Formelsammlung zur Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung zur Vorlesung"

Transkript

1 Formelsammlung zur Vorlesung - Biophysik der Zelle - Allgemeines... Grundgleihungen:... Strahlenoptik...3 Reflexionsgesetz:... 3 Brehung:... 3 Totalreflexion:... 3 Abbildungsgesetze:... 4 Brehung an ugelflähen:... 4 Brehung an zwei ugelflähen (Dünne Linsen):... 5 ombination dünner Linsen:... 5 Sehwinkel/Auge:... 5 Winkelmaße:... 5 Vergrößerung (Lupe):... 6 Vergrößerung (Mikroskop):... 6 Wellenoptik...7 Beugung am Einfahspalt:... 7 Beugung am Doppelspalt:... 7 Auflösungsvermögen optisher Geräte:... 8 Auflösungsgrenze Auge:... 8 ontrast:... 8 Zentrifugation und Sedimentation...9 Arhimedishes Prinzip:... 9 Reibung:... Boltzmann-Verteilung:... Zentrifugation:... Diffusion.... Fik shes Gesetz:.... Fik shes Gesetz:... Random Walk:... 3 Permeabilität:... 3 Diffusion in einem äußeren raftfeld:... 4 Diffusion geladener Teilhen im elektrishen Feld:... 4 Für j Diff (Gleihverteilte Ionenkonz., reine Diffusion durh externe raft - Elektrophorese):.. 5 Diffusionspotential:... 6 Donnan-Gleihgewiht:... 6 Membranpotential:... 7 Transportmehanismen...8 Ionenkanäle:... 8 Carrier-Transport:... 8 Prof. Dr. Stephan Nußberger Seite von 8 Stand:.5.4

2 Allgemeines Grundgleihungen: F raft m Masse s Weg a Beshleunigung k Federkonstante p Impuls oder Druk v Geshwindigkeit W Arbeit E kin kinetishe Energie A Flähe r Radius (hier: der reisbahn) ω Winkelgshwindigkeit M Drehmoment l Abstand zum Drehpunkt P Leistung F F m a raft k z Hooke shes Gesetz a rω Zentripetal/-fugalbeshleunigung p m v Impuls F p Druk A W M F s Arbeit F l Drehmoment Ekin mv kinetishe Energie W P Leistung t Prof. Dr. Stephan Nußberger Seite von 8 Stand:.5.4

3 Strahlenoptik Reflexionsgesetz: Einfallswinkel Reflexionswinkel θ hin θ rük Brehung: n Brehungsindex n v Ausbreitungsgeshwindigkeit v α /α Einfallswinkel/Brehungswinkel (zum Lot gemessen) Übergang Medium Medium sin sin a a v n n sin α n sin α Gesetz von Snellius oder v n v n v Vakuum Medium Totalreflexion: Übergang dihteres Medium dünneres Medium sin v n α ritial bzw. v n sin α ritial v v Vakuum Medium Prof. Dr. Stephan Nußberger Seite 3 von 8 Stand:.5.4

4 Abbildungsgesetze: G Gegenstandsgröße B Bildgröße g Gegenstandsweite b Bildweite f Brennweite D Brehwert V Abbildungsmaßstab Abbildungsgleihung: D [ D] Dioptrie ( dpt) f g b m onvexlinse f positiv (f > ) onkavlinse f negativ (f < ) Abbildungsmaßstab ( lineares Verhältnis zwishen Bild- und Objektgröße): B b b f V G g f Brehung an ugelflähen: r ugelradius g Gegenstandsweite b Bildweite f Brennweite ( ) r n ( ) n r g b n n n n oder g b r für für n g : b f r (hintere Brennweite) n n n b : g f r (vordere Brennweite) n n Prof. Dr. Stephan Nußberger Seite 4 von 8 Stand:.5.4

5 Brehung an zwei ugelflähen (Dünne Linsen): n Brehungsindex des Linsenmaterials rümmungsradien der Linsenflähen r i f ( n ) r r Linsenshleiferformel mit r r r f r ( n ) ombination dünner Linsen: f i Brennweiten der Linsen d Abstand beider Linsen f ges f f d f f Sehwinkel/Auge: s Bezugssehweite s,5m ε Sehwinkel (Winkel den die äußersten vom betrahteten Gegenstand kommenden Strahlen bilden min. Sehwinkel des menshlihen Auges: ) G tan ε bzw. g tanε G s Winkelmaße: Grad ( ) rad 57, 95 π 6 (Bogenminuten) 36 (Bogensekunden) Prof. Dr. Stephan Nußberger Seite 5 von 8 Stand:.5.4

6 Vergrößerung (Lupe): ε Lupe Sehwinkel mit Instrument ε Sehwinkel ohne Instrument V Lupe Vergrößerung f Brennweite des Instruments G Gegenstandsgröße Bezugssehweite s V Lupe ε ε Lupe s G ( f ) s G ( ) f Vergrößerung (Mikroskop): V ges Gesamtvergrößerung Mikroskop V Vergrößerung Objektiv V Vergrößerung Okular t Tubuslänge s Bezugssehweite f Brennweite Objektiv Brennweite Okular f V ges V V t f s f Prof. Dr. Stephan Nußberger Seite 6 von 8 Stand:.5.4

7 Wellenoptik Beugung am Einfahspalt: b Spaltbreite k Maximum k-ter Ordnung α Beugungswinkel (zum Lot gemessen) λ Wellenlänge Intensitätsminima: sin α k λ min b Intensitätsmaxima: λ sin α max k b Beugung am Doppelspalt: d Abstand beider Spalte Intensitätsminima: λ sin α min k d Intensitätsmaxima: sin α k λ max d Prof. Dr. Stephan Nußberger Seite 7 von 8 Stand:.5.4

8 Auflösungsvermögen optisher Geräte: ϕ min Auflösungsgrenze, minimaler Sehwinkel d min Auflösungsgrenze, minmale Größe des Objekts λ Wellenlänge α Halber Öffnungswinkel des Objektivs D Durhmesser der Öffnung (Iris, Objektiv,...) n Brehungsindex des Mediums zwishen Objekt und Objektiv NA Numerishe Apertur Auflösungsgrenze Mikroskop: λ λ d min bzw. Faustformel zur Auflösung von Mikroskopen: n sin α NA d min λ Numerishe Apertur: λ NA n sin α d min Auflösungsgrenze Auge: ϕ min Auflösungsgrenze, minimaler Sehwinkel λ Wellenlänge D Durhmesser der Öffnung (Iris, Objektiv,...) ϕ min, λ D ontrast: A Extinktion I eingestrahlte Intensität I durhgelassene Intensität ε Extinktionskoeffizient onzentraition des durhstrahlten Mediums d Shihtdike D optishe Weglänge durh das Präparat n Brehungsindex Präparat Brehungsindex des Mediums zwishen Objekt und Objektiv n Amplitudenänderung/Amplitudenkontrast: I A log ε d Lambert-Beer shes Gesetz I Phasenänderung/Phasenkontrast: π D ϕ mit D ( n n ) d λ Prof. Dr. Stephan Nußberger Seite 8 von 8 Stand:.5.4

9 Zentrifugation und Sedimentation Arhimedishes Prinzip: F A Auftriebskraft (wirkt der Gewihtskraft entgegen: FG FA ) F G Gewihtskraft F Z Zentrifugalkraft F R Zentripetalkraft F Res Resultierende raft V Volumen der vom örper verdrängten Flüssigkeit bzw. Volumen des örpers ρ Dihte des umgebenden Mediums ρ Dihte des örpers g Erdbeshleunigung m Masse der verdrängten Menge des umgebenden Mediums m Masse des örpers m ρ effektive Masse ( m ) ρ f raft, die die Sedimentation vorantreibt z gesunkene Wegstreke U potentielle Energiedifferenz m ρ m ρ V V F A F G ρ V ) g bzw. ρ V ) g ( F R ( (ρ V ) g bzw. F (ρ V ) g Z F F F Re s G A bzw. s Z R U V ρ g) z ( V ρ g) z ( FRe F F bzw. F s m Re a du f V ( ρ ρ) g Gesetz von Arhimedes dz Prof. Dr. Stephan Nußberger Seite 9 von 8 Stand:.5.4

10 Reibung: γ Reibungskoeffizient η Viskosität R Radius des kugelförmigen örpers F Reib Reibungskraft Re Reynoldszahl L eine für den örper harakteristishe Länge (z. B. ugelradius,...) Driftgeshwindigkeit des örpers v Drift γ 6πηR Stokes shes Gesetz F Re ib γ vdrift 6πηR vdrift gültig bei Re <, d.h. bei laminarer Strömung ρ L vdrift Re Reynoldszahl η Boltzmann-Verteilung: p i Aufenthaltswahrsheinlihkeit des Partikels Z im Zustand Z Ui mit Energie U i k B Boltzmann-onstante T Temperatur R Gaskonstante N Teilhenzahl p i U i k BT e mit k BT Z e konstant und p Z i i U i i p e p U k T B e U U k T B Prof. Dr. Stephan Nußberger Seite von 8 Stand:.5.4

11 Zentrifugation: m ρ effektive Masse ( m ) ρ r Abstand des Teilhens zur Rotationsahse r Abstand des Teilhens zur Rotationsahse a Beshleunigung (für Zentrifugation: a r ω Zentrifugalbeshleunigung) ω Winkelgeshwindigkeit s Svedberg-onstante (Sedimentations-Zeit-onstante) v Drift Geshwindigkeit des Teilhens t Zeitpunkt t Zeitpunkt t lärzeit p Aufenthaltswahrsheinlihkeit des Partikels p Aufenthaltswahrsheinlihkeit des Partikels onzentration an Positon onzentration an Position v Drift m a bzw. γ v Drift m rω γ m γ s ρ ( ) ρ vdrift vdrift m 3 s [S ] Svedberg s a rω γ ( t t ) ( ln r ln r ) t ω s p p e m ω k BT ( r r ) Prof. Dr. Stephan Nußberger Seite von 8 Stand:.5.4

12 Diffusion. Fik shes Gesetz: N Teilhenzahl t Zeit J x Teilhenfluss j x Flux oder Flussdihte (Fluss pro Einheitsflähe) D Diffusionskonstante A Flähe die von N Teilhen durhströmt wird d onzentrationsgefälle entlang des Weges x dx Wegstreke J x dn d DA. Fik shes Gesetz dt dx [ J x ] mol Fluss s j x N A t J x A D x. Fik shes Gesetz: D Diffusionskonstante t Zeitspanne onzentrationsgefälle entlang des Weges x x Wegstreke t D x Prof. Dr. Stephan Nußberger Seite von 8 Stand:.5.4

13 Random Walk: m Masse des Teilhens k B Boltzmann-onstante D Diffusionskonstante T Temperatur v Geshwindigkeit des Teilhens x Abweihung des Teilhens vom Ursprung δ Shrittlänge τ Zeitspanne zwishen zwei aufeinander folgenden Shritten t Zeit n Anzahl der Shritte r Radius/Zusammenfassung der Rihtungen γ Reibungskoeffizient (nah Stokes) v x kbt m bzw. v x kbt m mittlere Geshwindigkeit δ ± v τ x x i nδ bzw. x i nδ mittlere Abweihung vom Ursprung x D t bzw. x D t Random Walk in Dimension r 4 D t mit r x y Random Walk in Dimensionen r 6 D t mit r x y z Random Walk in 3 Dimensionen δ D τ kbt γ [ D] Diffusions konstante m s Permeabilität: D Diffusionskonstante P Permeabilitätskoeffizient x Dike der Membran d onzentrationsgefälle (d - ) entlang des Weges x Flux- oder Flussdihte (Fluss pro Einheitsflähe) j x P D x [ P] Permeabili tätskoeffi zient m s j x P d P ( ) Prof. Dr. Stephan Nußberger Seite 3 von 8 Stand:.5.4

14 Diffusion in einem äußeren raftfeld: j Diff Diffusions-Teilhenstrom/Flussdihte j on onvektiver Teilhenstrom/Flussdihte j ges Gesamtflussdihte j Ion Ionenstrom D Diffusionskonstante F Äußere raft γ Reibungskoeffizient v Drift Geshwindigkeit des Teilhens onzentration aussen d onzentrationsgefälle entlang des Weges x dx Wegstreke j ges F jdiff jon D vdrift D Fokker-Plank-Gleihung x x γ Diffusion geladener Teilhen im elektrishen Feld: F Äußere raft q Ladung E Elektrishe Feldstärke U Angelegte Spannung z Wertigkeit e Elementarladung d Abstand zwishen beiden ondensatorplatten / Dike der Membran j on onvektiver Teilhenstrom/Flussdihte j ges Gesamtflussdihte j Ion Ionenflussdihte D Diffusionskonstante F Äußere raft γ Reibungskoeffizient onzentration aussen d onzentrationsgefälle entlang des Weges x dx Wegstreke k B Boltzmann-onstante T Temperatur U F q E q q z e d U E d j Ion q ln q D E D E x kbt x kbt Nernst-Plank-Gleihung mit k B T q E γ j Ion jdiff j on D vdrift D D x x γ Prof. Dr. Stephan Nußberger Seite 4 von 8 Stand:.5.4

15 Für j Diff (Gleihverteilte Ionenkonz., reine Diffusion durh externe raft - Elektrophorese): j Ion Ionenflussdihte I Ionenstrom q Ladung E Elektrishe Feldstärke z Wertigkeit e Elementarladung k B Boltzmann-onstante T Temperatur D Diffusionskonstante onzentration aussen γ Reibungskoeffizient j Ion j drift q E γ z e E γ j Ion q D E k T B I q j Ion q D E k T B Prof. Dr. Stephan Nußberger Seite 5 von 8 Stand:.5.4

16 Diffusionspotential: ϕ elektrishes Potential U Diff Diffusionspotential D Diffusionskoeffizient ationen - D A Diffusionskoeffizient Anionen z Wertigkeit e Elementarladung q Ladung k B Boltzmann-onstante T Temperatur onzentration an Positon onzentration an Position U Diff D D A kbt ϕ ln für binäres System Plank-Potential D D q A U k T ln, B Nernst-Potential (für eine permeable Ionensorte) A oder Diff q im Gleihgewiht (d.h. j D): kbt U ln q e qu k T B bzw. bei physiol. Bedingungen: U Diff 59mV z log Donnan-Gleihgewiht: ϕ elektrishes Potential onzentration an Positon onzentration an Position X onzentration der negativen/positiven Festladungen z Wertigkeit e Elementarladung k B Boltzmann-onstante T Temperatur bzw., A,, A,,, A, A, Donnan-Gleihung ϕ Donnan kbt ln z e,, kbt ln z e A, A, X X ( ) X X bzw. ( ),, A, A, Prof. Dr. Stephan Nußberger Seite 6 von 8 Stand:.5.4

17 Membranpotential: U Spannung / Aktionspotential U Mem. Membranpotential E Gleihgewihtspotential I Stromstärke G elektrishe Leitfähigkeit P i Permeabilitätskoeffizienten i onzentrationen x Wegstreke R m Flähenwiderstand der Membran (Isolierung) [ Ω m ] R i Längswiderstand des Axons (ern) [ Ω m ] r Radius des erns F Faraday-onstante U Membran, innen RT P P, aussen A A, innen ϕ innen ϕaussen ln Goldman-Gleihung zf P P A A, aussen Aktionspotential: x λ U ( x) U e mit λ r R R m i Ionenstrom: I I I ( I ) G ( U E ) G ( U E ) I gesamt Natrium alium Lek Na Mem Na Mem Lek Prof. Dr. Stephan Nußberger Seite 7 von 8 Stand:.5.4

18 Transportmehanismen Ionenkanäle: I Stromstärke Q Ladung U Spannung / Aktionspotential R Widerstand G elektrishe Leitfähigkeit ρ spezifisher Widerstand l Länge des Leiters A Quershnittflähe C ondensatorkapazität d Abstand der beiden ondensatorplatten ε elektrishe Feldkonstante ε r Permittivitätszahl N Anzahl N A Avogadro-onstante F Faraday-onstante e Elementarladung z Wertigkeit t Zeit g Leitfähigkeit eines offenen anals U Q I G U Ohm shes Gesetz R t l R ρ A εr ε A C d Q N bzw. z e N e F A und N t Q U N g t z e z F A U g z e Carrier-Transport: v Reaktionsgeshwindigkeit (Umsatzrate) k m Affinitätskonstante [S] Substratkonzentration vmax [ S ] v Mihaelis-Menten-inetik k [ S ] m Prof. Dr. Stephan Nußberger Seite 8 von 8 Stand:.5.4

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 5+6+7: Roter Faden: Heute: Wellenoptik, geometrische Optik (Strahlenoptik) http://www-linux.gsi.de/~wolle/telekolleg/schwingung/index.html Versuche: Applets: http://www.walter-fendt.de/ph4d huygens,

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 5+6+7: Roter Faden: Heute: Wellenoptik, geometrische Optik (Strahlenoptik) http://www-linux.gsi.de/~wolle/telekolleg/schwingung/index.html Versuche: Michelson IF, Seifenblase, Newton- Ringe Applets:

Mehr

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles

Mehr

Ph4I Zusammenfassung

Ph4I Zusammenfassung Physik 4 für Informatiker Ph4I Zusammenfassung Stand: 2013-08-12 https://github.com/hsr-stud/ph4i/ Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladung..................................... 3 1.2

Mehr

Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am

Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am Übungen zur Vorlesung PN1 Übungsblatt 6 Lösung Besprechung a7.11.2012 Aufgabe 1: Zentrifuge Eine Zentrifuge habe einen Rotor mit einem Durchmesser von 80 cm. An jedem Ende hängen Schwinggefäße mit einer

Mehr

Probe-Klausur zur Physik II

Probe-Klausur zur Physik II Ruhr-Universität Bochum Fakultät für Physik und Astronomie Institut für Experimentalphysik Name Vorname Matrikel-Nummer Fachrichtung, Abschluss Probe-Klausur zur Physik II für Studentinnen und Studenten

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

FK Ex 4 - Musterlösung Dienstag

FK Ex 4 - Musterlösung Dienstag FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu

Mehr

Formeln und Tafeln. für die Schweizerischen Maturitätsprüfungen, Physik (Grundlagenfach)

Formeln und Tafeln. für die Schweizerischen Maturitätsprüfungen, Physik (Grundlagenfach) Formeln und Tafeln für die Shweizerishen Maturitätsprüfungen, Physik (Grundlagenfah) Neue Rihtlinien, Version Dezember 008 (Revisionen vorbehalten) Spezielle Daten, die hier niht vorkommen und die niht

Mehr

Auflösungsvermögen bei dunkelen Objekten

Auflösungsvermögen bei dunkelen Objekten Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Formelsammlung Physik

Formelsammlung Physik Formelsammlung Physik http://www.fersch.de Klemens Fersch 16. September 2018 Inhaltsverzeichnis 1 Mechanik 2 1.1 Grundlagen Mechanik.............................. 2 1.1.1 Gewichtskraft...............................

Mehr

Klausur Mechanik für Geowissenschaftler WiSe Februar 2014

Klausur Mechanik für Geowissenschaftler WiSe Februar 2014 Klausur Mehanik für Geowissenshaftler WiSe 04 7. Februar 04 Matrikelnummer ) Gegeben sei das abgebildete rehtwinklige Dreiek. a β a) Benennen Sie Katheten und Hypotenuse. b) Was ist die Ankathete zu γ?

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

3. Laminar oder turbulent?

3. Laminar oder turbulent? 3. Laminar oder turbulent? Die Reynoldszahl Stokes- Gleichung Typisch erreichbare Reynoldszahlen in der Mikrofluik Laminare Strömung Turbulente Strömung 1 Durchmesser L Dichte ρ TrägheitskraG: F ρ ρu 2

Mehr

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente 2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)

Mehr

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Testat Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Mo Di Mi Do Fr Datum: Versuch: 12 Abgabe: Fachrichtung Sem. : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops In diesem Versuch

Mehr

Demonstrations-Versuche zur Vorlesung. 25.Januar Physik für Pharmazeuten

Demonstrations-Versuche zur Vorlesung. 25.Januar Physik für Pharmazeuten Demonstrations-Versuche zur Vorlesung Physik für Pharmazeuten PC und eigene CD-ROM Photoelektrischer Effekt Kalkspat auf Overhead Lichtwellenleiter Prisma Optische Scheibe Mikroskop Auflösungsvermögen................................................................am

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 200/20 8. Übungsblatt - 3.Dezember 200 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) (7 Punkte) Gegeben sei

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Optik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1. Mai

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Abbildungsgleichung der Konvexlinse. B/G = b/g

Abbildungsgleichung der Konvexlinse. B/G = b/g Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des

Mehr

6.1.7 Abbildung im Auge

6.1.7 Abbildung im Auge 6.1.7 Abbildung im Auge Das menschliche Auge ist ein aussergewöhnlich hoch entwickeltes Sinnesorgan. Zur Abbildung wird ein optisches System bestehend aus Hornhaut, Kammerwasser, Linse sowie Glaskörper

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

12 Jahre später finden Sie hier den an gewundenen Seidenfäden aufgehangenen Knaben, der einen weiteren Knaben an die linke Hand faßt, aus dessen

12 Jahre später finden Sie hier den an gewundenen Seidenfäden aufgehangenen Knaben, der einen weiteren Knaben an die linke Hand faßt, aus dessen 1 Jahre später finden Sie hier den an gewundenen Seidenfäden aufgehangenen Knaben, der einen weiteren Knaben an die linke Hand faßt, aus dessen rehter dann ein Funken sprühen wird. Der hängende Knabe wird

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

12. Lagrange-Formalismus III

12. Lagrange-Formalismus III Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray James.Gray@hysik.uni-muenhen.de Übung.: Eine Gitarrensaite Wir betrahten

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Klausurtermin: Anmeldung: 2. Chance: voraussichtlich Klausur am

Klausurtermin: Anmeldung:  2. Chance: voraussichtlich Klausur am Klausurtermin: 13.02.2003 Anmeldung: www.physik.unigiessen.de/dueren/ 2. Chance: voraussichtlich Klausur am 7.4.2003 Optik: Physik des Lichtes 1. Geometrische Optik: geradlinige Ausbreitung, Reflexion,

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 8 Mikroskop Gruppe Nr.: 1 Andreas Bott (Protokollant) Marco Schäfer Theoretische Grundlagen Das menschliche Auge: Durch ein Linsensystem wird im menschlichen

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli) 2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender

Mehr

OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik

OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik OW_0_0 Optik und Wellen GK/LK Beugung und Dispersion Unterrichtliche Voraussetzungen: Grundbegriffe der Strahlenoptik Literaturangaben: Optik: Versuchsanleitung der Fa. Leybold; Hürth 986 Verfasser: Peter

Mehr

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente . Vorlesung EP IV Optik 3. Geometrische Optik Brechung und Totalrelexion Dispersion 4. Farbe 5. Optische Instrumente Versuche: Brechung, Relexion, Totalrelexion Lichtleiter Dispersion (Prisma) additive

Mehr

Physikalische Grundlagen des Sehens.

Physikalische Grundlagen des Sehens. Physikalische Grundlagen des Sehens. Medizinische Physik und Statistik I WS 2016/2017 Tamás Marek 30. November 2016 Einleitung - Lichtmodelle - Brechung, - Bildentstehung Gliederung Das Sehen - Strahlengang

Mehr

d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1

d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1 Lösung Klausur E1 Mechanik vom 11. April 2013 Aufgabe 1: Affentheater (16 Punkte) a) r(t) = x(t) = vx 0 t = v 0 cos α t y(t) v y 0 t 1 2 gt2 v 0 sin α t 1 2 gt2 b) y(x) = y(t(x)) mit t = x y(x) = x tan

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Wellen und Quanten Formelsammlung

Wellen und Quanten Formelsammlung Wellen und Quanten Formelsammlung Licht als elektromagnetische Welle Wellengleichungen E = ε 0 ε r µ 0 2 E t 2 () B = ε 0 ε r µ 0 2 B t 2 (2) Wellenfunktion E( r, t) = E 0 cos(ωt k r + ϕ) (3) Wellenzahl

Mehr

12.1 Licht als elektromagnetische Welle

12.1 Licht als elektromagnetische Welle Inhalt 1 1 Optik 1.1 Licht als elektromagnetische Welle 1. Reflexions- und Brechungsgesetz 1.3 Linsen und optische Abbildungen 1.4 Optische Instrumente 1.4.1 Mikroskop 1.4. Fernrohr 1.5 Beugungsphänomene

Mehr

PS II - GLET

PS II - GLET Grundlagen der Elektrotechnik PS II - GLET 02.03.2012 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 7 14 4 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 22 4 4 6 75 erreicht Hinweise: Schreiben

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge Stoßquerschnitt und mittlere freie Weglänge Im idealen Gas findet zwischen zwei Teilchen ein Stoß statt, wenn der Abstand der Fluggeraden den beiden Teilchen, der Stoßparameter b, kleiner ist als die Summe

Mehr

Übungsblatt 4 Grundkurs IIIa für Physiker

Übungsblatt 4 Grundkurs IIIa für Physiker Übungsblatt 4 Grundkurs IIIa für Physiker Othmar Marti, othmar.marti@physik.uni-ulm.de 3. 6. 2002 1 Aufgaben für die Übungsstunden Reflexion 1, Brechung 2, Fermatsches Prinzip 3, Polarisation 4, Fresnelsche

Mehr

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen!

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen! Kapiteltest Optik 2 Lösungen Der Kapiteltest Optik 2 überprüft Ihr Wissen über die Kapitel... 2.3a Brechungsgesetz und Totalreflexion 2.3b Brechung des Lichtes durch verschiedene Körper 2.3c Bildentstehung

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e Rutherford Streuung Historisch: Allgemein: Streuung von α-teilchen an Metallfolien Ernest Rutherford, 96 Streuung geladener Teilchen an anderen geladenen Teilchen unter der Wirkung der Coulomb-Kraft. F

Mehr

Physikalisches Praktikum für Studierende der Medizin. Klausur Nr. 2, SS Klausurabschrift. Lösungen ohne Gewähr

Physikalisches Praktikum für Studierende der Medizin. Klausur Nr. 2, SS Klausurabschrift. Lösungen ohne Gewähr Physikalisches Praktikum für Studierende der Medizin Klausur Nr. 2, SS 21 Klausurabschrift Lösungen ohne Gewähr Für die richtige Beantwortung einer Frage wird ein Punkt gegeben. Bitte die Buchstaben Ihrer

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Überlagerung monochromatischer Wellen/Interferenz

Überlagerung monochromatischer Wellen/Interferenz Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm

Mehr

Wellen als Naturerscheinung

Wellen als Naturerscheinung Wellen als Naturerscheinung Mechanische Wellen Definition: Eine (mechanische) Welle ist die Ausbreitung einer (mechanischen) Schwingung im Raum, wobei Energie und Impuls transportiert wird, aber kein Stoff.

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Physikalisches Praktikum für Studierende der Medizin. Klausur Nr. 2, SS Klausurabschrift. Lösungen ohne Gewähr

Physikalisches Praktikum für Studierende der Medizin. Klausur Nr. 2, SS Klausurabschrift. Lösungen ohne Gewähr Physikalisches Praktikum für Studierende der Medizin Klausur Nr. 2, SS 21 Klausurabschrift Lösungen ohne Gewähr Für die richtige Beantwortung einer Frage wird ein Punkt gegeben. Bitte die Buchstaben Ihrer

Mehr

EP-Klausur am Name, Vorname: Immatrik.Nr.: Studienrichtung:

EP-Klausur am Name, Vorname: Immatrik.Nr.: Studienrichtung: EP-Klausur am 6.2.2008 Name, Vorname: Immatrik.Nr.: Studienrichtung: 1. Mechanik Gegeben sei ein Fahrzeug der Masse 1000kg. a) Wie groß ist die geleistete Arbeit und die mittlere Leistung, wenn das Fahrzeug

Mehr

Vorlesung Physik für Pharmazeuten PPh Optik

Vorlesung Physik für Pharmazeuten PPh Optik Vorlesung Physik für Pharmazeuten PPh - 10 Optik 02.07.2007 Wiederholung : Strom und Magnetismus B = µ 0 N I l Ampère'sche Gesetz Uind = d ( BA) dt Faraday'sche Induktionsgesetz v F L = Q v v ( B) Lorentzkraft

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Matrikelnummer: Klausurnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe

Mehr

Ferienkurs Experimentalphysik 3 - Geometrische Optik

Ferienkurs Experimentalphysik 3 - Geometrische Optik Ferienkurs Experimentalphysik 3 - Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Inhaltsverzeichnis Einleitung Geometrische Optik 2 2 Grundlegende Konzepte 2 3 Die optische Abbildung 2

Mehr

Physik II für Biochemiker, Chemiker und Geowissenschaftler, SS 2008 (Ruhr-Universität Bochum; )

Physik II für Biochemiker, Chemiker und Geowissenschaftler, SS 2008 (Ruhr-Universität Bochum; ) Klausur Physik II für Biochemiker, Chemiker und Geowissenschaftler, SS 2008 (Ruhr-Universität Bochum; 25.07.2008) Bearbeitungszeit 120 Minuten. Rückseite beachten! Prof. Hägele, EP6 Name: Vorname: Matrikelnummer:

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Klausur zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Leibniz Universität Hannover 03.02.2010 Barthold Name, Vorname: Matrikelnummer:

Mehr

Klausur zur Vorlesung Experimentalphysik II (SS 2018)

Klausur zur Vorlesung Experimentalphysik II (SS 2018) Universität Siegen Sommersemester 218 Naturwissenschaftlich-Technische Fakultät Prof. Dr. Mario Agio Department Physik Klausur zur Vorlesung Experimentalphysik II (SS 218) Aufgabe 1: Kurzfragen Beantworten

Mehr

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom Physikalische Chemie II (für Biol./Pharm. Wiss.) S 207 Lösung 7 Musterlösung zum Übungsblatt 7 vom 0.04.207 Diffusionspotential. Zu dieser Teilaufgabe vgl. Adam, Läuger, Stark, S. 326/327 und Skript I.3.3.

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl

Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl Modelle in der Physik Optik Strahlenoptik vereinfachte Darstellungen der Wirklichkeit dienen der besseren Veranschaulichung Wesentliches wird hervorgehoben Unwesentliches wird vernachlässigt Was ist ein

Mehr

Elektrochemie. Alessandro Giuseppe Antonio Anastasio Volta ( ) Luigi Galvani ( )

Elektrochemie. Alessandro Giuseppe Antonio Anastasio Volta ( ) Luigi Galvani ( ) Eletrochemie Luigi Galvani (1737 1798 ) Alessandro Giuseppe Antonio Anastasio Volta (1745 1827 ) Daniell-Element John Frederic Daniell (1790-1845) Oxidation = Eletronenabgabe Redution = Eletronenaufnahme

Mehr

5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment

5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment 5.9.4 ****** 1 Motivation Ein mit Kohlendioxid gefüllter Luftballon wirkt für Schallwellen als Sammellinse, während ein mit Wasserstoff gefüllter Ballon eine Zerstreuungslinse ergibt. Experiment Abbildung

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed 1 Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken?

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken? Der Millikan-Versuch Einstiegsfragen 1. Welche Körper untersuchte Millikan in seinem Versuch? 2. Welche Felder ließ er darauf wirken? Wie "erzeugte" er sie? Welche Richtungen hatten die betreffenden Feldstärken?

Mehr

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Dienstag, 06.03.0 Vergrößerungslinse Sie sollen mit einer Linse ein 0fach vergrößertes Bild eines Gegenstandes G auf einem

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Freie Hansestadt Bremen Schulnr.: Kursbezeichnung: Die Senatorin für Kinder und Bildung Abitur Physik. Formelsammlung Physik. m v = s dt.

Freie Hansestadt Bremen Schulnr.: Kursbezeichnung: Die Senatorin für Kinder und Bildung Abitur Physik. Formelsammlung Physik. m v = s dt. Freie Hansesta Breen Shulnr.: Kursbezeihnung: Abitur 6 - Physik Nae: Forelsalung Physik Mehanik Kineatik Geshwindigkeit Beshleunigung Dynaik Ipuls Kraft Gewihtskraft Federkraft nah Hooke s v v v a a s(t)

Mehr

Dynamische Systeme in der Biologie: Beispiel Neurobiologie

Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dynamische Systeme in der Biologie: Beispiel Neurobiologie Caroline Geisler geisler@lmu.de April 18, 2018 Elektrische Ersatzschaltkreise und Messmethoden Wiederholung: Membranpotential Exkursion in die

Mehr

Physikalisches Grundpraktikum Geometrische Optik

Physikalisches Grundpraktikum Geometrische Optik Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum Geometrische Optik Grundpraktikum Physik: 0Hhttp://grundpraktikum.physik.uni-saarland.de/ Version 2 (9/2017 MD) 2 Geometrische

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

Welle-Teilchendualismus. Reflexion. Brechungsgesetz. Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften

Welle-Teilchendualismus. Reflexion. Brechungsgesetz. Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften Welle-Teilchendualismus Elektromagnetische Wellen haben sowohl Wellen- als auch Teilcheneigenschaften Holger Scheidt Optik 2 Reflexion Brechung Beugung Interferenz Kohärenz Polarisierbarkeit Optik Absorption

Mehr

Wellenoptik. Beugung an Linsenöffnungen. Kohärenz. Das Huygensche Prinzip

Wellenoptik. Beugung an Linsenöffnungen. Kohärenz. Das Huygensche Prinzip Wellenopti Beugung an Linsenöffnungen Wellenopti Typische Abmessungen Dder abbildenden System (Blenden, Linsen) sind lein gegen die Wellenlänge des Lichts Wellencharater des Lichts führt zu Erscheinungen

Mehr

1 Dynamik 1. 3 Bewegte Bezugssysteme 2. 5 Hydrostatik und -dynamik 2. 6 Schwingungen 3. 7 Wellen 3

1 Dynamik 1. 3 Bewegte Bezugssysteme 2. 5 Hydrostatik und -dynamik 2. 6 Schwingungen 3. 7 Wellen 3 Formelsammlung für Experimentalphysik Inhaltsverzeichnis 1 Dynamik 1 2 Mechanik des starren Körpers 2 3 Bewegte Bezugssysteme 2 4 Deformierbare Festkörper 2 5 Hydrostatik und -dynamik 2 6 Schwingungen

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

Lösungen zu Interferenz und Beugung

Lösungen zu Interferenz und Beugung Lösungen zu Interferenz und Beugung ˆ Aufgabe : Interferenzmaxima a) Für die Intensitätsmaxima bei der Beugung an einem Gitter gilt: d sin Θ = mλ. Da es sich um kleine Winkel handelt, kann die Kleinwinkelnäherung

Mehr

2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2

2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2 Lösungen Vorschlag I: Massepunkte im Gravitationsfeld 1. (a) (b) Fallzeit = Flugzeit: a = F m v = 2as = v y 2Fs m = 2 600N 0.225m = 30 m/s 0.3kg t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s v x α

Mehr