaal Platz Zulassung geprüft vom Aufgabensteller: Teil I Aufg. 2 Aufg. 3 Aufg. 4 Aufg. 5 Summe Note Aufgabensteller:

Mehr

Einführung in die Programmierung Wintersemester 2011/12

Einführung in die Programmierung Wintersemester 2011/12 Einführung in die Programmierung Wintersemester 2011/12 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund : Kontrollstrukturen Inhalt Wiederholungen - while

Mehr

Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls

Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls Die Mappe enthält Makros, ohne die sie nicht funktionsfähig ist. Die Sicherheitseinstellungen müssen entsprechend gewählt und die Ausführung von Makros

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch

In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch Kapitel Matrizen in C++ In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch 1 const int n=10; 3 double a[n][n]; gegeben. Allerdings gibt es bei dieser Methode eine Reihe

Mehr

Operatoren für elementare Datentypen Bedingte Anweisungen Schleifen. Programmieren I. Martin Schultheiß. Hochschule Darmstadt Wintersemester 2010/2011

Operatoren für elementare Datentypen Bedingte Anweisungen Schleifen. Programmieren I. Martin Schultheiß. Hochschule Darmstadt Wintersemester 2010/2011 Programmieren I Martin Schultheiß Hochschule Darmstadt Wintersemester 2010/2011 1 Operatoren für elementare Datentypen 2 Bedingte Anweisungen 3 Schleifen Zuweisungsoperator Die Zuweisung von Werten an

Mehr

4. Mit Fenstern arbeiten

4. Mit Fenstern arbeiten 4. Mit Fenstern arbeiten In dieser Lektion lernen Sie... wie Sie Fenster wieder schließen das Aussehen der Fenster steuern mit mehreren Fenstern gleichzeitig arbeiten Elemente von Dialogfenstern Was Sie

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

3 Mit Programmen und Fenstern

3 Mit Programmen und Fenstern 34 MIT PROGRAMMEN UND FENSTERN ARBEITEN 3 Mit Programmen und Fenstern arbeiten In dieser Lektion lernen Sie wie Sie Programme starten und wieder beenden wie Sie mit Fenstern arbeiten Ein Programm starten

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren 3. Kontrollstrukturen 04.11.2015 Prof. Dr. Ralf H. Reussner Version 1.1 LEHRSTUHL FÜR SOFTWARE-DESIGN UND QUALITÄT (SDQ) INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION (IPD),

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Unterlagen zur Veranstaltung Einführung in die Objektorientierte Programmierung Mit Processing Alexis Engelke Sommer 2012 Alexis Engelke Inhalt Level 1: Geometrie Hintergrundfarben Punkte, Linien und deren

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen 11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt

Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt Herbert Zeitler Wolfgang Neidhardt Fraktale und Chaos Eine Einführung Wissenschaftliche Buchgesellschaft Darmstadt f INHALT Einleitung 1 I. Iteration reeller Funktionen und Chaos in dynamischen Systemen.

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 2 AM 06./07.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free()

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free() Übungspaket 29 Dynamische Speicherverwaltung malloc() und free() Übungsziele Skript In diesem Übungspaket üben wir das dynamische Alloziieren 1. und Freigeben von Speicherbereichen 2. von Zeichenketten

Mehr

Graphische Benutzungsoberflächen mit Java. Einführung in NetBeans

Graphische Benutzungsoberflächen mit Java. Einführung in NetBeans Graphische Benutzungsoberflächen mit Java Einführung in NetBeans Graphische Benutzungsoberflächen! Interaktion mit dem Programm! Datenein- und ausgabe! Rückmeldungen über Verarbeitung der Daten! Visualisierung

Mehr

Grundlagen Programmierung

Grundlagen Programmierung 13. Aufgabe (13 Punkte) Schreiben Sie eine neue Klasse Zahlenanalyse, mit der Integer-Objekte genauer betrachtet werden können. Bei den zu entwickelnden Methoden kann es immer sinnvoll sein, sich den Ablauf

Mehr

Ausbildungsziel: Die Nutzung der Zwischenablage -Kopieren und Einfügen-

Ausbildungsziel: Die Nutzung der Zwischenablage -Kopieren und Einfügen- Ausbildungsziel: Die Nutzung der Zwischenablage -Kopieren und Einfügen- Die Möglichkeit am Computer einmal erledigte Arbeiten beliebig oft zu duplizieren bzw wieder zu verwenden, ist wohl der größte Fortschritt

Mehr

4 Formeln und Funktionen 4.1 Arithmetische Formeln

4 Formeln und Funktionen 4.1 Arithmetische Formeln Tabellenkalkulation mit Microsoft Excel 2013 4 Formeln und Funktionen 4.1 Arithmetische Formeln 4 Formeln und Funktionen 4.1 Arithmetische Formeln 4.1.1 Gute Praxis bei der Erstellung von Formeln kennen,

Mehr

Kreuzzahlrätsel. Senkrecht. A C die Hälfte von 1516 F der 8. Teil von 200. H Zahl mit der Quersumme

Kreuzzahlrätsel. Senkrecht. A C die Hälfte von 1516 F der 8. Teil von 200. H Zahl mit der Quersumme Kreuzzahlrätsel Die Zeichen bedeuten für jede einzelne Aufgabe: mehrstellige natürliche Zahl Rechenoperationszeichen Ziffer 0,, 2,... oder 9 In das Kreuzzahlrätsel ist immer das Ergebnis der Aufgabe einzutragen.

Mehr

Oberstufe Mathematik - Fraktale Annika Maier, Anja Schmid; Abitur 2004. Fraktale

Oberstufe Mathematik - Fraktale Annika Maier, Anja Schmid; Abitur 2004. Fraktale Fraktale 1 Einleitung : Um solche grafischen Gebilde handelt es sich in unserem mathematischen Referat Wir werden in möglichst nicht-mathematischer Sprache, also für jedermann zugänglich, beschreiben,

Mehr

Java Kurzreferenz Für Fortgeschrittene

Java Kurzreferenz Für Fortgeschrittene Java Kurzreferenz Für Fortgeschrittene 1. Initialisierung von Applets: Die Methode init Wenn ein Applet gestartet wird, werden immer zwei Methoden aufgerufen. Diese heissen init und start. Um gewisse Berechnungen

Mehr

Programmieren in C/C++ und MATLAB

Programmieren in C/C++ und MATLAB Programmieren in C/C++ und MATLAB Sven Willert Sabine Schmidt Christian-Albrechts-Universität zu Kiel CAU 4-1 Übung 1) Schreiben Sie ein Programm, das die Fläche unter einer Parabel, also das Integral

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge

Mehr

Programmierung (Java) WS 2005/06. Sudoku Solver. Programmierprojekt aus Praktikum aus Programmierung

Programmierung (Java) WS 2005/06. Sudoku Solver. Programmierprojekt aus Praktikum aus Programmierung Sudoku Solver Programmierprojekt aus Praktikum aus Programmierung 1. Problembeschreibung 1.1 Problemdefinition Ziel des Projekts ist es ein Programm zu schreiben dass ein Sudoku Rätsel lösen kann. Die

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

= 7 (In Binärdarstellung: = 0111; Unterlauf) = -8 (In Binärdarstellung: = 1000; Überlauf)

= 7 (In Binärdarstellung: = 0111; Unterlauf) = -8 (In Binärdarstellung: = 1000; Überlauf) Musterlösung Übung 2 Aufgabe 1: Große Zahlen Das Ergebnis ist nicht immer richtig. Die Maschine erzeugt bei Zahlen, die zu groß sind um sie darstellen zu können einen Über- bzw. einen Unterlauf. Beispiele

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Praxisprojekt zur Optimierung der Platzsuche

Praxisprojekt zur Optimierung der Platzsuche Praxisprojekt zur Optimierung der Platzsuche Automatisierte Berechnung von Ordnungszahlen Vanessa Sylvia Ulrich Hochschule Bonn-Rhein-Sieg Fachbereich Informatik Grantham-Allee 20 53757 Sankt Augustin

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten Operatoren, Ausdrücke und Anweisungen Kontrollstrukturen (Steuerfluss)

Mehr

Greenfoot: Verzweigungen

Greenfoot: Verzweigungen Greenfoot: Verzweigungen Nicolas Ruh und Dieter Koch Betrachten wir die act()-methode des Wombats aus dem Wombats-Szenario: Wie interpretieren Sie diesen Code? (einfach übersetzen) Falls der Wombat ein

Mehr

Programmieren in C++ Überladen von Methoden und Operatoren

Programmieren in C++ Überladen von Methoden und Operatoren Programmieren in C++ Überladen von Methoden und Operatoren Inhalt Überladen von Methoden Überladen von Operatoren Implizite und explizite Konvertierungsoperatoren 7-2 Überladen von Methoden Signatur einer

Mehr

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte Elementare Schritte Ein elementarer Berechnungsschritt eines Algorithmus ändert im Allgemeinen den Wert von Variablen Zuweisungsoperation von fundamentaler Bedeutung Zuweisungsoperator In Pascal := In

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Übung 1: Fraktale und Double Buffering

Übung 1: Fraktale und Double Buffering FHA: Graphische Datenverarbeitung Wintersemester 2002/03 Übung 1: Fraktale und Double Buffering René Müller 29. Oktober 2002 1 Einleitung 1.1 Folgen komplexer Zahlen Mandelbrot- und Julia-Mengen sind Objekte

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

2 Text, Formeln und Graphiken in Word 2007

2 Text, Formeln und Graphiken in Word 2007 1 Übung Word 2007 Melden Sie sich am Relayserver appsrelay.ph.tum.de an und doppel-klicken Sie auf das Icon des Internet-Explorers. Klicken Sie auf Microsoft Office Word 2007 und wählen Sie Connect. Melden

Mehr