TC1 Grundlagen der Theoretischen Chemie

Größe: px
Ab Seite anzeigen:

Download "TC1 Grundlagen der Theoretischen Chemie"

Transkript

1 TC1 Grundlagen der Theoretischen Chemie Irene Burghardt Praktikumsbetreuung: Robert Binder Jan von Cosel Haleh Hashemi Haeri Claudia Grytz Vorlesung: Di 10h-12h, Fr 9h-10h Übungen: Fr 10h-11h / 13h-14h Web site: 1

2 Wasserstoffatom Vorgehensweise 1. Hamiltonoperator in geeigneten Koordinaten (hier: sphärische Polarkoordinaten) 2. Lösung der Schrödingergleichung (hier: analytisch via Variablenseparation) Vorarbeiten: sphärische Polarkoordinaten Drehimpuls Quantenteilchen auf einem Ring Quantenteilchen auf einer Kugel 2

3 Sphärische Polarkoordinaten 3

4 Drehimpuls L 2 = h 2 l(l + 1) z Hydrogen Levels L = z hm l y x Re view : Quantum numbers of the hydrogenic atom z v L = v r v r y v x Angular momentum quantum number : l = 0,1, 2, 3,..n - 1 is related to the length L of the angular momentum of the electron as it moves around nucleus Magnetic quantum number : ml = l, l 1, l 2,..., l r is related to the length of the projection of L on to r an arbitrary vector (e ). z 4

5 Kinetische Energie in Polarkoordinaten Ĥ = h2 2m 2 + V (r) = h2 ( 2 2m x y + 2 ) + V (r) 2 z 2 = h2 {( 2 ) + 2 ) + 2m r r( 1 ( 1 2 r r 2 sinθ sphärische Polarkoordinaten: x = r sin θ cos φ ; y = r sin θ sin φ ; z = rcos θ θ sinθ θ + 1 sin 2 θ 2 )} φ 2 + V (r) = ˆp2 r 2m + ˆl 2 2mr 2 + V (r) 5

6 Drehimpuls (kartesische Koordinaten) klassisch-mechanischer Drehimpuls: l = r p e x e y e z = x y z p x p y p z = yp z zp y zp x xp z = l x l y xp y yp x l z 3 = ɛ ijk a i b j e k ɛ ijk = Levi-Civita-Symbol i,j,k=1 Vektor, der senkrecht auf der Ebene steht, in der die Bewegung stattfindet 6

7 Drehimpuls / Forts. z.b. Bewegung in der xy-ebene: x(t) = r(t)cosφ(t) l x = l y = 0 y(t) = r(t)sinφ(t) l z = mr 2 φ = Iω = l ω = φ = Winkelgeschwindigkeit I = mr 2 = Trägkeitsmoment 7

8 Quantenmechanischer Drehimpuls ˆl = ˆr ˆp = ŷˆp z ẑ ˆp y ẑ ˆp x ˆxˆp z ˆxˆp y ŷˆp x = i h ŷ z ẑ y ẑ x ˆx z ˆx y ŷ x = ˆlx ˆly ˆlz ˆl ist ein Vektor mit Operatorkomponenten ˆl x, ˆl y, ˆl z Betragsquadrat des quantenmechanischen Drehimpuls-Operators: ˆl2 = ˆl2 x + ˆl 2 y + ˆl 2 z 8

9 Drehimpuls-Operator in Polarkoordinaten kartesische Komponenten in Polarkoordinaten: ˆl = ˆlx ˆly ˆlz = ( h i )(sinφ( θ + cotθcosφ( φ ) ( h i )(cosφ( θ cotθsinφ( φ ) ( h i )( φ ) Betragsquadrat in Polarkoordinaten: ˆl2 = ˆl 2 x + ˆl 2 y + ˆl 2 z = h 2 ( 1 sinθ θ sinθ θ + 1 sin 2 θ 2 ) φ 2 9

10 Kinetische Energie in Polarkoordinaten Ĥ = h2 2m 2 + V (r) = h2 ( 2 2m x y + 2 ) + V (r) 2 z 2 = h2 {( 2 ) + 2 ) + 2m r r( 1 ( 1 2 r r 2 sinθ sphärische Polarkoordinaten: x = r sin θ cos φ ; y = r sin θ sin φ ; z = rcos θ θ sinθ θ + 1 sin 2 θ 2 )} φ 2 + V (r) = ˆp2 r 2m + ˆl 2 2mr 2 + V (r) 10

11 Eigenfunktionen und Eigenwerte Komponenten ˆl x, ˆl y, ˆl z kommutieren nicht, z.b.: [ˆl x, ˆl y ] = i hˆl z D.h. die Komponenten haben keine gemeinsamen Eigenfunktionen Daher können nicht alle Drehimpulskomponenten gleichzeitig mit beliebiger Genauigkeit bestimmt werden (Unschärferelation) ˆl x, ˆl y, ˆl z kommutieren jedoch einzeln mit dem Betragsquadrat ˆl 2 Es können eine der kartesischen Komponenten sowie das Betragsquadrat festgelegt werden: z.b. (ˆl z, ˆl 2 ) 11

12 Unschärferelation Wenn zwei Operatoren keine gemeinsamen Eigenfunktionen haben, kommutieren sie nicht, d.h. ihre Wirkung auf die Wellenfunktion hängt von der Reihenfolge ab: [Â, ˆB] = Â ˆB ˆBÂ 0 Für diesen Fall lässt sich zeigen: δa δb 1 2 C wobei δa = A 2 A 2 = Standardabweichung und Ĉ = [Â, ˆB]/i Spezialfall: Ort/Impuls können nicht gleichzeitig festgelegt werden: δx δp 1 2 h 12

13 Kommutatorrelationen Drehimpulskomponenten [ˆl x, ˆl y ] = [(ŷ ˆp z ẑ ˆp y ), (ẑ ˆp x ˆxˆp z )] = [ŷ ˆp z, ẑ ˆp x ] [ŷ ˆp z, ˆxˆp z ] [ẑ ˆp y, ẑ ˆp x ] + [ẑ ˆp y, ˆxˆp z ] = ŷ[ˆp z, ẑ]ˆp x ˆxˆp y [ẑ, ˆp z ] = i h( ŷ ˆp x + ˆxˆp y ) = i hˆl z Kommutator mit dem Betragsquadrat: [ˆl 2, ˆl z ] = [ˆl 2 x + ˆl 2 y + ˆl 2 z, ˆl z ] = 0 13

14 Eigenfunktionen und Eigenwerte Eigenwertgleichung für das Betragsquadrat: ˆl2 Y lm = h 2 l(l + 1)Y lm Eigenwertgleichung für die z-komponente: ˆl z Y lm = hmy lm Y lm sind die Kugelflächenfunktionen Drehimpulsquantenzahl l magnetische Quantenzahl m = l,..., l 14

15 Drehimpulsquantisierung Betrag und z-komponente des Drehimpulses können gleichzeitig gemessen werden x, y-komponenten sind unscharf 15

16 Quantenteilchen auf einem Ring Ĥ = h2 ( 2 2m x + 2 ) 2 y 2 Polarkoordinaten: x = r cos φ ; y = r sinφ = h2 [( 2 ) + 1 ) + 2m r r( 1 ( 2 )] 2 r r 2 φ 2 Betrachte nur den winkelabhängigen Teil: Ĥ φ = 1 r 2 ( 2 φ 2 ) 16

17 Quantenteilchen auf einem Ring, cont d Lösung der Schrödingergleichung: ˆl2 z ψ(φ) = Eψ(φ) ˆlz 2I = i h d dφ I = mr 2 ψ(φ) = Ne im lφ m l = 2IE h Eindeutigkeit der Wellenfunktion (single-valuedness): ψ(φ) = ψ(φ + 2π) Ne im lφ = Ne im l(φ+2π) daher: e 2πim l = 1 oder: m l = 0, ±1, ±2,... Quantisierung: ψ ml (φ) = 1 2π e im lφ E ml = h2 m 2 l 2I m l = 0, ±1, ±2,... 17

18 Quantenteilchen auf einer Kugel sphärische Polarkoordinaten: x = r sin θ cos φ ; y = r sin θ sin φ ; z = rcos θ Ĥ = h2 2m 2 = h2 ( 2 2m x y + 2 ) 2 z 2 = h2 {( 2 ) + 2 ) + 2m r r( 1 ( 1 2 r r 2 sinθ θ sinθ θ + 1 sin 2 θ 2 )} φ 2 18

19 Quantenteilchen auf einer Kugel Schrödingergleichung für den Winkelanteil: ˆl2 ( 2I ψ(θ, φ) = Eψ(θ, φ) ˆl2 = h 2 1 sinθ θ sinθ θ + 1 sin 2 θ 2 ) φ 2 Separation der Variablen: ψ(θ, φ) = Θ(θ)Φ(φ) Φ(φ): identisch zum Teilchen auf einem Ring : Quantenzahl m l Θ(θ): assoziierte Legendre-Polynome: Quantenzahl l Lösungen = Kugelflächenfunktionen: Y lml (θ, φ) = Θ lml (θ)φ ml (φ) 19

20 Kugelflächenfunktionen (Spherical Harmonics) 20

21 Kugelflächenfunktionen (Spherical Harmonics) Eigenwerte: E = h2 l(l + 1) 2I Entartung bzgl. m l = l,... + l 21

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Wasserstoffatom Vorlesung: Mo 1h-12h, Do9h-1h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

10 Quantenmechanik in 3 Dimensionen

10 Quantenmechanik in 3 Dimensionen Skript zur 2. Vorlesung Quantenmechanik, Freitag den 27. Mai, 20. 0 Quantenmechanik in 3 Dimensionen 0. Freies Teilchen Die Operatoren H = ˆp 2 /2m, p x, p y, p z sind alle unter einander vertauschbar:

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

Drehimpuls Allgemeine Behandlung

Drehimpuls Allgemeine Behandlung Drehimpuls Allgemeine Behandlung Klassisch: = r p = r mv β m p Kreuprodukt weier Vektoren: = r p = r p sinβ 1 i Drehimpuls Allgemeine Behandlung 1 k j 1 Einheitsvektoren Vektordarstellung: = xi + yj+ k

Mehr

Erklärungen zur Vorlesung TC I

Erklärungen zur Vorlesung TC I Erklärungen zur Vorlesung TC I Sebastian Lenz Institut für Physikalische und Theoretische Chemie Goethe Universität 19. Mai 2011 Inhalt 1 Grundlagen 2 Operatoren in kartesischen Koordinaten 3 Operatoren

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

j +L z k i, j, k :Einheitsvektoren in x,y,z-richtung Die einzelnen Komponenten lassen sich gemäß folgender Determinante berechnen:

j +L z k i, j, k :Einheitsvektoren in x,y,z-richtung Die einzelnen Komponenten lassen sich gemäß folgender Determinante berechnen: 68 10 Starrer Rotator 10.6 Drehimpuls L Der Drehimpuls spielt sowohl beim Starren Rotator als auch beim Wasserstoffatom eine zentrale Rolle. Seine Eigenschaften sollen daher gesondert betrachtet werden.

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin

Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin Lukas Neumeier August 3, 010 Inhaltsverzeichnis 1 Drehimpulsoperator 1 1.1 Drehimpulsalgebra...............................

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Institut für Technologie Übungen zur Modernen Theoretischen Physik I SS 4 Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Blatt 8 Andreas Heimes, Dr. Andreas Poenicke Besprechung

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses 1 Drehimpuls Wir werden im folgenden dreidimensionale Probleme der Quantenmechanik behandeln. Ein wichtiger Begriff dabei ist der Drehimpuls. Wir werden zuerst die Definition des quantenmechanischen Drehimpulses

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 4. Michael Mittermair, Daniel Jost 01/09/14

Physik-Department. Ferienkurs zur Experimentalphysik 4. Michael Mittermair, Daniel Jost 01/09/14 Physik-Department Ferienkurs zur Experimentalphysik 4 Michael Mittermair, Daniel Jost 01/09/14 Technische Universität München Inhaltsverzeichnis 1 Einleitung 1 2 Quantenmechanik 1 2.1 Wellencharakter und

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik Ferienkurs Quantenmechanik Drehimpulse und Schördingergleichung in 3D 4.0.0 Mathias Kammerlocher Inhaltsverzeichnis Wichtige Kommutatoren Drehimpuls. Drehungen..................................... Drehimpulsalgebra...............................

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Die Schrödingergleichung in zwei Dimensionen

Die Schrödingergleichung in zwei Dimensionen a Die Schrödingergleichung in zwei Dimensionen ψ(x, y) E pot 0 b Im zwei-dimensionalen Fall können wir für die Wellenfunktion ψ(x, y) einen Ansatz mit separierten Variablen machen, ψ(x, y) = f(x) (y).

Mehr

Das Wasserstoffatom. Kapitel 11

Das Wasserstoffatom. Kapitel 11 04 Kapitel Das Wasserstoffatom Das Verständnis des einfachsten Atoms, d.h. des Wasserstoffatoms, ist eine der Grundlagen des Verständnisses aller Atome. Die theoretische Behandlung des Wasserstoffatoms

Mehr

Theorie der chemischen Bindung

Theorie der chemischen Bindung Mitschrieb zur im Sommersemester 2010 gehaltenen Vorlesung Theorie der chemischen Bindung Prof. Dr. W. M. Klopper Matthias Ernst Stand: 13. April 2011 Das vorliegende Skript basiert auf der Vorlesung,

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de)

Mehr

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 07.06.2018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 12.06.2018

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 07/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 07/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 07/09/15 Technische Universität München Inhaltsverzeichnis 1 Einleitung 1 2 Quantenmechanik - Just gettin' started 1 2.1 Wellencharakter

Mehr

Φ muss eineindeutig sein

Φ muss eineindeutig sein phys4.018 Page 1 10.6.2 Lösungen für Φ Differentialgleichung: Lösung: Φ muss eineindeutig sein dies gilt nur für m l = 0, ±1, ±2, ±3,, ±l m l ist die magnetische Quantenzahl phys4.018 Page 2 10.6.3 Lösungen

Mehr

8 Das Wasserstoffatom

8 Das Wasserstoffatom 8DAS WASSERSTOFFATOM 41 Nomenklatur von Rotations-Vibrations-Übergängen. Bei den Spektroskopikern hat sich folgender Code eingebürgert: J := J J = 1 0 1 Code O P Q R S Hinter diese Buchstaben schreibt

Mehr

2.1 Die Heisenbergschen Vertauschungsrelationen

2.1 Die Heisenbergschen Vertauschungsrelationen Kapitel 2 Die Schrödinger-Gleichung Einführung Im Formalismus der Quantenmechanik werden Observablen z. B. Ort, Impuls oder Energie eines Teilchens im Allgemeinen nicht durch Zahlen x, p x, E, etc. oder

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4. Grundlagen der Quantenmechanik

FERIENKURS EXPERIMENTALPHYSIK 4. Grundlagen der Quantenmechanik FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 1 am 02.09.2013 Grundlagen der Quantenmechanik Hannah Schamoni Inhaltsverzeichnis 1 Der Welle-Teilchen-Dualismus 2 1.1 Wellenpakete.....................................

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM. Emissions- und Absorptionsspektren der Atome

Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM. Emissions- und Absorptionsspektren der Atome Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Lösung der Schrödingergleichung

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung):

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 1 Entwicklung und Grundlagen der Quantenphysik Stephan Huber, Markus Kotulla, Markus Perner 29.08.2011 Inhaltsverzeichnis 1 Einführung 1 2 Materiewellen und Wellenfunktion

Mehr

Drehimpulse in der Quantenmechanik

Drehimpulse in der Quantenmechanik Kapitel 5 Drehimpulse in der Quantenmechanik Zur Beschreibung vieler quantenmechanischer Systeme ist es nötig, Drehimpulse zu berücksichtigen: Elektronen in Atomen und in Molekülen besitzen einen Bahndrehimpuls,

Mehr

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

Quantenmechanische Probleme in drei Raumdimensionen

Quantenmechanische Probleme in drei Raumdimensionen KAPITEL VI Quantenmechanische Probleme in drei Raumdimensionen VI. Dreidimensionaler Kastenpotential Der Vollständigkeit halber... VI. Teilchen in einem Zentralpotential In diesem Abschnitt werden die

Mehr

J 2. Rotations-Spektroskopie. aus der klassischen Physik. Drehimpuls. Energie eines Rotators. Trägheitsmoment

J 2. Rotations-Spektroskopie. aus der klassischen Physik. Drehimpuls. Energie eines Rotators. Trägheitsmoment Rotations-Spektroskopie aus der klassischen Physik J E = I Drehimpuls Energie eines Rotators Trägheitsmoment I = mr Atommassen Geometrie von Molekülen Abstandsinformationen!!! C 3 -Rotation C -Rotation

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 7/8 Klassische Theoretische Physik III Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 3 Ausgabe: Fr,..7 Abgabe: Fr, 7..7 Besprechung: Mi,..7 Aufgabe 8: Prolate

Mehr

3 Einfache, vollständig lösbare quantenmechanische Systeme

3 Einfache, vollständig lösbare quantenmechanische Systeme 3 Einfache, vollständig lösbare quantenmechanische Systeme Durch eine geeignete Transformation der Variablen lassen sich einige Probleme, die nach genauen Lösungen der Schrödingergleichung verlangen, auf

Mehr

Φ(r) = Φ(r) E l = h2. Ein schwingender Rotor mit veränderlichen Abstand der beiden Atome R(t)

Φ(r) = Φ(r) E l = h2. Ein schwingender Rotor mit veränderlichen Abstand der beiden Atome R(t) 3 Quantisierung des starren Körpers Nocheinmal starrer Rotator Ein starrer Körper oder ein starres zweiatomiges Molekül ist ein Idealisierung. Sind die Kräfte stark, die das Molekül zusammenhalten, oder

Mehr

Repetitorium Theoretische Mechanik, SS 2008

Repetitorium Theoretische Mechanik, SS 2008 Physik Departement Technische Universität München Dominik Fauser Blatt Repetitorium Theoretische Mechanik, SS 8 Aufgaben zum selbständigen Lösen. Ring mit Kugel Ein Ring, auf dem eine Kugel angebracht

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Dr. Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de) Dr. Haleh Hashemi

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

Polynomiale Basisfunktionen und Quadratur (1)

Polynomiale Basisfunktionen und Quadratur (1) Polynomiale Basisfunktionen und Quadratur (1) Christian Otto Universität des Saarlandes 10.05.2016 Gliederung 1 Polynomiale Basissysteme Einleitung Gram-Schmidt-Verfahren und Rekursionsbeziehung Gautschi-Stieltjes-Methode

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung Schrödingergleichung des Wasserstoffatoms, Quantenmechanische Addition von Drehimpulsen, Korrekturen der einfachen Theorie des Wasserstoffatoms, Atome im Magnetfeld

Mehr

Theoretische Chemie/Quantenchemie

Theoretische Chemie/Quantenchemie Theoretische Chemie/Quantenchemie BC 5.5.3 Stefanie Gräfe & Dirk Bender Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie Wintersemester 2017/2018 St. Gräfe/D. Bender Theoretische

Mehr

Vorlesung 11: Lösung der SG für das H-Atom. Folien auf dem Web:

Vorlesung 11: Lösung der SG für das H-Atom. Folien auf dem Web: Vorlesung 11: Roter Faden: Lösung der SG für das H-Atom Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Mai 19, 2005 Atomphysik

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

Atom-/Quantenmechanik Fragenkatalog

Atom-/Quantenmechanik Fragenkatalog Atom-/Quantenmechanik Fragenkatalog Prof. Dr. Andreas Görling Institut für Physikalische und Theoretische Chemie Friedrich Alexander Universität Erlangen Nürnberg Egerlandstraße 3, 91058 Erlangen Prof.

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 1 Quantenphysik Grundlagen Florian Lippert & Andreas Trautner 27.08.2012 Inhaltsverzeichnis 1 Das Bohrsche Atommodell 1 1.1 Bohrsche Postulate..............................

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Jürgen Plötner (ploetner@theochem.uni-frankfurt.de) Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de)

Mehr

Matrixdarstellung von Operatoren

Matrixdarstellung von Operatoren Kapitel 6 Matrixdarstellung von Operatoren 6 Matrizen in der Quantenmechanik Die Entdeckung der Quantenmechanik geht auf Werner Heisenberg zurück Er assoziierte physikalische Größen wie x und p mit Feldern

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

QM in 3 Dimensionen. Kapitel Schrödinger Gleichung in 3 Dimensionen

QM in 3 Dimensionen. Kapitel Schrödinger Gleichung in 3 Dimensionen Kapitel 4 QM in 3 Dimensionen 4.1 Schrödinger Gleichung in 3 Dimensionen Schrödinger Gl.: i h Ψ t = HΨ Hamilton-Operator bekommen wir aus der klassischen Energie: 1 2 mv2 +V = 1 2m p2 x +p2 y +p2 z +V

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 016 Prof. Dr. A. Shnirman Blatt 6 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag

Mehr

9 Translationen und Rotationen

9 Translationen und Rotationen 9 Translationen und Rotationen Übungen, die nach Richtigkeit korrigiert werden: Aufgabe 91: Drehungen Der quantenmechanische Rotationsoperator ˆR η,e dreht einen Zustand ψ um den Winkel η um die Achse

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

ψ(x,t) = Ae i(kx ωt) (4.5) (analog zu (2.2)) k = 2π λ e

ψ(x,t) = Ae i(kx ωt) (4.5) (analog zu (2.2)) k = 2π λ e 20 4 Einteilchen-Wellenfunktionen 4.4 Freie Teilchen Auf ein freies Elektron wirkt keine äußere Kraft. Damit ist gemäß Gleichung (1.8) das Potential V null. Die Einelektronenfunktionen sind sogenannte

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

12 Translation und Rotation

12 Translation und Rotation Skript zur 17. Vorlesung Quantenmechanik, Freitag den 17. Juni, 2011. 12 Translation und Rotation 12.1 Translation (Verschiebung) Verschiebungdesquantenmechanischen SystemsumeineStreckea, ψ ψ (oderäquivalent:

Mehr

Grundlagen und Formalismus

Grundlagen und Formalismus Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Grundlagen und Formalismus Aufgabe 1 (*) Betrachte

Mehr

Nach der Drehung des Systems ist der neue Zustandsvektor

Nach der Drehung des Systems ist der neue Zustandsvektor Vorlesung 1 Die allgemeine Theorie des Drehimpulses Eine Drehung des Quantensystems beschreibt man mit Hilfe des Drehimpulsoperators. Um den Drehimpulsoperator zu konstruieren, betrachten wir einen Vektor

Mehr

1. Klausur zur Quantenmechanik I - Lösungen

1. Klausur zur Quantenmechanik I - Lösungen Prof. U. Mosel, Dr. H. van Hees 06. Juni 2009 1. Klausur zur Quantenmechanik I - Lösungen Aufgabe 1 (10 Punkte) (a) Ein OperatorÔ ist linear, wenn für alle quadratintegrablen Wellenfunktionenψ 1,ψ 2 undλ

Mehr

Festkörperelektronik 4. Übung

Festkörperelektronik 4. Übung Festkörperelektronik 4. Übung Felix Glöckler 23. Juni 2006 1 Übersicht Themen heute: Feedback Spin Drehimpuls Wasserstoffatom, Bohr vs. Schrödinger Wasserstoffmolekülion, kovalente Bindung Elektronen in

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

10.6 Mehratomige ideale Gase

10.6 Mehratomige ideale Gase 10.6 Mehratomige ideale Gase Wir wenden uns jetzt dem Problem molekularer idealer Quantengase zu. 10.6.1 Quantenmechanik der starren Hantel Eine starre Hantel aus zwei Punktmassen m 1 und m 2, die durch

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

Drehimpulse und Atomniveaus für PdM1

Drehimpulse und Atomniveaus für PdM1 Drehimpulse und Atomniveaus für PdM1 Nils Haag, 31.5.2018 1) Drehimpuls in der Quantenmechanik 1a) Kugelkoordinaten In Atomen macht das Rechnen mit kartesischen Koordinaten kaum Sinn, da die zu lösenden

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Zusammenfassung Wasserstoffatom

Zusammenfassung Wasserstoffatom Ach ja... ter Teil der Vorlesung Prof. Dr. Tobias Hertel Lehrstuhl II für Physikalische Chemie Institut für Physikalische und Theoretische Chemie Raum 13 Tel.: 0931 318 6300 e-mail: tobias.hertel@uni-wuerzburg.de

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (falahati@theochem.uni-frankfurt.de) Pierre Eisenbrandt

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung Vorlesung 8 Spontane Abstrahlung, Multipolentwiclung Wir betrachten das Wasserstoffatom im P -Zustand. Falls wir ein Wasserstoffatom in Isolation betrachten, ist der P -Zustand stabil. Wie wir aber schon

Mehr

Ferienkurs Quantenmechanik. Drehimpuls und Spin

Ferienkurs Quantenmechanik. Drehimpuls und Spin Theoretische Physik III Ferienkurs Quantenmechanik Sommersemester 2014 Seite 1 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Drehimpuls und Spin Häug hängt unser

Mehr

Ferienkurs Quantenmechanik. Drehimpuls, Spin und H-Atom

Ferienkurs Quantenmechanik. Drehimpuls, Spin und H-Atom Ferienkurs Quantenmechanik Sommersemester 215 Seite 1 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Drehimpuls, Spin und H-Atom Häug hängt unser Potential

Mehr

Physik IV - Schriftliche Sessionsprüfung Sommer 2009

Physik IV - Schriftliche Sessionsprüfung Sommer 2009 Physik IV - Schriftliche Sessionsprüfung Sommer 2009 9:00 11:00, Samstag, 8. August 2009, HG F1 & HG F3 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt SECHS Aufgaben auf VIER SEITEN. Es können insgesamt

Mehr

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v.

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v. Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe 24.06.09 Abgabe 01.07.09 Besprechung n.v. Aufgabe 1 (Auswahlregeln) Die Wechselwirkung (engl. interaction)

Mehr

Matrixelemente von Tensoroperatoren und die Auswahlregeln

Matrixelemente von Tensoroperatoren und die Auswahlregeln Vorlesung 3 Matrixelemente von Tensoroperatoren und die Auswahlregeln In der Quantenmechanik müssen wir ab und zu die Matrixelemente von verschiedenen Operatoren berechnen. Von spezieller Bedeutung sind

Mehr

2.1. Das Wasserstoffatom Atommodelle (vor 1900)

2.1. Das Wasserstoffatom Atommodelle (vor 1900) 2.1. Das Wasserstoffatom 2.1.1. Atommodelle (vor 1900) 105 2.1.2. Eigenzustände des Wasserstoffatoms Ein einfaches Beispiel: Wasserstoff in Wechselwirkung mit einem klassischen Feld. Eigenenergien wasserstoffähnlicher

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Aufgabe 49 (E): Bohrsches Atommodell (8 Punkte)

Aufgabe 49 (E): Bohrsches Atommodell (8 Punkte) UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Georg Maret (Experimentalphysik) Raum P 1009, Tel. (07531)88-4151 E-mail: Georg.Maret@uni-konstanz.de Prof. Dr. Matthias Fuchs (Theoretische Physik) Raum

Mehr

zum Ende seines Lebens infolge schlechter Durchblutung des Gehirn an schwerem Gedächtnisschwund.

zum Ende seines Lebens infolge schlechter Durchblutung des Gehirn an schwerem Gedächtnisschwund. Kapitel 12 Der Zeeman-Effekt In diesem Kapitel befassen wir uns mit dem Einfluss eines externen Magnetfelds auf das Spektrum eines Atoms. Wir werden sehen, dass infolge dieser Beeinflussung die Entartung

Mehr

THEORETISCHE PHYSIK C NACHKLAUSUR Prof. Dr. J. Kühn Dienstag, 27.4.2 Dr. S. Uccirati 7:3-2:3 Uhr Bewertungsschema für Bachelor Punkte Note < 4 5. 4-5.5 4.7 6-7.5 4. 8-9.5 3.7 2-2.5 3.3 22-23.5 3. 24-25.5

Mehr