Versuch 201. Wärmeleitfähigkeit von Gasen. 1. Aufgaben. 2. Grundlagen. λ = Λ v n (1)

Größe: px
Ab Seite anzeigen:

Download "Versuch 201. Wärmeleitfähigkeit von Gasen. 1. Aufgaben. 2. Grundlagen. λ = Λ v n (1)"

Transkript

1 1 Versuch 01 Wärmeleitfähigkeit von Gasen 1. Aufgaben 1.1 Messen Sie die relative Wärmeleitfähigkeit λx / λ 0 (bezogen auf Luft bei äußerem Luftdruck) für Luft und CO in Abhängigkeit vom Druck p. Stellen Sie λx / λ0 als Funktion von p grafisch dar. 1. Interpretieren Sie die Messkurven.. Grundlagen Stichworte: Wärmeleitung, Wärmeströmung, Wärmestrahlung, kinetische Gastheorie, mittlere freie Weglänge, oltzmannkonstante, molekulare Freiheitsgrade, Wheatstone-rücke.1 Druckabhängigkeit der Wärmeleitung in Gasen Der Wärmeinhalt eines Körpers ist durch die Gesamtmenge der kinetischen Energie seiner atomaren austeine gegeben. Der Transport von Wärmeenergie von einem Ort höherer zu einem Ort niedrigerer Temperatur kann durch Wärmeströmung (Konvektion), Wärmeleitung und Wärmestrahlung erfolgen. In einem verdünnten Gas (keine Konvektion) und bei Temperaturen in der Nähe der Zimmertemperatur (kaum Strahlung) überwiegt die Wärmeleitung deutlich die beiden anderen Arten des Wärmeübergangs. Die Wärmeleitung in Gasen ist ein statistischer Transportmechanismus, bei dem die kinetische Energie der Moleküle durch Stöße mit anderen Molekülen weitergegeben wird. Die dabei auftretende typische Materialeigenschaft ist die Wärmeleitfähigkeit λ. Sie ist definiert als das Verhältnis von Wärmestromdichte (Dimension W/m )und Temperaturgradient (Dimension K/m) und hat gemäß Gl.4 die Dimension W. m K In Gasen ist die Wärmeleitfähigkeit vom Druck und von der Temperatur abhängig. Weiterführende Informationen zu statistischen Transportprozessen siehe Anhang 1. Nach der kinetischen Gastheorie gilt für die Wärmeleitfähigkeit λ bei nicht zu kleinen Drücken: 1 Cv λ = Λ v n (1) 3 N A

2 Versuch 01- Wärmeleitfähigkeit von Gasen wobei Λ die mittlere freie Weglänge der Moleküle, n die Molekülzahldichte, v die mittlere Geschwindigkeit der Moleküle, C v die molare Wärme und N A die Avogadozahl ist. Der Faktor 1/3 tritt infolge der räumlichen Mittelung auf. Die mittlere freie Weglänge Λ wird bestimmt durch Λ= 1 π D n () mit dem gaskinetischen Moleküldurchmesser D. Die mittlere Molekülgeschwindigkeit v ist v = 8kT 1 π µ (3) mit der Molekülmasse µ. Es fällt auf, daß wegen Gl.1 die Wärmeleitfähigkeit nicht vom Gasdruck abhängen dürfte, da die Teilchenzahldichte n proportional zum Druck p, die freie Weglänge Λ jedoch umgekehrt proportional zu p ist und damit das Produkt Λ n nicht mehr von p abhängt. Dennoch weiß man aus der Praxis, daß z.. in Thermosgefäßen oder modernen Doppelglasfenstern luftleer gepumpte Zwischenräume zur Wärmeisolation genutzt werden. Worin liegt die Lösung dieses Widerspruchs? Entscheidend ist das Verhältnis zwischen freier Weglänge und den Abmessungen des Versuchsgefäßes. Solange die freie Weglänge kleiner ist, gilt Gl.1 und die Wärmeleitfähigkeit ist tatsächlich über weite ereiche druckunabhängig. Wenn aber Λ (zu niedrigen Drücken hin) die Dimension des Gefäßes überschreitet, wird die Wegstrecke, welche die Teilchen maximal zurücklegen können, durch die Gefäßabmessungen bestimmt. Λ muß in Gl.1 dann faktisch als Konstante angesehen werden und λ wird direkt von der Molekülzahldichte n und damit vom Druck p abhängig. (Die Temperaturabhängigkeit der Wärmeleitfähigkeit, welche über v in Gl.1 eingeht, soll hier nicht Gegenstand der etrachtung sein).. Messmethode Die Versuchsapparatur besteht aus einem dünnen Heizdraht, der sich auf der Achse eines zylindrischen Glasrohres befindet (vgl. ild 1 und ). Die Wärme wird durch die Luft (bzw. das Gas) vom Draht nach außen transportiert und über die Rohrwand an die Umgebung abgegeben. Man speist den Draht mit einer konstanten elektrischen Leistung, die gerade die Wärmeverluste kompensiert. Somit bleibt nach Einstellung eines stationären Zustandes eine konstante Temperaturdifferenz zwischen Draht und Rohr bestehen. Der einfachste Fall für die Wärmeleitung ist der Wärmestrom Φ durch eine ebene Platte (d...dicke, A...Fläche), deren beide Seiten auf konstanter Temperatur (T 1, T ) gehalten werden: T - T d 1 Φ = - λ A (4) Zur Verallgemeinerung schreibt man diese Gleichung für differentiell dünne Schichten : d T Φ = - λ A (5) d x

3 Versuch 01- Wärmeleitfähigkeit von Gasen 3 Für eine zylinderförmige Schicht der Dicke dr gilt entsprechendes in Zylinderkoordinaten: (r... Radius, l... Länge des Zylinders). d T Φ = - λ π r l (6) d r Unter der Voraussetzung, daß Φ konstant ist, kann man Gl.6 umformen in Φ r dr = - π l λ dt (7) und integrieren. Man erhält dann für den Wärmestrom von der Achse des Zylinders nach außen zum Glasrohr Φ π l = λ T - T rg ln rd ( D G ) (8) (T D... Temperatur des Drahtes, T G... Temperatur am Glasrohr, r D... Radius des Drahtes, r G... Radius des Glasrohres). Nach dem Energieerhaltungssatz ist der Wärmestrom Φ gleich der zugeführten elektrischen Leistung: U Φ = (9) R (R D... Widerstand des Drahtes, U... angelegte Spannung). Durch Einsetzen von Gl.9 in Gl.8 erhält man für die Wärmeleitfähigkeit D λ ln r G = rd U π l ( T - T D G) R D (10) Gl.10 liefert den Absolutwert der Wärmeleitfähigkeit, erfordert aber die Messung vieler Größen. Wesentlich einfacher ist die estimmung eines auf die (bekannte) Wärmeleitfähigkeit von Luft bezogenen Relativwertes (Methode von SCHLEIERMACHER). Es genügt dann, nur die Spannung U zu messen, während alle anderen Größen aus Gl.10 konstant gehalten werden. l, r G und r D sind Apparatekonstanten, T G entspricht etwa der Zimmertemperatur. Die Temperatur T D des Drahtes und damit gleichzeitig der Widerstand R D sind im stationären Fall konstant. Anstelle von Gl.10 kann man dann schreiben: λ = const U. Für Luft bei äußerem Luftdruck (unsere ezugsgröße) heißt das: λ = c U 0 0 und für alle anderen Drücke und Gasarten λ x = c U x. Damit erhält man zur estimmung der relativen Wärmeleitfähigkeit die einfache eziehung:

4 4 Versuch 01- Wärmeleitfähigkeit von Gasen λ U = x x λ0 U0 (11) 3. Versuchsdurchführung 3.1 Messung Der Drahtwiderstand wird als unbekannter Widerstand R x in eine Wheatstone-rücke geschaltet (siehe ild 1). Das Verhältnis der Abgleichwiderstände R:R 1 wird konstant und etwa 1:1 gehalten. Durch das Konstanthalten wird erreicht, daß die Spannung am Heizdraht proportional zur Gesamtspannung U an der rücke ist. Damit kann man anstelle von Gl. 11 schreiben: λ x U x = (1) λ 0 U 0 In einem Vorversuch muß zunächst die Größe des Drahtwiderstandes R x im ungeheizten Zustand ermittelt werden. Man legt bei hohem Druck (gute Wärmeableitung) eine kleine Spannung U (etwa 0.5 V) an, so daß sich der Draht noch nicht nennenswert erwärmt und stellt den Normalwiderstend R N so ein, daß die rücke abgeglichen ist. Wegen R 1 = R gilt nun R x = R N. Die eigentliche Messung ( geheizter Draht ) soll bei einer Temperatur von ca C erfolgen, was einem um etwa 10% höheren Widerstand entspricht. D. h. also: R N wird um 10% erhöht, womit man die Zieltemperatur T D und den zugehörigen Drahtwiderstand R D vorgibt. Dieser Wert wird danach nicht mehr verändert. Nun versucht man, durch Erhöhen der rückenspannung U (Heizen des Drahtes) die rücke wieder zum Abgleich zu bringen. R N (Dekade) Meßbrückeninstrument R x U V R1 R ild 1: Versuchsaufbau (Wheatstone-rücke)

5 Versuch 01- Wärmeleitfähigkeit von Gasen 5 Zu jedem eingestellten Druck erhält man so genau einen Spannungswert, U 0 ( für Luft bei Atmosphärendruck ), aus dem mit Gl.1 die relative Wärmeleitfähigkeit berechnet werden kann. U x ild : Versuchsaufbau (Vakuumerzeugung) Im Praktikumsversuch sollen auf diese Weise zwei Messkurven ( für Luft und CO ) gewonnen werden, die die Abhängigkeit der Wärmeleitfähigkeit vom Druck zeigen. Dabei ist der gesamte, mit der vorhandenen Anlage erzeugbare Druckbereich zu nutzen. Richtwerte:, 5, 10, 0, 50, 100, 00, 500, 1000, 000, 5000, , 0.000, , (in Pa) , Zeichnen Sie beide Kurven ( λ x / λ 0 über p ) in ein Diagramm ( p-achse log. geteilt). Fertigen Sie darüberhinaus zwei weitere Diagramme an, die einmal das Gebiet sehr niedriger Drücke ( bis etwa 50 Pa ) und zum anderen den oberen Druckbereich ( größer Pa ) zeigen, diesmal aber mit linear geteilter Druckskala. 3. Hinweise zur Auswertung Interpretieren Sie den Verlauf der Messkurven! Untersuchen Sie insbesondere folgende Punkte: 1. An welcher Stelle setzt die Druckabhängigkeit der Wärmeleitfähigkeit ein ( Knick im Diagramm)? Nach der Theorie müßte dort die freie Weglänge (vgl. Tabelle im Anhang) etwa in der Größenordnung der Röhrenradiuses (einige Zentimeter) liegen. Das ist nicht der Fall. Versuchen Sie, Gründe für diese Diskrepanz zu finden. etrachten Sie dazu hauptsächlich die Geometrie der Anordnung und den daraus resultierenden Temperaturverlauf in der Röhre.. Der Anstieg der Messkurve zu höheren Drücken hin wird durch Wärmeströmung (Konvektion) verursacht. Welcher Unterschied besteht zwischen Wärmeströmung und Wärmeleitung? Warum entsteht Konvektion erst bei höheren Drücken? Wie ist die Abhängigkeit vom Druck? Linear? Spielt Wärmestrahlung im Versuch eine Rolle?

6 6 Versuch 01- Wärmeleitfähigkeit von Gasen 3. Vergleichen Sie die Kurven von Luft und CO! Welche Gemeinsamkeiten und welche Unterschiede gibt es? 4. Wie ist das Verhalten bei sehr kleinen Drücken (Zusammenfallen der Messkurven für Luft und CO ) zu erklären? Nutzen Sie dazu ggf. ihre Vorkenntnisse über Desorptionseffekte und das gasartabhängige Messen verschiedener Messinstrumente aus dem Versuch 06. Zusatzaufgabe: Durch Kombination der Gleichungen (1) bis (3) erhält man eine Formel für λ, die verschiedene Schlußfolgerungen erlaubt. Schätzen Sie den gaskinetischen Moleküldurchmesser von CO mit Hilfe der gegebenen Wärmeleitfähigkeit bei 0 C ab! Wie ist λ von f, M und D abhängig? Welchen Einfluss hat die Temperatur? Wärmeleitfähigkeit ( 760 Torr, 0 C): Luft : W / K m CO 10-3 : 14.3 W / K m Moleküldurchmesser: Stickstoff 0,31 nm Sauerstoff 0,36 nm Anhang: Wärmeleitung als Diffusionsprozess Wichtige statistische Prozesse der Physik wie die Teilchendiffusion, die Wärmeleitung, die innere Reibung (Viskosität) oder auch der Ladungstransport in Ohmschen Widerständen sind Transportprozesse, bei denen räumliche und zeitliche Änderungen einer physikalischen Größe charakteristisch miteinander verbunden sind. ei all diesen Prozessen verursacht die räumliche Änderung einer Größe φ (der Gradient) den Transport einer anderen Größe mit der Stromdichte j. Wir nennen diesen Transport einen Diffusionsstrom. Die räumliche Änderung einer Größe φ ist also die treibende Kraft für die Ströme. Alle drei Prozesse sind von folgender Gestalt: dϕ j = c1. Im Falle der Viskosität löst eine Geschwindigkeitsänderung quer zur ewegungsrichtung einen Impulsstrom aus, d.h. benachbarte Schichten werden laminar mitgenommen. Es wird Impuls quer zur ewegungsrichtung der Strömung transportiert dv F σ = η, wobei σ = die Schubspannung, η die Viskosität und v die A Geschwindigkeit sind. ei der Wärmeleitung führt ein Temperaturgefälle zum Strömen von Wärme von der heißen zur kalten Stelle:

7 Versuch 01- Wärmeleitfähigkeit von Gasen 7 dt j = λ, wobei j die Wärmestromdichte, λ die Wärmeleitfähigkeit und T die Temperatur sind. Genauso ist es bei der Teilchendiffusion. Hier erzeugt ein Konzentrationsgradient einen Massenstrom. eim elektrischen Stromfluss in Ohmschen Widerständen ist es der Gradient des elektrischen Potentials U, der den Ladungstransport antreibt: du j = σ (oder I = U/R), wobei j die elektrische Stromdichte, σ die elektrische Leitfähigkeit und du die elektrische Feldstärke sind. etrachtung von Transportkenngrößen in Gasen: 1) mittlere freie Weglänge Λ: etrachtet man ein Gas mit der Anzahldichte n (Zahl der Gasmoleküle pro Volumen), so kann man die mittlere freie Weglänge Λ definieren als Länge eines Zylinders, in dem keine eeinträchtigungen (Stöße) mit Nachbarmolekülen stattfinden. Der für ein Molekül zur Verfügung stehende Raum ohne Störung durch Nachbarmoleküle wird also im statistischen Mittel durch einen Zylinder der Länge Λ und der Grundfläche π D ausgedrückt werden können: π D Λ = n 1, woraus die mittlere freie Weglänge folgt: Λ= 1 π. D n Der Faktor berücksichtigt die Relativgeschwindigkeit der sich bewegenden Gasmoleküle. Die mittlere freie Weglänge eines Gasmoleküls beträgt unter Standardbedingungen in Luft etwa 68 nm. p Aus dem Zustandsgleichung für ideale Gase (p V = R T) erhält man n = und damit nach Gl. kt eine eziehung zur estimmung von Λ aus dem Druck und dem gaskinetischen Moleküldurchmesser: k T Λ = (13) π p D Tabelle der mittleren freien Weglänge von Luft bei unterschiedlichen Drücken p / Pa Λ 60 nm 6 μm 60 μm 0.6 mm 6 mm

8 8 Versuch 01- Wärmeleitfähigkeit von Gasen ) mittlere Molekülgeschwindigkeitv : Die mittlere Geschwindigkeit () v eines Ensembles von Molekülen mit der Masse µ 0 v= v f v d und mit der Maxwellschen Geschwindigkeitsverteilung 8 1 v = kt π μ 3 μv kt μ f() v = 4π v e π kt beträgt: 3) Wärmeleitfähigkeit λ : 1 Cv λ = Λ v n mit n Molekülzahldichte, C v molare Wärme, N A Avogadozahl 3 N 4) dynamische Viskosität η : 1 η = Λ v ρ mit ρ - Dichte 3 A

201 Wärmeleitfähigkeit von Gasen

201 Wärmeleitfähigkeit von Gasen 01 Wärmeleitfähigkeit von Gasen 1. Aufgaben 1.1 Messen Sie die relative Wärmeleitfähigkeit x / 0 (bezogen auf Luft bei äußerem Luftdruck) für Luft und CO in Abhängigkeit vom Druck p. Stellen Sie x / 0

Mehr

Lösungen zum 6. Übungsblatt

Lösungen zum 6. Übungsblatt Lösungen zum 6. Übungsblatt vom 18.05.2016 6.1 Widerstandsschaltung (6 Punkte) Aus vier Widerständen R 1 = 20 Ω, R 2 = 0 Ω und R = R 4 wird die Schaltung aus Abbildung 1 aufgebaut. An die Schaltung wird

Mehr

Physikalische Chemie Praktikum. Gase: Wärmeleitfähigkeit

Physikalische Chemie Praktikum. Gase: Wärmeleitfähigkeit Hochschule Emden / Leer Physikalische Chemie Praktikum Gase: Wärmeleitfähigkeit Vers.Nr. 20 Mai 2017 Allgemeine Grundlagen Kinetische Gastheorie, Abhängigkeit der Wärmeleitfähigkeit von Druck (Gasdichte),

Mehr

Versuchsprotokoll. Spezifische Wärmekapazität des Wassers. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 7

Versuchsprotokoll. Spezifische Wärmekapazität des Wassers. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 7 Montag, 10.11.1997 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 7 Spezifische Wärmekapazität des Wassers 1 Inhaltsverzeichnis 1 Problemstellung

Mehr

Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie. Protokollant: Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre

Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie. Protokollant: Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Physik Bachelor 2. Semester Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie Protokoll Harald Schmidt Sven Köppel Versuchsdurchführung:

Mehr

0.1 Barometrische Höhenformel

0.1 Barometrische Höhenformel 0. Barometrische Höhenformel Da, wie aus den bisherigen Überlegungen hervorgegeangen ist, Gase komressibel sind, kann deren Dichte nicht als konstant angesehen werden. Dies hat Konsequenzen auf den Schweredruck

Mehr

Aufgaben. 2 Physikalische Grundlagen

Aufgaben. 2 Physikalische Grundlagen Der Verdampfungs- oder Kondensationspunkt jedes Stoffes ist von der Temperatur und dem Druck abhängig. Für jede Verdampfungstemperatur gibt es nur einen zugehörigen Verdampfungsdruck und für jeden Verdampfungsdruck

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

a.) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung!

a.) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung! Klausur F2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) ( 2 Punkte) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung!

Mehr

Allgemeine Vorgehensweise

Allgemeine Vorgehensweise Allgemeine Vorgehensweise 1. Skizze zeichnen und Systemgrenze ziehen 2. Art des Systems festlegen (offen, geschlossen, abgeschlossen) und Eigenschaften charakterisieren (z.b. adiabat, stationär, ruhend...)

Mehr

b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck:

b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck: b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck: = Druck einer senkrecht über einer Fläche A Stehenden Substanz (auch Flächen innerhalb der Flüssigkeit, nicht nur am Boden) Schweredruck steigt linear

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 1.11.6 Statistische Physik - Theorie der Wärme PD Dr. M. Falcke Übungsblatt 5: an-der-waals Gas / Kanonisches Ensemble Aufgabe 1 Punkte Leiten Sie aus

Mehr

Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung

Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung 1. Blut (Bettina Wiebe) 2. Gefäße und Kreislaufsystem (Stella Preußler)

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg GRUNDLAGEN Modul: Versuch: Elektrochemie 1 Abbildung 1: I. VERSUCHSZIEL

Mehr

M5 Viskosität von Flüssigkeiten

M5 Viskosität von Flüssigkeiten Christian Müller Jan Philipp Dietrich M5 Viskosität von Flüssigkeiten I. Dynamische Viskosität a) Erläuterung b) Berechnung der dynamischen Viskosität c) Fehlerrechnung II. Kinematische Viskosität a) Gerätekonstanten

Mehr

Struktur der Atmosphäre

Struktur der Atmosphäre Einführung in die Meteorologie Teil I Struktur der Atmosphäre Entwicklungsgeschichte, Bestandteile und vertikale Struktur der Atmosphäre Wird erst später im Semester diskutiert. Zusammensetzung der Atmosphäre

Mehr

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand? 1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die

Mehr

Versuch 1. Bestimmung des Umschlagpunktes laminar-turbulent bei einer Rohrströmung (Reynoldsversuch)

Versuch 1. Bestimmung des Umschlagpunktes laminar-turbulent bei einer Rohrströmung (Reynoldsversuch) Versuch 1 Bestimmung des Umschlagpunktes laminar-turbulent bei einer Rohrströmung (Reynoldsversuch) Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und Raumfahrt Georg-August-Universität

Mehr

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Stationäre Rohrströmung ohne Reibung. 2002 Büsching, F.: Hydromechanik 07.1

Stationäre Rohrströmung ohne Reibung. 2002 Büsching, F.: Hydromechanik 07.1 Stationäre Rohrströmung ohne Reibung. 00 Büsching, F.: Hydromechanik 07.1 Stationäre Rohrströmung mit Reibung. 00 Büsching, F.: Hydromechanik 07. FLIEßVORGANG REALER FLÜSSIGKEITEN: 1. Laminare und turbulente

Mehr

Lineare Antwort, Green-Kubo, Fluktuations-Dissipations Theorem

Lineare Antwort, Green-Kubo, Fluktuations-Dissipations Theorem Lineare Antwort, Green-Kubo, Fluktuations-Dissipations Theorem Franziska Böhme, Sophie Seidenbecher 05.07.2012 1 Lineare Antwort 2 3 4 Theorie der Linearen Antwort Einführung der Linearen Antworttheorie

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Grundlage für das Verständnis der Gegebenheiten unter Wasser Erkennen der sich daraus ableitenden Vorgänge in diesem für den Taucher

Grundlage für das Verständnis der Gegebenheiten unter Wasser Erkennen der sich daraus ableitenden Vorgänge in diesem für den Taucher Tauchphysik Grundlage für das Verständnis der Gegebenheiten unter Wasser Erkennen der sich daraus ableitenden Vorgänge in diesem für den Taucher lebensfeindlichen Milieu Einhaltung wichtiger Verhaltens-regeln,

Mehr

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein

Mehr

8.6.3 Wärmeleitung von Gasen ****** 1 Motivation. 2 Experiment. Wärmeleitung von Gasen V080603

8.6.3 Wärmeleitung von Gasen ****** 1 Motivation. 2 Experiment. Wärmeleitung von Gasen V080603 8.6.3 ****** 1 Motivation Dieser Versuch zeigt qualitativ anhand der unterschiedlichem Abkühlung eines glühenden Drahtes, dass die umgekehrt proportional zur Wurzel aus der Molekularmasse und für nicht

Mehr

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla Magnetfelder und orentz-kraft Magnetfelder & magnetische Flussdichte a. Jeder stromdurchflossene eiter erzeugt ein Magnetfeld, die Richtung dieses Magnetfeldes hängt von der Fließrichtung des Stromes ab.

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt

Mehr

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz)

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Versuch Nr. 58 Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Stichworte: Kinetische Gastheorie, ideales Gas, charakteristische Größen zur Beschreibung von Gasen (s.u.), Hagen-Poiseuille'sches

Mehr

Stichworte: Druckmeßgeräte (Manometer, Vakuummeter), Boyle-Mariotte' sches Gesetz, Wheatstone' sche Brückenschaltung

Stichworte: Druckmeßgeräte (Manometer, Vakuummeter), Boyle-Mariotte' sches Gesetz, Wheatstone' sche Brückenschaltung Versuch Nr. 56 Eichung eines Wärmeleitungsvakuummeters mit Hilfe eines McLeod-Vakuummeters Stichworte: Druckmeßgeräte (Manometer, Vakuummeter), Boyle-Mariotte' sches Gesetz, Wheatstone' sche Brückenschaltung

Mehr

Dr.-Ing. habil. Jörg Wollnack 18.12.2008 GHY.1. Hydraulische Systeme

Dr.-Ing. habil. Jörg Wollnack 18.12.2008 GHY.1. Hydraulische Systeme GHY.1 Hydraulische Systeme GHY.2 Hydraulische Motoren GHY.3 p i const, p i Fi i F F 1 2 1 2 F 1 2 F 1 2 Hydraulische Presse I GHY.4 Energieerhaltungssatz S + s S + s 01 1 02 2 S F ds F ds 1 1 2 2 S 01

Mehr

Leiterkennlinien elektrischer Widerstand

Leiterkennlinien elektrischer Widerstand Leiterkennlinien elektrischer Widerstand Experiment: Wir untersuchen den Zusammenhang zwischen der anliegenden Spannung und der Stromstärke I bei verschiedenen elektrischen Leitern. Als elektrische Leiter

Mehr

Praktikum Materialwissenschaft II. Wärmeleitung

Praktikum Materialwissenschaft II. Wärmeleitung Praktikum Materialwissenschaft II Wärmeleitung Gruppe 8 André Schwöbel 1328037 Jörg Schließer 1401598 Maximilian Fries 1407149 e-mail: a.schwoebel@gmail.com Betreuer: Markus König 21.11.2007 Inhaltsverzeichnis

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 5

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 5 Aufgabe 20 In einem Kalorimeter soll die mittlere spezifische Wärmekapazität eines Öls zwischen 20 C und 00 C bestimmt werden. Das Kalorimeter wurde mit 3 kg Öl gefüllt. Mit einer elektrischen Heizung

Mehr

Übertragungsglieder mit harmonischer Erregung

Übertragungsglieder mit harmonischer Erregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 2 Übertragungsglieder mit harmonischer Erregung Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt:

Mehr

109 Kugelfallmethode nach Stokes

109 Kugelfallmethode nach Stokes 109 Kugelfallmethode nach Stokes 1. Aufgaben 1.1 Messen Sie die Fallzeit von Stahlkugeln mit unterschiedlichem Durchmesser in Rizinusöl! 1.2 Bestimmen Sie daraus die dynamische Viskosität des Öls, und

Mehr

2) Wie viele Schichten Atome verliert ein Autoreifen pro Umdrehung?

2) Wie viele Schichten Atome verliert ein Autoreifen pro Umdrehung? 2) Wie viele Schichten Atome verliert ein Autoreifen pro Umdrehung? Was man schätzen muss: Nach wie vielen Kilometern muss man einen Reifen wechseln? Wie viel des Profils wird dabei abgefahren? Wie groß

Mehr

5. Hydro- und Aerodynamik

5. Hydro- und Aerodynamik Hydro- und Aerodynamik: 5. Hydro- und Aerodynamik (Strömung von Fluiden, also flüssigen und gasförmigen Substanzen) blaue Linien Bahnen von Partikeln der Flüssigkeit Dichte der Linien ist ein Maß für die

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

Test zur Messung der thermischen Eigenschaften von Beton

Test zur Messung der thermischen Eigenschaften von Beton Test zur Messung der thermischen Eigenschaften von Beton Jean-David GRANDGEORGE, Sandrine BRAYMAND, Christophe FOND, Violaine TINARD IUT Robert Schuman, Université de Strasbourg «Nachhaltiges Bauen am

Mehr

- ANHANG - DAMPF UND KONDENSAT NACHSCHLAGEWERK / ANHANG / QUELLEN

- ANHANG - DAMPF UND KONDENSAT NACHSCHLAGEWERK / ANHANG / QUELLEN DAMPF UND KONDENSAT NACHSCHLAGEWERK / ANHANG / QUELLEN Hier entsteht ein umfassendes Nachschlagewerk. Zur Zeit sind noch nicht sehr viele Informationen vorhanden. Zukünftig soll sich hier aber jeder Planer

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

8 Wheatstonesche Brücke

8 Wheatstonesche Brücke 9 8 Wheatstonesche Brücke 8. Einführung In der Messtechnik erfolgt die Messung physikalischer Größen oft durch einen Vergleich mit geeigneten Normalen. Eine Möglichkeit zur Realisierung solcher Messverfahren

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel

Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel Norman Wirsik Matrikelnr: 1829994 8. November 2004 Gruppe 5 Dienstag 13-16 Uhr Praktikumspartner: Jan Hendrik Kobarg 1 1. Ziel

Mehr

10.4 Funktionen von mehreren Variablen

10.4 Funktionen von mehreren Variablen 10.4 Funktionen von mehreren Variablen 87 10.4 Funktionen von mehreren Variablen Veranschaulichung von Funktionen eine Variable wei Variablen f() oder = f() (, ) f(, ) oder = f(, ) D(f) IR; Darstellung

Mehr

Übungsarbeit z.th. Druck und Auftrieb

Übungsarbeit z.th. Druck und Auftrieb Übunsarbeit z.th. Druck und Auftrieb 1) Erkläre, wie der Schweredruck zustande kommt und leite die Formel P s ρ h her. (Zeichnun, Formeln und beründender Text.) 2) Berechne den Schweredruck, der in 865

Mehr

Kinetische Gastheorie - Die Gauss sche Normalverteilung

Kinetische Gastheorie - Die Gauss sche Normalverteilung Kinetische Gastheorie - Die Gauss sche Normalverteilung Die Gauss sche Normalverteilung Die Geschwindigkeitskomponenten eines Moleküls im idealen Gas sind normalverteilt mit dem Mittelwert Null. Es ist

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

5. Numerische Ergebnisse. 5.1. Vorbemerkungen

5. Numerische Ergebnisse. 5.1. Vorbemerkungen 5. Numerische Ergebnisse 52 5. Numerische Ergebnisse 5.1. Vorbemerkungen Soll das thermische Verhalten von Verglasungen simuliert werden, müssen alle das System beeinflussenden Wärmetransportmechanismen,

Mehr

PS III - Rechentest 24.02.2010

PS III - Rechentest 24.02.2010 Grundlagen der Elektrotechnik PS III - Rechentest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 Summe Punkte 7 15 12 9 17 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und Matr.

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Experimentalphysik 2

Experimentalphysik 2 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................

Mehr

V.2 Phasengleichgewichte

V.2 Phasengleichgewichte Physikalisch-Chemisches Praktikum II WS 02/03 Josef Riedl BCh Team 4/1 V.2 Phasengleichgewichte V.2.1 Gegenstand des Versuches Als Beispiel für ein Phasengleichgewicht im Einstoffsystem wird die Koexistenzkurve

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Frank-Hertz-Versuch. Praktikumsversuch am Gruppe: 18. Thomas Himmelbauer Daniel Weiss

Frank-Hertz-Versuch. Praktikumsversuch am Gruppe: 18. Thomas Himmelbauer Daniel Weiss Frank-Hertz-Versuch Praktikumsversuch am 13.04.2011 Gruppe: 18 Thomas Himmelbauer Daniel Weiss Abgegeben am: 04.04.2011 Inhaltsverzeichnis 1 Einleitung 2 2 Versuchsaufbau 2 3 Vorbemerkungen 2 3.1 Vermutlicher

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov # am 25.0.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Elektrische Grundlagen der Informationstechnik. Laborprotokoll: Nichtlineare Widerstände

Elektrische Grundlagen der Informationstechnik. Laborprotokoll: Nichtlineare Widerstände Fachhochschule für Technik und Wirtschaft Berlin Elektrische Grundlagen der Informationstechnik Laborprotokoll: Nichtlineare Widerstände Mario Apitz, Christian Kötz 2. Januar 21 Inhaltsverzeichnis 1 Vorbeitung...

Mehr

Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k

Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k Versuche des Kapitel 7 Reaktionskinetik Einleitung Die Reaktion von Piperidin mit Dinitrochlorbenzol zum gelben Dinitrophenylpiperidin soll auf die Geschwindigkeitskonstante und die Arrheniusparameter

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Aufgabe 1 Hook sches Gesetz für ein Federpendel Bei einer Feder, für die das Hook sche Gesetz gilt, ist die rücktreibende Kraft F F proportional

Mehr

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab.

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab. 40 8. Anwendungen der Differentialrechnung Beispiele aus der Phsik: Momentangeschwindigkeit Die Bewegung eines Massenpunktes wird mathematisch durch die zugrundeliegende Weg- Zeitfunktion beschrieben,

Mehr

2. Physikschulaufgabe

2. Physikschulaufgabe . Physikschulaufgabe 1.1 Was versteht man unter dem Druck in einer Flüssigkeit bzw. in einem Gas aus physikalischer Sicht? 1. Gib die Definitionsgleichung und die Einheit für die physikalische Größe Druck

Mehr

Der Adiabatenexponent

Der Adiabatenexponent Physikalisches Praktikum für das Hauptfach Physik ersuch 07 Der Adiabatenexponent Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davonde Gruppe: 13 Assistent: Dagmar

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Grundlagen und Bauelemente der Elektrotechnik

Grundlagen und Bauelemente der Elektrotechnik Heinz Josef Bauckholt Grundlagen und Bauelemente der Elektrotechnik ISBN-10: 3-446-41257-3 ISBN-13: 978-3-446-41257-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41257-6

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Korrekturen 1 zur Elektrodynamik, 5. Auflage, 2008

Korrekturen 1 zur Elektrodynamik, 5. Auflage, 2008 Korrekturen 1 zur Elektrodynamik, 5 Auflage, 2008 Seite 91: Gleichung (1011) wird korrigiert zu q Φ(r, θ) = r r 0 = q r 2 + r0 2 2 rr 0 cos θ (1011) Seite 92: Die Zeile nach (1014) muss lauten: Der Vergleich

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Physik, grundlegendes Anforderungsniveau

Physik, grundlegendes Anforderungsniveau Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

Bestimmung des Spannungskoeffizienten eines Gases

Bestimmung des Spannungskoeffizienten eines Gases Bestimmung des Spannungskoeffizienten eines Gases Einleitung Bei diesem Experiment wollen wir den Spannungskoeffizienten α eines Gases möglichst genau bestimmen und in Folge mit dem Spannungskoeffizienten

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Transporterscheinungen: Auflösungsgeschwindigkeit von Gips (CaSO4)

Transporterscheinungen: Auflösungsgeschwindigkeit von Gips (CaSO4) F 44 Transporterscheinungen: Auflösungsgeschwindigkeit von Gips (CaSO4). Grundlagen und Problemstellung Unmittelbar an der Oberfläche eines sich in Wasser auflösenden Salzkristalls befindet sich eine gesättigte

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V.

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V. Gesetz von Boyle Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V Isothermen Gesetz von Gay-Lussac Jacques Charles und Joseph-Louis Gay-Lussac fanden

Mehr

Beschreibe die wesentlichen Unterschiede zwischen den einzelnen Anregungsmöglichkeiten.

Beschreibe die wesentlichen Unterschiede zwischen den einzelnen Anregungsmöglichkeiten. Erkläre den Begriff Anregung eines Atoms Unter Anregung eines Atoms versteht man die Zufuhr von Energie an ein Atom, welche dieses vom Grundzustand in einen höheren Energiezustand, auf ein höheres Energieniveau,

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

5. Versuch: Strom- und Spannungsmessung Ohmsches Gesetz

5. Versuch: Strom- und Spannungsmessung Ohmsches Gesetz Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 5. Versuch: Strom- und Spannungsmessung Ohmsches Gesetz In diesem Versuch geht es darum, die Grundlagen der Elektrizitätslehre zu

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang lektrotechnik - kinetische Gastheorie - Prof. Dr. Ulrich Hahn WS 008/09 Molekularbewegung kleine sichtbare Teilchen in Flüssigkeiten oder Gasen: unregelmäß äßige Zitterbewegung

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr