3 Funktionsdefinitionen

Größe: px
Ab Seite anzeigen:

Download "3 Funktionsdefinitionen"

Transkript

1 3 Funktionsdefinitionen Ziel heute: Programmcode zu wiederverwendbaren Einheiten zusammenpacken und wieder verwenden! Technische Realisierung: Funktionsdefinitionen (mit Teilaspekten Parameterversorgung und Ergebnisrückgabe ) Beispielprogramm: numerische Integration 43

2 Funktionen ohne Parameter und ohne Funktionsergebnis Einfachster Fall: einige Zeilen Code, die ohne weitere Information ausgeführt werden können. Funktion definieren mittels einer Anweisung folgender Form: Ein (sinnfreies) Beispiel: def Funktionsname () : Block def quadrate(): print Ein paar Quadratzahlen: for i in range(1, 5): print %d**2 = %d % (i, i**2) 44

3 Die Anweisungen werden bei Ausführung dieser Funktionsdefinition noch nicht ausgeführt. Das passiert erst bei einem Funktionsaufruf: der Funktionsname, gefolgt von () in einem Ausdruck bewirkt, dass die weitere Auswertung des Ausdrucks unterbrochen wird, statt dessen die Anweisungen des Funktionsrumpfes (der Block) ausgeführt werden, und es dann and der Stelle weitergeht, wo vorhin unterbrochen wurde. Im Moment wird der Ausdruck nur aus dem Funktionsaufruf bestehen, aber das ändert sich bald. So könnten wir die schöne Liste der Quadratzahlen gleich dreimal bestaunen: for i in range(1, 4): quadrate() 45

4 Funktionsparameter Meistens müssen der Funktion noch Informationen mitgegeben werden, was sie genau tun soll, das macht man im Regelfall über Funktionsparameter. Aufschreiben: in das bisher leere Klammerpaar () kommen in der Funktionsdefinition eine durch Kommas getrennte Folge von Variablennamen, die Formalparameter im Funktionsaufruf eine Folge von Ausdrücken, die Aktualparameter, ebenfalls durch Kommas getrennt, genauso viele, wie die Funktionsdefinition Formalparameter hat. (Python hat auch noch andere Varianten für Funktionsparameter, aber die interessieren uns heute nicht.) Beim Funktionsaufruf werden die Ausdrücke der Aktualparameter ausgewertet und die Ergebnisse in ihrer Reihenfolge den Namen der Formalparameter zugewiesen. Im Funktionsrumpf können die dann wie normale Variablen verwendet werden. 46

5 Das Quadratzahlen-Programm könnte nun so aussehen: def quadrate_par(anfang, ende): print Ein paar Quadratzahlen: for i in range(anfang, ende): print %d**2 = %d % (i, i**2) for i in range(1, 4): quadrate_par(i, 2*i) Ausgabe: Ein paar Quadratzahlen: 1**2 = 1 Ein paar Quadratzahlen: 2**2 = 4 3**2 = 9 Ein paar Quadratzahlen: 3**2 = 9 4**2 = 16 5**2 = 25 47

6 Funktionsergebnis Meistens werden die Funktionen nicht irgendwas ausdrucken, sondern etwas berechnen, mit dem wir weiterarbeiten können. Das Standardwerkzeug hierfür ist das Funktionsergebnis. Treffen wir bei der Abarbeitung eines Funktionsaufrufs auf eine Anweisung return Ausdruck so ist die Ausführung der Funktion an dieser Stelle beendet es wird nur noch der Ausdruck ausgewertet. Weiter geht s dann wieder da, wo der Funktionsaufruf die Bearbeitung unterbrochen hatte. Das kann jetzt aber in der Auswertung eines komplizierteren Ausdrucks sein: es wird dann mit dem Wert des return-ausdrucks weitergerechnet. Das ist genau das, was wir brauchen, um z.b. x = sin(y)*cos(z) hinschreiben zu können. 48

7 Beispiel: wir berechnen ende 1 i=anfang i 2. def quadratsum(anfang, ende): sum = 0 for i in range(anfang, ende): sum = sum + i**2 return sum for i in range(1, 4): erg = quadratsum(i, 2*i) print Summe %d**2+...+%d**2 = %d % (i, 2*i-1, erg) Ausgabe (nicht von quadratsum, sondern aus der unteren Schleife!): Summe 1** **2 = 1 Summe 2** **2 = 13 Summe 3** **2 = 50 49

8 Wichtiges Prinzip: teile und herrsche! Großes Problem in Teilprobleme zerlegen und die einzeln lösen. Funktionen sind dabei hilfreich: wir sagen dem Benutzer nur, was sie berechnet, das wie kann ihm ganz egal sein. Im primitiven Beispiel von oben könnte die Quadratsumme z.b. auch so implementiert sein, das würde der Benutzer gar nicht merken ( k 1 i=1 i2 = k 3 /3 k 2 /2 + k): def quadratsum2(ende): return (2*ende**3-3*ende**2 + ende)/6 def quadratsum(anfang, ende): return quadratsum2(ende) - quadratsum2(anfang) (Nebenbei: Merkt er vielleicht bei manchen Parameterwerten doch was?) 50

9 Lokale und globale Variablen Eine Zuweisung wie x=7 bindet den Namen (x) an den Wert (7) einige andere Konsruktionen, z.b. ein for oder die Verwendung als Formalparameter, binden ebenfalls Namen an Werte. Frage: für welche Teile des Programms gilt diese Bindung? D.h.: wo können wir über den Namen auf den Wert zugreifen? Vereinfacht gesagt: innerhalb der Funktion, in der die Bindung stattgefunden hat; bei Variablen, die ganz außerhalb von Funktionen definiert wurden, im ganzen Programm. Das i aus quadratsum ist also von außerhalb der Funktion völlig unsichtbar. Es macht daher nichts aus, dass es dort noch eine weitere Variable i gibt, bei beiden sind völlig unabhängig. Variablen, die nur innerhalb einer Funktion leben, heißen lokale Variablen. Variablen, die außerhalb von Funktionen definiert werden (globale Variablen), dürfen hingegen innerhalb der Funktionen verwendet werden. 51

10 Da die Werteübergabe mit Funktionsparametern und -ergebnissen anfangs oft unnötig kompliziert erscheint, ist man manchmal versucht, etwas in diese Art zu schreiben: def quadrate_global(): print Ein paar Quadratzahlen: for i in range(anfang, ende): print %d**2 = %d % (i, i**2) for i in range(1, 4): anfang = i ende = 2*i quadrate_global() Ganz schlechte Idee! Funktioniert hier zwar, aber bei größeren Programmen wird die Lesbarkeit völlig ramponiert... Aber wenn die Parameterlisten unsinnig lang werden? Dann lernen wir eben in den nächsten Wochen, wie man mehrere Dinge in einen Container verpackt und nur noch den bewegen muss. 52

11 Numerische Integration Nun berechnen wir Näherungen für das bestimmte Integral F 1 (f, a, b) := b a f (x) dx für ein f : [a, b] R (das im Folgenden stets als hinreichend oft differenzierbar angenommen wird). Klassische Verfahren zur numerischen Quadratur sind die Newton-Cotes- Formeln, hier betrachten wir zunächst die Trapezregel (Interpolation in den Intervallenden mit einer linearen Funktion): F 1 T := (b a) f (a) + f (b). 2 53

12 Die Simpsonregel entsteht durch Interpolation in Intervallenden und -mitte mit einem Polynom 2. Grades: ) + f (b) ( F 1 S := (b a) f (a) + 4f a+b 2 6. Für den Quadraturfehler der beiden Verfahren gilt: T F 1 M 2 (b a)3 12 S F 1 M 4 (b a) wobei M 2 und M 4 Schranken für die zweite bzw. vierte Ableitung sind: M 2 := sup f (x), x [a,b] M 4 := sup f (4) (x). x [a,b] 54

13 Die Fehlerschranken legen nahe, die Genauigkeit zu erhöhen, indem wir das Intervall [a, b] in Teilintervalle aufteilen und auf jedem von diesen die einfache Regel anwenden. Im einfachsten Fall (n gleich große Teilintervalle der Länge h = (b a)/n) führt das zur summierten Trapezregel ST := h [ f (a) 2 + n 1 i=1 ] f (a + ih) + f (b) 2 bzw. zur Simpson-Summe [ ( ) ( ) ( ) ] SS := h 6 f (a) + 4f a + h 2 + 2f (a + h) + 4f a + 3h f b h 2 + f (b) 55

14 Beim Quadraturfehler müssen wir nun n = (b a)/h Terme aufsummieren, die aber O(h 3 ) bzw. O(h 5 ) sind die Genauigkeit wird mit wachsendem n besser: ST F 1 M 2 12 (b a) h2, SS F 1 M (b a) h4. Verdopplung des Rechenaufwands (h h/2) reduziert die Fehlerschranke auf 1/4 (ST) bzw. 1/16 (SS) hinreichende Glattheit von f war ja vorausgesetzt. 56

15 Definieren wir uns einen Integranden in unserem Fall ist der so einfach, dass wir sofort eine Stammfunktion aufschreiben können. Das machen wir, um die Genauigkeit der summierten Trapezregel messen zu können. import math def f(x): return math.sin(math.pi*x) def f_int(x): return -math.cos(math.pi*x)/math.pi Die summierte Trapezregel besteht aus einer einfachen Schleife; wir verpacken sie in eine Funktion, die als Parameter noch die Intervallgrenzen a und b sowie die Zahl der Teilintervalle n bekommt: def trapez(a, b, n): h = (b-a)/n sum = (f(a)+f(b))/2. for i in range(1,n): sum = sum + f(a + h*i) return sum*h 57

16 Nun berechnen wir mal 1 0 sin(πx) dx näherungsweise für n = 20,..., 2 6 : a_bsp = 0. b_bsp = 1. exakt = f_int(b_bsp) - f_int(a_bsp) for i in range(1,7): n = 2**i t = trapez(a_bsp, b_bsp, n) print %4d %-12.6g %-12.6g % (n, t, exakt-t) N Näherung Fehler Verdopplung von n reduziert den Fehler um einen Faktor 4, vgl. Folie

17 Hatte ich mich nicht gerade gegen die Verwendung globaler Variablen ausgesprochen? Und jetzt wird eine verwendet, wenn auch nicht ganz offensichtlich: der Integrand f wäre in einem guten Quadraturprogramm ein Parameter von trapez und keine global an den Namen f gebundene Funktion. Ist in Python leicht zu reparieren Funktionen können hier ohne weiteres als Parameter übergeben werden: import math def trapez(f, a, b, n): h = (b-a)/n sum = (f(a)+f(b))/2. for i in range(1,n): sum = sum + f(a + h*i) return sum*h print trapez(math.sin, 0., math.pi, 16) 59

18 Selber machen! Simpson-Summe ausprogrammieren, in der Auswertung (Folie 58) zwei neue Spalten mit Ergebnis und Fehler anfügen. Mit Folie 56 vergleichen! Ausprobieren, was Trapez- und Simpsonsumme ergeben für π 0 x 1 3 dx. Hier darf man faul sein und die Stammfunktion nicht ausprogrammieren, sondern statt dessen mit der Simpsonsumme und vielen Telintervallen einen Referenzwert berechnen. Und nun noch 2π 0 e sin(x) dx. Was unterscheidet dise Funktion von den anderen? Tipp: sie verliert ihre magischen Fähigkeiten, wenn man sie in Stücke schneidet, d.h., das Integral z.b. nur von 0 bis 1 berechnet. 60

Gültigkeitsbereich. T. Neckel Einführung in die wissenschaftliche Programmierung IN8008 Wintersemester 2016/

Gültigkeitsbereich. T. Neckel Einführung in die wissenschaftliche Programmierung IN8008 Wintersemester 2016/ Gültigkeitsbereich Funktionen Erinnerung: Python ist eine interpretierte Sprache! Funktionen müssen definiert sein, bevor sie aufgerufen werden können. T. Neckel Einführung in die wissenschaftliche Programmierung

Mehr

Teil IV. Funktionen und Module

Teil IV. Funktionen und Module Teil IV Funktionen und Module IN8008, Wintersemester 2011/2012 55 Wozu Funktionen? Wo sie schon verwendet wurden: Mathematische Funktionen: sqrt(s), sin(s), exp(x),... Methoden von Sequenzen: s.islower(),

Mehr

9 Aufräumarbeiten, Teil 2

9 Aufräumarbeiten, Teil 2 9 Aufräumarbeiten, Teil 2 Das Ordnungmachen vor Weihnachten geht weiter. Heute gibt s ein paar Dinge, die noch über Funktionen zu sagen sind: Funktionen zu Modulen zusammenfassen Funktionen dokumentieren

Mehr

11 Objektorientierte Programmierung, Teil 2

11 Objektorientierte Programmierung, Teil 2 11 Objektorientierte Programmierung, Teil 2 Ein wesentliches Konzept der objektorientierten Programmierung fehlt uns noch: die Vererbung 203 Programmcode wiederverwenden Wenn wir einige Klassen geschrieben

Mehr

Praktikum Ingenieurinformatik. Termin 4. Funktionen, numerische Integration

Praktikum Ingenieurinformatik. Termin 4. Funktionen, numerische Integration Praktikum Ingenieurinformatik Termin 4 Funktionen, numerische Integration 1 Praktikum Ingenieurinformatik Termin 4 1. Funktionen. Numerische Integration, Trapezverfahren 1.1. Funktionen Eine Funktion ist

Mehr

1/26. Integration. Numerische Mathematik 1 WS 2011/12

1/26. Integration. Numerische Mathematik 1 WS 2011/12 1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 21 Quadraturverfahren R. Steuding

Mehr

Einführung in die Programmierung I. Funktionen, Rekursion. Stefan Zimmer

Einführung in die Programmierung I. Funktionen, Rekursion. Stefan Zimmer Einführung in die Programmierung I Funktionen, Rekursion Stefan Zimmer 29.10.2007 2 Formeln wiederverwenden Ein Schritt in Richtung Programmierung ist, sich eine Sammlung von Formeln zuzulegen, die dann

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

KAPITEL 10. Numerische Integration

KAPITEL 10. Numerische Integration KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f

Mehr

Einführung in die Programmierung II. 4. Funktionen

Einführung in die Programmierung II. 4. Funktionen Einführung in die Programmierung II 4. Funktionen Stefan Zimmer 17. 5. 2006-1- Warum Funktionen? Idee: Programmcode, der an mehreren Stellen des Programms verwendet wird, an einer Stelle aufschreiben (Funktionsdefinition);

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx D-MATH Numerische Methoden FS 217 Dr. Vasile Gradinaru Luc Grosheintz Serie 4 Abgabedatum: Di./Mi. 2.3/21.3 in den Übungsgruppen oder im HG J68 Koordinatoren: Luc Grosheintz, HG J 46, luc.grosheintz@sam.ethz.ch

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

EWS, WS 2016/17 Pfahler I-1

EWS, WS 2016/17 Pfahler I-1 Vorlesung und Übung Universität Paderborn Wintersemester 2016/2017 Dr. Peter Pfahler Funktionen EWS, WS 2016/17 Pfahler I-1 Funktionen Funktion: Rechenvorschrift mit einem Namen und ggf. formalen Parametern,

Mehr

Collatz-Folge. falls a i ungerade.

Collatz-Folge. falls a i ungerade. 14 Klausurtraining Heute gibt s nichts Neues mehr wir machen nochmal einen Streifzug durch die behandelten Themen unter besonderer Berücksichtigung von Aufgaben in der Art, wie sie in Klausuraufgaben vorzukommen

Mehr

Interpolation und Integration mit Polynomen

Interpolation und Integration mit Polynomen Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus

Mehr

PYTHON. 04 Funktionen II, Module

PYTHON. 04 Funktionen II, Module PYTHON 04 Funktionen II, Module Funktionen Funktionen enthalten Programm-Teile können später im Programm aufgerufen werden können beliebig oft aufgerufen werden (und man muss nur die Funktion aufrufen,

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 15.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Numerische

Mehr

Nochmal Typen und Objekte

Nochmal Typen und Objekte Nochmal Typen und Objekte Jedes Objekt hat Identität (id), Typ (type) und Wert. >>> b = 42 # Wert : 42 >>> type (b) >>> id(b) 158788940 >>> type ( type (b)) IN8008, Wintersemester

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

7 Beispiel: Markov-Prozesse

7 Beispiel: Markov-Prozesse 7 Beispiel: Markov-Prozesse Ein Beispiel, bei dem wir die bisher gelernten Programmiertechniken einsetzen können: Formeln, Schleifen, Funktionsdefinitionen etc. sowieso (ohne die geht gar nix) Beim Umgang

Mehr

Numerische Analysis - Matlab-Blatt 5

Numerische Analysis - Matlab-Blatt 5 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung

Mehr

D-ITET, D-MATL Numerische Methoden FS 2018 Dr. R. Käppeli P. Bansal. Lösung 3. j j + 1 P j 1(x), j 1. 2(1 x 2 k ) 2. ((j + 1)P j (x k ))

D-ITET, D-MATL Numerische Methoden FS 2018 Dr. R. Käppeli P. Bansal. Lösung 3. j j + 1 P j 1(x), j 1. 2(1 x 2 k ) 2. ((j + 1)P j (x k )) D-ITET, D-MATL umerische Methoden FS 2018 Dr. R. Käppeli P. Bansal Lösung 3 1. 3-Punkte Gauss Quadraturregel a) Um das Polynom P 3 (x) zu berechnen, benutzen wir die Formel P j+1 (x) 2j + 1 j + 1 xp j(x)

Mehr

Informatik I. Informatik I. 4.1 Funktionsaufrufe. 4.2 Mathematische Funktionen. 4.3 Funktionsdefinitionen. 4.4 Variablengültigkeitsbereich

Informatik I. Informatik I. 4.1 Funktionsaufrufe. 4.2 Mathematische Funktionen. 4.3 Funktionsdefinitionen. 4.4 Variablengültigkeitsbereich Informatik I 25. Oktober 2013 4. Funktionen: Aufrufe und Definitionen Informatik I 4. Funktionen: Aufrufe und Definitionen Bernhard Nebel Albert-Ludwigs-Universität Freiburg 25. Oktober 2013 4.1 Funktionsaufrufe

Mehr

Informatik I. 4. Funktionen: Aufrufe und Definitionen. 25. Oktober Albert-Ludwigs-Universität Freiburg. Informatik I.

Informatik I. 4. Funktionen: Aufrufe und Definitionen. 25. Oktober Albert-Ludwigs-Universität Freiburg. Informatik I. 4. Funktionen: Aufrufe und en Aufrufe Albert-Ludwigs-Universität Freiburg 25. Oktober 2013 1 / 23 Aufrufe Funktionsaufrufe 2 / 23 Funktionsaufrufe Innerhalb von Programmiersprachen ist eine Funktion ein

Mehr

Übungsblatt 4 Musterlösung

Übungsblatt 4 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

1 Funktionsaufrufe. Informatik I: Einführung in die Programmierung 4. Funktionen: Aufrufe und Definitionen. Standardfunktionen: Typen-Konversion

1 Funktionsaufrufe. Informatik I: Einführung in die Programmierung 4. Funktionen: Aufrufe und Definitionen. Standardfunktionen: Typen-Konversion 1 Funktionsaufrufe Informatik I: Einführung in die Programmierung 4. : und en Albert-Ludwigs-Universität Freiburg Bernhard Nebel 24./28. Oktober 2014 24./28. Oktober 2014 B. Nebel Info I 3 / 31 Funktionsaufrufe

Mehr

Interpolation, numerische Integration

Interpolation, numerische Integration Interpolation, numerische Integration 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 8. Mai 2014 Gliederung 1 Interpolation polynomial Spline 2 Numerische

Mehr

Kontrollstrukturen. T. Neckel Einführung in die wissenschaftliche Programmierung IN8008 Wintersemester 2016/

Kontrollstrukturen. T. Neckel Einführung in die wissenschaftliche Programmierung IN8008 Wintersemester 2016/ Kontrollstrukturen Generelle Bemerkungen Blöcke (siehe Struktogramme) müssen im Code markiert werden In vielen Sprachen üblich: geschweifte Klammern Python verwendet stattdessen Einrückungen Einrücktiefe

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Übungsblatt 3 Musterlösung

Übungsblatt 3 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale

Mehr

6. Funktionen, Parameterübergabe

6. Funktionen, Parameterübergabe 6. Funktionen, Parameterübergabe GPS-6-1 Themen dieses Kapitels: Begriffe zu Funktionen und Aufrufen Parameterübergabearten call-by-value, call-by-reference, call-by-value-and-result in verschiedenen Sprachen

Mehr

Einführung in die Programmierung II. 5. Zeiger

Einführung in die Programmierung II. 5. Zeiger Einführung in die Programmierung II 5. Zeiger Thomas Huckle, Stefan Zimmer 16. 5. 2007-1- Bezüge als Objekte Bisher kennen wir als Bezüge (Lvalues) nur Variablennamen Jetzt kommt eine neue Sorte dazu,

Mehr

Numerik gewöhnlicher Differentialgleichungen. Übung 8 - Lösungsvorschlag

Numerik gewöhnlicher Differentialgleichungen. Übung 8 - Lösungsvorschlag Technische Universität Chemnitz Chemnitz, 2. Januar 21 Prof. R. Herzog, M. Bernauer Numerik gewöhnlicher Differentialgleichungen WS29/1 Übung 8 - Lösungsvorschlag 1. Ziel dieser Aufgabe ist die Umsetzung

Mehr

Einführung in die Programmierung I. 5. Prozeduren. Stefan Zimmer

Einführung in die Programmierung I. 5. Prozeduren. Stefan Zimmer Einführung in die Programmierung I 5. Prozeduren Stefan Zimmer 19.11.2007 Prozedurdeklaration mit proc Eine (mächtigere) Alternative zur Funktionsdeklaration mit -> besteht aus dem Wort proc einer Sequenz

Mehr

WS2018/ Oktober 2018

WS2018/ Oktober 2018 Einführung in die Programmierung Ronja Düffel WS2018/19 05. Oktober 2018 Rückblick Datentypen bool Zahlen (int und float) string Variablen Kontrollstrukturen Verzweigungen (if...: und if...else:) Schleifen

Mehr

Numerik SS Übungsblatt 3

Numerik SS Übungsblatt 3 PROF. DR. BERND SIMEON CHRISTIAN GOBERT THOMAS MÄRZ Numerik SS 9 Übungsblatt 3 Aufgabe 1 Clenshaw-Curtis-Quadratur Wie bereits bei der Polynominterpolation bietet es sich auch zur Quadratur an Tschebysheff-

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Integrale. Mathematik Klasse 12. Fläche 1. Fläche 4. Fläche 2. Fläche 5 Fläche 3. Fläche 6. Ditmar Bachmann / Eurokolleg.

Integrale. Mathematik Klasse 12. Fläche 1. Fläche 4. Fläche 2. Fläche 5 Fläche 3. Fläche 6. Ditmar Bachmann / Eurokolleg. Fläche 1 Fläche 4 Fläche 2 Fläche 5 Fläche 3 Fläche 6 aus Google maps Begriff des Integrals Die Wurzeln zur Integralrechnung reichen bis ins Altertum zurück. Damals ist man auf das Problem gestoßen, Flächen

Mehr

Numerische Integration

Numerische Integration Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute for Numerical Simulation TUHH Heinrich Voss Kapitel 3 2010 1 / 87 In vielen Fällen ist es nicht möglich, ein gegebenes Integral

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

C++ Teil 2. Sven Groß. 16. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 22

C++ Teil 2. Sven Groß. 16. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 22 C++ Teil 2 Sven Groß IGPM, RWTH Aachen 16. Apr 2015 Sven Groß (IGPM, RWTH Aachen) C++ Teil 2 16. Apr 2015 1 / 22 Themen der letzten Vorlesung Hallo Welt Elementare Datentypen Ein-/Ausgabe Operatoren Sven

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 32 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 23.1.2009 2 / 32 Wiederholung Stückweise Polynominterpolation Stückweise lineare Interpolierende

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

Analysis II. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg

Analysis II. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg Analysis II Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 2. Juni 2008 Beachtenswertes Die Veranstaltung ist eng angelehnt

Mehr

Numerische Integration

Numerische Integration Numerische Integration Fakultät Grundlagen Januar 0 Fakultät Grundlagen Numerische Integration Übersicht Grundsätzliches Grundsätzliches Trapezregel Simpsonformel 3 Fakultät Grundlagen Numerische Integration

Mehr

Programmierkurs Python I

Programmierkurs Python I Programmierkurs Python I Michaela Regneri & Stefan Thater Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Winter 2010/11 Übersicht Kurze Wiederholung: while Sammeltypen (kurz

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Ingenieurinformatik Teil 2 (Numerik für Ingenieure)

Ingenieurinformatik Teil 2 (Numerik für Ingenieure) Hochschule München, FK 03 WS 2014/15 Ingenieurinformatik Teil 2 (Numerik für Ingenieure) Zulassung geprüft: Die Prüfung ist nur dann gültig, wenn Sie die erforderliche Zulassungsvoraussetzung erworben

Mehr

1. Anhang: Spline-Funktionen

1. Anhang: Spline-Funktionen C:\D\DOKU\NUM KURS\SPLINE.TEX C:\UG\.AI 20. Juli 1998 Vorbemerkung: Wenn der Satz stimmt, daß jede Formel eines Textes die Leserzahl halbiert, dann brauche ich bei grob geschätzt 40 Formeln etwa 2 40 =

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Funktionen; Rekursion

Funktionen; Rekursion restart; Der Operator - Funktionen; Rekursion Mit dem - -Operator definiert man eine Funktion (Abbildung. '-' hat (zunächst einen Namen (den Formalparameter als linken und einen Ausdruck als rechten Operanden.

Mehr

KLAUSUR. Mathematik IV Wolfram Koepf. Name: Vorname: Matr. Nr.:

KLAUSUR. Mathematik IV Wolfram Koepf. Name: Vorname: Matr. Nr.: KLAUSUR Mathematik IV 5. 3. 2007 Wolfram Koepf Name: Vorname: Matr. Nr.: Bitte lassen Sie genügend Platz zwischen den Aufgaben und beschreiben Sie nur die Vorderseite der Blätter! Zum Bestehen der Klausur

Mehr

Integral. Jörn Loviscach. Versionsstand: 5. Januar 2010, 16:36

Integral. Jörn Loviscach. Versionsstand: 5. Januar 2010, 16:36 Integral Jörn Loviscach Versionsstand: 5. Januar 2010, 16:36 1 Idee des Integrals Gegeben eine Funktion f, die auf dem Intervall [a, b] definiert ist, soll das bestimmte Integral [definite integral] b

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

C++ Teil Schleifen. Man kann bestimme Anweisungen in einem Programm mehrfach ausführen lassen. Dazu gibt es in C++ verschiedene Schleifen.

C++ Teil Schleifen. Man kann bestimme Anweisungen in einem Programm mehrfach ausführen lassen. Dazu gibt es in C++ verschiedene Schleifen. C++ Teil 3 3.3 Schleifen Man kann bestimme en in einem Programm mehrfach ausführen lassen. Dazu gibt es in C++ verschiedene Schleifen. for-schleife for-schleife while-schleife do-while-schleife for ( Ausdruck1;

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Einführung in die Programmierung II. 3. Kontrollstrukturen

Einführung in die Programmierung II. 3. Kontrollstrukturen Einführung in die Programmierung II 3. Kontrollstrukturen Thomas Huckle, Stefan Zimmer 2.5.2007-1- Anweisungen: was bisher geschah Bisher kennen wir zwei Formen von Anweisungen Ein Ausdruck mit Semikolon

Mehr

4 Daten in Python. Primäres Ziel: Daten zu Containern zusammenfassen, insbesondere Vektoren etc., um vernünftige Beispiele rechnen zu können.

4 Daten in Python. Primäres Ziel: Daten zu Containern zusammenfassen, insbesondere Vektoren etc., um vernünftige Beispiele rechnen zu können. 4 Daten in Python Primäres Ziel: Daten zu Containern zusammenfassen, insbesondere Vektoren etc., um vernünftige Beispiele rechnen zu können. Vorher genauerer Blick auf die Behandlung von Daten in Python

Mehr

Präzedenz von Operatoren

Präzedenz von Operatoren Präzedenz von Operatoren SWE-30 Die Präzedenz von Operatoren bestimmt die Struktur von Ausdrücken. Ein Operator höherer Präzedenz bindet die Operanden stärker als ein Operator geringerer Präzedenz. Mit

Mehr

Diplom VP Numerik 21. März 2005

Diplom VP Numerik 21. März 2005 Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Probeklausur Name: (c)

Probeklausur Name: (c) Einführung in die Praktische Informatik 30.1.2013 Probeklausur Name: Teil I: Datentypen (20 Punkte) Lösen sie die Probleme, indem sie die korrekten Lösungen ankreuzen bzw. in die vorgesehenen Freiräume

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Klassen mit Instanzmethoden Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Definition von Klassen 2 Methoden 3 Methoden

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

WS2017/ Oktober 2017

WS2017/ Oktober 2017 Einführung in die Programmierung Ronja Düffel WS2017/18 09. Oktober 2017 Rückblick Datentypen bool Zahlen (int und float) string Variablen Kontrollstrukturen Verzweigungen (if...: und if...else:) Schleifen

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Kompaktkurs Einführung in die Programmierung. 4. Kontrollstrukturen

Kompaktkurs Einführung in die Programmierung. 4. Kontrollstrukturen Kompaktkurs Einführung in die Programmierung 4. Kontrollstrukturen Stefan Zimmer 28.2.2008-1- Anweisungen: was bisher geschah Bisher kennen wir zwei Formen von Anweisungen Ein Ausdruck mit Semikolon ist

Mehr

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung 11. Vorlesung 14.06.2017 1 Schleifen 2 do...while do block while ( bedingung ); block: eine Anweisung oder Anweisungen in { block bed JA NEIN 3 while while ( bedingung ) block

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

Prozeduren vs. Funktionen

Prozeduren vs. Funktionen Prozeduren vs. Funktionen Mit der Formalisierung wird auch der Unterschied zwischen Prozeduren und Funktionen noch einmal klar. Der Aufruf beider Varianten bewirkt zunächst das Gleiche: die Eingabevariablen

Mehr

*** Viel Erfolg!!! ***

*** Viel Erfolg!!! *** Hochschule München, FK 03 WS 2017/18 Ingenieurinformatik Numerik für Ingenieure Studienbeginn vor WS13/14 (Kombinationsprüfung) ** Studienbeginn ab WS13/14 bis WS15/16 ** Studienbeginn ab SS16 (Kombinationsprüfung)

Mehr

Ingenieurinformatik (FK 03) Übung 4

Ingenieurinformatik (FK 03) Übung 4 FG TECHNISCHE INFORMATIK I II U41 00 TA 03 Ingenieurinformatik (FK 03) Übung 4 VORBEREITUNG Erstellen Sie das Struktogramm der Funktion trapez für die Übung 4b mithilfe des Programms Structorizer. ÜBUNG

Mehr

5. DIFFERENZIEREN UND INTEGRIEREN

5. DIFFERENZIEREN UND INTEGRIEREN 5. DIFFERENZIEREN UND INTEGRIEREN 1 Sei f eine auf R oder auf einer Teilmenge B R definierte Funktion: f : B R Die Funktion heißt differenzierbar in x 0 in B, falls sie in diesem Punkt x 0 lokal linear

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

1 Berechnung von Summen (ca = 10 Punkte)

1 Berechnung von Summen (ca = 10 Punkte) Einführung in die wissenschaftliche Programmierung Klausur 26.02.2013 Seite 1/8 Name, Vorname, Unterschrift: Matrikelnummer: 1 Berechnung von Summen (ca. 5 + 4 + 1 = 10 Punkte) Gegeben sind natürliche

Mehr

Kapitel 4. Numerische Differentiation und Integration

Kapitel 4. Numerische Differentiation und Integration Kapitel 4 Numerische Differentiation und Integration Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 4/2 Integration und Differentiation Probleme bei der Integration und Differentiation

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) =

Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) = Übungen zur Ingenieur-Mathematik II SS 2017 Blatt 6 2.5.2017 Aufgabe 1: Betrachten Sie die Funktion Lösung: f(x) = 1, x [, 1]. 1 + 25x2 a) Bestimmen Sie die Interpolationspolynome vom Grad m p m (x) =

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten Operatoren, Ausdrücke und Anweisungen Kontrollstrukturen (Steuerfluss)

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 4 Numerische

Mehr

Programmieren in MATLAB Mehr als nur ein Taschenrechner

Programmieren in MATLAB Mehr als nur ein Taschenrechner Computational Physics 1, Seminar 02 Seite 1 Programmieren in MATLAB Mehr als nur ein Taschenrechner 1) Definition eigener Funktionen Anlegen eines neuen m-files im m-file-editor mit folgem Beispielinhalt:

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 4

Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 4 Fakultät Verkehrswissenschaften Friedrich List, Professur für Verkehrsbetriebslehre und Logistik Modul Entscheidungsunterstützung in der Logistik Einführung in die Programmierung mit C++ Übung 4 SS 2016

Mehr