Hörsaalübung 5, Analysis II

Größe: px
Ab Seite anzeigen:

Download "Hörsaalübung 5, Analysis II"

Transkript

1 Fachbereich Mathematik der Universität Hamburg Dr.H.P.Kiani Hörsaalübung 5, Analysis II SoSe 8, 4./ 5. Juni Rotationskörper und Kurvenintegrale Die ins Netz gestellten Kopien der Unterlagen sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen zusätzlichen Erläuterungen sind diese Unterlagen unvollständig (z. Bsp. fehlen oft wesentliche Voraussetzungen). Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Eine Veröffentlichung dieser Unterlagen an anderer Stelle ist untersagt!

2 x a dx = xa+ a+ + C a R, a x dx = ln x + C sin(β x) dx = β cos(β x) +C β R, β cos(β x) dx = β sin(β x) +C β R, β cos dx = tanx + C x e (β x) dx = e(β x) β + C β R, β sinh xdx = coshx + C cosh xdx = sinhx + C +x dx = arctan x + C x dx = Artanh x + C x < dx x = arcsinx + C x < dx = Arsinh x + C = ln(x + +x ) +x dx = Arcosh x + C x > x

3 Volumen von Rotationskörpern Sei K der Körper K der durch Rotation des Graphens der Funktion f : [a, b] R + {}, f(x) =y um die x-achse entsteht. Zur Volumenberechnung zerlegen wir [a, b] in Teilintervalle Z : a = x < x < x < x n = b. und schneiden den Körper mit Ebenen durch x i, parallel zur y z Ebene Abbildung : Rotation von f(x) = x sin(x) um die x-achse 3

4 Es entstehen Kreisscheiben mit den Flächeninhalten Q(x) = π (f(x i )) Approximiere den Körper, der zwischen der Mantelfläche und der x-achse entsteht, durch Zylinderscheiben parallel zur y z Ebene, mit den Radien f(x i ) und der Höhen x i x i. V V n := n i= π ( f(x i )) (x i x i ) Ist f integrierbar, so konvergiert V n bei gegen Null konvergierenden Feinheiten der Zerlegungen gegen das Volumen des Rotationskörpers und die Summen konvergieren gegen ein Integral. Nämlich gegen V = π b a ( f(x)) dx. 4

5 Beispiel: Rotation der oberen Hälfte der Ellipse x a + y b =, a,b > um die x-achse. Volumen des Rotationsellipsoids x a + y b + z b =, a,b >. Rotiere y = f(x) =b x a, a x a. V = π a a b [ = πb x x a ] a x3 3a dx = πb a = 4 3 πab a ( x a ) dx 5

6 3 z=sin(x pi/) Mantelflächen von Rotationskörpern Betrachte Körper K dessen Mantelfläche durch Rotation des Graphens einer Funktion f :[a, b] R + {}, f(x) =y um die x-achse entsteht. Schneide den Körper mit Ebenen parallel zur y z Ebene und approximiere Mantelfläche Mantelflächen von Kegelstümpfen. 6

7 Exkurs: Mantelflächen von Kegelstümpfen l h l r 5 l =l l h r Für die Mantelfläche M K eines Kegels gilt: M K πl = πr πl = r l = M k = πr l. Für den Kegelstumpf gilt M = πr l πr l. Strahlensätze: r r = l l oder r l = r l und damit für die Mantelfläche des Kegelstumpfes: M = πr l πr l = πr l +πr l πr l πr l = πl (r +r ) πr l πr l = π(l l )(r + r ) = πl(r + r ). 7

8 Für unseren Rotationskörper gilt (Beweisidee für hinreichend glattes f) x i- x i 8

9 li =(x i x i ) +(f(x i ) f(x i )) ( =(x i x i ) [+ )] (f(x i ) f(x i ) x i x i =(x i x i )) ( +(f (ξ i )) ) M n i= π (f(x i )+f(x i )) +(f (ξ i )) (x i x i ) Für Feinheit der Zerlegung im Falle der Konvergenz: M = b a πf(x) +(f (x)) dx 9

10 Beispiel: Rotation des Graphen von f :[, π ] R, f(x) =sinx um die x-achse M = b a Substitution: u := πf(x) +(f (x)) dx =π du dx = π sin(x) +cos (x) dx. Liefert M = π

11 Partielle Integration mit h (u) =,g(u) = +u =(+u ),g (u) = +u du = u +u u u du +u = u +u u + +u du = u +u u + du + +u +u du = u +u +u du + +u du Substutution t = sinh(u), dt=cosh(u) du (nützlich in Hc)

12 Also +u du = u +u + Arsinh(u)+C = u +u +ln(u + +u )+C +u du = = ( u ) +u + Arsinh (u) +C ( u +u +ln(u + ) +u )+C Dieses integral kann ab jetzt als bekannt vorausgesetzt werden. Für unsere Mantelfläche folgt damit M = π [ u +u +ln(u + ] ( +u ) = π ) +ln(+ ) Bemerkung: Das war kein besonders doofes Beispiel. Mantelflächen sind meistens so fies!

13 Kurven und Bogenlängen Zum Beispiel: Bahn eines Teilchens. Ort x(t) des Teilchens zum Zeitpunkt t [a, b]: c :[a, b] R 3 c (t) x (t), c(t) = c (t) = x (t) = x(t) c 3 (t) x 3 (t) Geschwindigkeit: ċ :[a, b] R 3 ċ (t) ẋ (t), ċ(t) = ċ (t) = ẋ (t) ċ 3 (t) ẋ 3 (t) Definition: Eine stetige Funktion c :[a, b] R n heißt (Parameterdarstellung einer) Kurve im R n mit Anfangspunkt c(a) und Endpunkt c(b). 3

14 Die Kurve heißt geschlossen, wenn c(a) =c(b) gilt. c heißt Stückweise C Kurve, falls es eine Zerlegung von [a, b] gibt, so dass jede Komponentenfunktion c i,i=,,nauf jedem Teilintervall der Zerlegung, stetig differenzierbar ist. ċ (t) Eine C ċ Kurve heißt glatt, wenn ċ(t) = (t).. ċ n (t) 4

15 BEISPIELE: a) c :[, ] R 3, c(t) =A + t(b A) T A B R 3 fest. (geradlinige Verbindung von A und B) b) c :[, π] R, c(t) =(r cos(t), rsin(t)) T 5

16 c) c :[, π] R, c(t) =(acos t, b sin t) T d) c :[, 4π] R, c(t) =(acos t, b sin t) T e) c :[,π] R, c(t) =(acos(t), bsin(t)) T f) c :[, π] R, c(t) =(acos( t), bsin( t)) T Geschwindigkeit, Umlaufsinn, Anzahl der Durchläufe 6

17 g) c :[, ] R, c(t) =(t 3,t ) T (Kuspe) h) c :[, π] R, c(t) =(rt a sin t, r a cos t) T (Zykloide) i) c :[, π] R 3, c(t) =(r cos(t), rsin(t), t) T (Schraubenlinie mit Radius r, Ganghöhe π und 6 Windungen) Kuspe:(t 3,t ) Zykloide:(t sin t, cos t) Abbildung : Kuspe, Zykloide, Schraubenlinie mit 6 Windungen 7

18 j) Plotten in Matlab: D z.b. Kuspe t=-:.5:; % oder linspace(-,,4); plot(t.^3,t.^) 3D z.b. Schraubenlinie mit r =4 t=:.:*pi*6; plot3(4.*cos(t)./9,4.*sin(t)./9,t./3) 8

19 Kurvenlänge: Approximiere Kurve durch Polygonzug durch c(t i ),i=,,,m Länge des Polygonzugs: l(z) = m i= c(t i ) c(t i ) Für jede C Kurve gilt unabhängig von der Parametrisierung L(c) = b a ċ(t) dt. 9

20 Beispiel : Länge von c :[, 5] R 3, cos(πt) c(t) := sin(πt) = ċ(t) = π t 5 5 ċ(t) = L(c) = b a ċ(t) dt Radius, Anzahl Windungen, Ganghöhe:

21 5 5 Beispiel : c :[, π] R 3, c(t) := cos(t ) sin(t ) = ċ(t) = t t sin(t ) t cos(t ) ċ(t) =4t sin (t )+ 4t cos (t )+4=

22 L(c) = = π 4+4t dt = π [ t +t +ln(t + +t ) +t dt ] π siehe Seite - =π +4π +ln(π + +4π )

23 Definition: Sei c :[a, b] D, D R n, Kurve und f : D R eine skalare Abbildung. Dann ist das Kurvenintegral von f über c definiert durch fds := c c f(x) ds := b a f(c(t)) ċ(t) dt = b a f(x(t)) ẋ(t) dt. Beispiele: A) Länge: f(c(t)) = = c fds= Bogenlänge der Kurve, B) Masse: f(c(t)) = ρ(c(t)) = Dichte (Masse pro Längeneinheit) b = M =: fds= ρ(c(t)) ċ(t) dt c = Masse der Kurve (z.b. Drahtstück). a 3

24 Herleitung: Kurve Polygonzug, Dichte auf [c(t i ), c(t i )] ρ(c(t i )). Das Stück [c(t i ), c(t i )] hat die Masse: M i ρ(c(t i )) c(t i ) c(t i ). m m Gesamtmasse: M := M i = ρ(c(t i )) c(t i ) c(t i i= i= C) Trägheitsmoment Rotiert ein Massepunkt der Masse m im Abstand r mit der Winkelgeschwindigkeit ω um eine Achse A, so gilt für die kinetische Energie E = mv = mr ω = θ A ω 4

25 θ A heißt Trägheitsmoment von m bezüglich A: k System von k Punkten: θ A = m i ri i= Trägheitsmoment des Massebelgten Drahtes θ A = c ρ(x)r (x) ds = b a ρ(c(t))(r(c(t))) ċ(t) dt. 5

26 Beispiel 3 Draht: c :[, ln(5)] R 3, c(t) := cos(t) sin(t) e t e t e t Massendichte (Masse pro Länge) = ρ(c(t)) := e t 5. Zu berechnen: Länge und Trägheitsmoment bzgl. der z Achse. Lösung: c(t) :=e t (cos(t), sin(t), ) T ċ(t) = 6

27 a) Die Länge des Drahtes ċ(t) = e t cos(t) sin(t) + e t sin(t) cos(t) = e t cos(t) sin(t) sin(t)+cos(t) ċ(t) = e t (cos(t) sin(t)) +(sin(t)+cos(t)) + L(c) = ln(5) e t dt = e t ln(5) =4. 7

28 b) Trägheitsmoment bzgl. der z Achse Masse = M = ln(5) ρ(c(t)) ċ(t) dt = ln(5) e t 5 e t dt Abstand zur Achse: r(t) = c (t) + c (t) = e t θ z Achse = = ln(5) ln(5) ρ(c(t)) (r(t)) ċ(t) dt ( ). e 5 t e t t e dt =4 8

29 Beispiel 4: Gegeben seien die Kurve c :[, π] R 3 c(t) := cos(t ) sin(t ) t und die Funktion f : R 3 R, f(x, y, z) =(x + y ) z. Berechnen Sie das Kurvenintegral von f längs c. Zu berechnen ist: b a f(c(t)) ċ(t) dt Wie in Beispiel : ċ(t) = ( t sin(t ), t cos(t ), ) ċ(t) =4t sin (t )+ 4t cos (t )+4= 4+4t 9

30 f(c(t)) =? f(x, y, z) = (x + y ) z 3

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 4, Analysis II SoSe 6, 3/4. Mai Uneigentliche und parameterabhängige Integrale, Rotationskörper Die ins Netz gestellten Kopien

Mehr

Anleitung zu Blatt 6, Analysis II

Anleitung zu Blatt 6, Analysis II Department Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt 6, Analysis II SoSe Rotationskörper, Kurvenintegrale. Teil Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur

Mehr

Hörsaalübung 3, Analysis II

Hörsaalübung 3, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 3, Analysis II SoSe 2016, 02/03. Mai Integration II: Partielle Integration Partialbruchzerlegung (PBZ) Die ins Netz gestellten

Mehr

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 214 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Kurvenintegrale Zur Erinnerung:

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 7. Aufgabe 1 (Eigenschaften von Kurven) Fachbereich Informatik Sommersemester 2018 Prof. Dr.

Höhere Analysis. Lösungen zu Aufgabenblatt 7. Aufgabe 1 (Eigenschaften von Kurven) Fachbereich Informatik Sommersemester 2018 Prof. Dr. Fachbereich Informatik Sommersemester 8 Prof Dr Peter Becker Höhere Analysis Lösungen zu Aufgabenblatt 7 Aufgabe (Eigenschaften von Kurven ++6 Punkte (a Untersuchen Sie, ob die Kurve sin(πt cos(πt t t,

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

Anleitung zu Blatt 4, Analysis II

Anleitung zu Blatt 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. Hanna Peywand Kiani Anleitung zu Blatt 4, Analysis II SoSe 1 Potenzreihen III, Integration I Die ins Netz gestellten Kopien der Anleitungsfolien sollen

Mehr

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge.

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge. Multiple Choice. Die folgenden acht Aufgaben sind Multiple Choice-Aufgaben. Bei jeder Aufgabe gibt es 4 Aussagen, die wahr oder falsch sind. Für 4 korrekte Antworten gibt es 4 Punkte, für 3 korrekte Antworten

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II 1.3.217 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

Anleitung zu Blatt 7, Analysis II

Anleitung zu Blatt 7, Analysis II Deprtment Mthemtik der Universität Hmburg Dr. H. P. Kini Anleitung zu Bltt 7, Anlysis II SoSe 1 Kurvenintegrle (1. Art) Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitrbeit während

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II .3.27 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fchbereich Mthemtik der Universität Hmburg Dr. H. P. Kini Hörslübung 4, Anlysis II SoSe 28, 4./5. Mi Uneigentliche und prmeterbhängige Integrle Die ins Netz gestellten Kopien der Unterlgen sollen nur die

Mehr

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente 1.3 Sttische Momente, Schwerpunkte und Trägheitsmomente Sttisches Moment M g eines Mssenpunktes P (der Msse m) bezüglich einer Gerden g: M g := ml Msse Hebelrm l Abstnd von P zu g g 9 P l Bei n Mssenpunkten

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure Kerstin Rjasanowa ISBN 3-446-4479- Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-4479- sowie im Buchhandel 7.9 Anwendungen der Integralrechnung

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 017 Dr. K. Rothe Analysis II für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 1 Aufgabe 1: Aus einem kreisförmigen

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis B) FS 6 Theo Bühler Lösung. Finde eine Stammfunktion von a) f : R R, fx) := x cosx 5 ) sinx 5 ) ) = 5 cosx 5 )x, also die Stammfunktion von fx) durch F x) :=

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 9. Potential mittels

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Serie 12. D-MAVT, D-MATL Analysis I HS 14. Abgabetermin der schriftlichen Aufgaben: Freitag, in der Übungsstunde.

Serie 12. D-MAVT, D-MATL Analysis I HS 14. Abgabetermin der schriftlichen Aufgaben: Freitag, in der Übungsstunde. D-MAVT, D-MATL Analysis I HS 4 Prof. Dr. Paul Biran Nicolas Herzog Serie Abgabetermin der schriftlichen Aufgaben: Freitag, 9..4 in der Übungsstunde.. Das schattierte Gebiet wird um diez-achse rotiert.

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder Prüfung WICHTIG: Die Prüfung dauert 4 Stunden (240 Minuten). Verwenden Sie bitte für jede Aufgabe ein neues Blatt und schreiben Sie

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 7/8 Dr. K. Rothe Analsis III für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben u Blatt Analsis III, K. Rothe, WiSe 7/8, Hörsaalübung

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 9/ 9..9 3. Übungsblatt zur Analysis II Gruppenübung Majorantenkriterium für uneigentliche Riemann-Integrale: Es seien f : [, ) [, ) und g

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Ferienkurs Analysis 1 für Physiker Integration - Aufgaben

Ferienkurs Analysis 1 für Physiker Integration - Aufgaben Ferienkurs Analysis für Physiker Integration - Aufgaben Jonas Funke 2.3.29-6.3.29 Bemerkung Bemerkung Es sollten zuerst die Aufgaben, die nicht mit einem * versehen sind bearbeitet werden. Die Aufgaben

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12 D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben Online-Abgabe. Liegt der Schwerpunkt eines rotationssymmetrischen Körpers immer auf dessen Rotationsachse? a Nein. Dies würde

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Separierbare und lineare Differentialgleichungen

Mehr

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. P. Pawlaschyk www.math.uni-wuppertal.de/ herbort SoSe16 Arbeitsheft Blatt 7 Tutorium Inhalt

Mehr

Volumen eines Rotationskörpers

Volumen eines Rotationskörpers Volumen eines Rotationskörpers Das Volumen V des durch Rotation des Funktionsgraphen r = f (x) 0, a x b, um die x-achse erzeugten Körpers lässt sich durch Integration über die kreisförmigen Querschnitte

Mehr

Analysis PVK - Lösungen. Nicolas Lanzetti

Analysis PVK - Lösungen. Nicolas Lanzetti Analysis PVK - Lösungen Nicolas Lanzetti lnicolas@student.ethz.ch Nicolas Lanzetti Analysis PVK HS 4/FS 5 3 Differentialrechnung. (a) lim x + x x = lim x + e (x ln(x)) = e lim x + (x ln(x)) (da e x stetig

Mehr

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe weiß (mit Lösung )

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe weiß (mit Lösung ) Institut für Analysis und Scientific omputing WS 13/1 O. Koch P R A K T I S H E M A T H E M A T I K I F Ü R T P H 1. Haupttest (13. Dezember 13) Gruppe weiß (mit Lösung ) FAMILIENNAME Vorname Studium /

Mehr

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Anleitung zu Blatt 1, Analysis II

Anleitung zu Blatt 1, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt, Analysis II SoSe 0 Banachscher Fixpunktsatz Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Schwerpunkt eines Körpers

Schwerpunkt eines Körpers Schwerpunkt eines Körpers Der Körper K sei mit Masse der konstanten Dichte ρ belegt. F(x) = Fläche des Querschnitts von K mit der Ebene der Punkte mit erster Koordinate x. 27.10.2011 3. Integralrechnung

Mehr

Kurven und Kurvenintegrale. Kapitel 3. Kurven und Kurvenintegrale. Peter Becker (H-BRS) Höhere Analysis Sommersemester / 308

Kurven und Kurvenintegrale. Kapitel 3. Kurven und Kurvenintegrale. Peter Becker (H-BRS) Höhere Analysis Sommersemester / 308 Kapitel 3 Peter Becker (H-BRS) Höhere Analysis Sommersemester 2018 141 / 308 Inhalt Inhalt 3 Geometrische Eigenschaften von Kurven Kurvenintegrale Peter Becker (H-BRS) Höhere Analysis Sommersemester 2018

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 27 Prof. Manfred Einsiedler Übungsblatt. Berechnen Sie das Volumen und der Vase { (x, y, z) R 3 x [ π, 2π], } y 2 + z 2 sin(x) + 2. 2. Berechnen Sie das Volumen und

Mehr

Serie 12.

Serie 12. D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Serie Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis Mittwoch,

Mehr

Lokale Extrema von Funktionen mehrerer Variabler

Lokale Extrema von Funktionen mehrerer Variabler Kapitel 11 Lokale Extrema von Funktionen mehrerer Variabler Bemerkung 11.1 Motivation. Bei skalarwertigen Funktionen einer Variablen gibt es notwendige und hinreichende Bedingungen für das Vorliegen von

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

9. Lineare Gleichungssysteme

9. Lineare Gleichungssysteme 9. Lineare Gleichungssysteme. Aufgabe: estimmen Sie mit Hilfe des Gauß-Algorithmus alle Lösungen ~x = (x ; x ; x 3 ; x 4 ) T des Gleichungssystems 3x x + x 3 + x 4 = 4x + 8x 3 + x 4 = 3 x + x + 6x 3 x

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe bunt (mit Lösung )

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe bunt (mit Lösung ) Institut für Analysis und Scientific omputing WS 13/1 O. Koch P R A K T I S H E M A T H E M A T I K I F Ü R T P H 1. Haupttest (13. Dezember 13) Gruppe bunt (mit Lösung ) FAMILIENNAME Vorname Studium /

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2 Lösung zur Prüfung HM, el+phys+kyb+geod, Teil Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung 9.7.6 Name Vorname Matr.-nummer Raum Anmerkungen zur Korrektur:...

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,

Mehr

Vorlesung Klassische Differentialgeometrie

Vorlesung Klassische Differentialgeometrie Vorlesung Klassische Differentialgeometrie Ich werde mindestens die ersten Vorlesungen mit Beamer halten; die Folien sind auf meiner Homepage verfügbar. Die Vorlesung wird im Modus 4+2 angeboten. Lehramt-Studierende

Mehr

Kuvenintegrale 1. u. 2. Art

Kuvenintegrale 1. u. 2. Art Kuvenintegrale. u. 2. Art Die Lage eines Drahtes sei durch eine C -Kurve : [a, b] R 3 beschrieben. Seine ortsabhängige Massendichte ist durch die stetige Funktion ϱ(,, z) = Masse Längeneinheit gegeben.

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2017/18. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2017/18. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2017/18 1. Integration von Funktionen in zwei Variablen 1.1. Integral auf Rechtecken Wir betrachten ein beschränktes Rechteck

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

Serie 12. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger

Serie 12. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger D-MAVT/D-MATL Analysis I HS 26 Dr. Andreas Steiger Serie 2 Die erste Aufgabe ist eine Multiple-Choice-Aufgabe (MC-Aufgabe), die online gelöst wird. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

MAI-Übungsaufgaben im SS02

MAI-Übungsaufgaben im SS02 MAI-Übungsaufgaben im SS02 Prof. Dr. Th. Risse SS 2002 Knappe Rückmeldungen zu den jeweiligen Übungsaufgaben (wie soll man sonst aus Fehlern lernen?) mit einer Bewertungstabelle ganz am Ende! 1 Übungsaufgaben,

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Aufgabenkomplex 3: Integralrechnung, Kurven im Raum

Aufgabenkomplex 3: Integralrechnung, Kurven im Raum Technische Universität Chemnit. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple : Integralrechnung, Kurven im Raum Letter Abgabetermin: 6. Mai in Übung oder Briefkasten bei Zimmer Rh. Str.

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt Institut für Analsis SS7 P r. Peer Christian Kunstmann 6.6.7 ipl.-math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung Phsik

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2017/2018 Dr. Hanna Peywand Kiani Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Polynome, Folgen, Reihen 1. Teil 11/12.12.2017

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / r. Hanna Peywand Kiani.. Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz, Potentiale

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete

Mehr

Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers

Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers http://www.fotocommunity.de/search?q=table&index=fotos&options=ytoyontzoju6inn0yxj0ijtpoja7czo3oijkaxnwbgf5ijtzojg6ijizmjy4oduwijt9/pos/13 Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Kopien der

Mehr

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren Fachbereich Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung mit anderen Randbedingungen nicht Dirichlet, symmetrische Differentialoperatoren 8.7.2 Die ins Netz

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr