Deskriptive Statistik 1 behaftet.
|
|
|
- Karlheinz Bayer
- vor 9 Jahren
- Abrufe
Transkript
1 Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln: Statistischen Aussagen beziehen sich nie auf ein Einzelereignis, sondern nur auf Gesamtheiten vieler Ereignisse. Jede statistische Aussage ist mit einer prinzipiell unvermeidlichen Unsicherheit Deskriptive Statistik behaftet. 2 KAD das erste Anwendungsgebiet der Statistik bestand in der Staatsbeschreibung (Völkszählung) Status = Zustand 3 Semmelweis (88-86) war der erste bekannte Arzt, der den Nutzen einer neuen Therapie mit statistischen Methoden belegte 4
2 Was messen Physiker, Arzt und Medizinstudent? Labormessergebnisse Pr.Buch, Biostatistik, Tabelle 3 6 Klassifizierung der Merkmale Skalentypen der metrischen Merkmale definierte Differenz, kein 0 Punkt Tage in einem Kalender diskret Intervallskala Temperatur in C kontinuierlich definiertes Verhältnis, 0 Punkt Anzahl der Zähne Verhältnisskala Temperatur in K 7 8
3 Element Grundgesamtheit (Population): Stichprobe:,,,,,,,,, *, / Auseinanderhalten Anordnung Differenz 9 Verhältnis Gesamtheit der Individuen (Elemente), deren Eigenschaften bei der Studie untersucht werden sollen. Die gesamte Menge der interessierenden Daten. N = unendlich Der für die Studie ausgewählte Teil der Population. n = endlich N >>n (Umfang) 0 die Stichprobenelemente sollen zufällig ausgewählt werden Zufall! Grundgesamtheit Stichprobe über die man etwas aussagen möchte Unsicherheit! Wie hoch ist die normale Pulsfrequenz (einer Population)? Merkmal: Pulsfrequenz zufällige Erhebung einiger Elementen der Population: Stichprobe Daten der Stichprobe liegen in Form einer Urliste vor: 66, 6, 89, 63, 66, 69, 7, 68, 8, 69, 78, 66, 64, 84, 74, 76, 69, 77, 74, 76 (Einheit: /), oder: deskriptive Statistik induktive Statistik (schließende St. analytische St.) Die Werte sollen geordnet und verdichtet werden.!? Stellen wir die Daten entlang einer Zahlengeraden dar! Die deskriptive Statistik ist die Vorstufe zur induktiven Statistik keine Daten wenige Daten viele Daten wenige Daten keine Daten 2 Pr.Buch Abb. 4
4 Verfeinern wir die Klassen noch weiter! Unterteilen wir die Zahlengerade in gleich breite Klassen (Intervalle) und zählen wir ab, wie viele Daten sich in den so erhaltenen Klassen befinden! n x Die Grenzwerte und die Breiten der Klassen sind willkürlich. Stellen wir diese Treppenfunktion dar! Pr.Buch Tabelle in Excel: =frequency(...) =Häufigkeit(...) 3 Die Fläche unter der Treppenfunktion zwischen und 60: 2 2 Die Gesamtfläche unter der Treppenfunktion: 20 = n, Anzahl der Messdaten in der Stichprobe 4 n x verteilung n n x absolute 20 Fläche unter der Kurve: n Fläche unter der Kurve: absolute (Histogramm) relative (Histogramm) relative n n 00 Jedes Rechteck entspricht einem Messwert. 6 Pr.Buch Abb.
5 Bestimmung der optimalen Klasseneinteilung empirische optimale Klassenanzahl m: m 2 2n empirische n vergrößert sich, die Klassenbreite x kann verkleinert werden Pr.Buch Abb. m 2n m optimale Klassenbreite x: xmax x 89 6 min x x.2 m theoretische Pr.Buch Abb. 6 Bei großen Stichproben ergibt die empirische Verteilungsfunktion eine sehr gute Näherung der theoretischen Verteilungsfunktion. (Die Stichprobe ist gleich der Grundgesamtheit.) 8 Beispiel: Biophysik Praktikum, Mikroskop Analyse von Häufigkeitsverteilungen homogene symmetrische Stichprobe: heterogene Stichprobe: homogene nichtsymmetrische Stichproben: linksschief rechtsschief 9 Vermutung: Gleichverteilung? Normalverteilung? Überlagerung von zwei Normalverteilungen?
Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn
Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten
Wahrscheinlichkeits - rechnung und Statistik
Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute
Auswertung statistischer Daten 1
Auswertung statistischer Daten 1 Dr. Elke Warmuth Sommersemester 2018 1 / 26 Statistik Untersuchungseinheiten u. Merkmale Grundgesamtheit u. Stichprobe Datenaufbereitung Urliste, Strichliste, Häufigkeitstabelle,
Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn
Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2017 Organisatorisches Anmeldung in Basis: 19. 23.06.2017 Skript und Übungsaufgaben unter: http://www.iam.uni-bonn.de/users/rezny/statistikpraktikum
3. Merkmale und Daten
3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 14. Oktober 2010 Übungen Aufgabenblatt 1 wird heute Nachmittag auf das Weblog gestellt. Geben Sie die Lösungen dieser
Einführung in die Statistik
Einführung in die Statistik 1. Deskriptive Statistik 2. Induktive Statistik 1. Deskriptive Statistik 1.0 Grundbegriffe 1.1 Skalenniveaus 1.2 Empirische Verteilungen 1.3 Mittelwerte 1.4 Streuungsmaße 1.0
1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:
. Einführung und statistische Grundbegriffe Beispiele aus dem täglichen Leben Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische
Der Modus ist. Der Median ist. 3. Übung. Aufgabe 1. a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen.
3. Übung Aufgabe 1 Der Modus ist a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen. c) der Durchschnitt aller Werte. d) der Wert mit der größten Häufigkeitsdichte. e) der Schwerpunkt
Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2
Teil 2 Auswertung von Messungen, zufällige oder statistische Abweichungen Auswertung direkter Messungen Häufigkeitsverteilung, Häufigkeitsfunktion Mittelwert, Standardabweichung der Einzelwerte Standardabweichung
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun [email protected] Heinrich-Heine Universität Düsseldorf Mathematik für Biologen p. 1 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net
WISTA WIRTSCHAFTSSTATISTIK
WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen
Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler
Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung
Statistik II: Grundlagen und Definitionen der Statistik
Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik
absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten
Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit
3 Häufigkeitsverteilungen
3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal
3 Häufigkeitsverteilungen
3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal
Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.
Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten
Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik
INSTITUT FÜR STOCHASTIK WS 2007/08 UNIVERSITÄT KARLSRUHE Blatt 1 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen
Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es
Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle
Kapitel 2. Häufigkeitsverteilungen
6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω
2 Häufigkeitsverteilungen
2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation An n Einheiten ω 1,,ω n sei das Merkmal X beobachtet worden x 1 = X(ω 1 ),,x n = X(ω n ) Also
2. Deskriptive Statistik
Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer
Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.
1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau
Institut für Biometrie und klinische Forschung. WiSe 2012/2013
Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive
Inhalt. I Einführung. Kapitel 1 Konzept des Buches Kapitel 2 Messen in der Psychologie... 27
Inhalt I Einführung Kapitel 1 Konzept des Buches........................................ 15 Kapitel 2 Messen in der Psychologie.................................. 27 2.1 Arten von psychologischen Messungen....................
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Forschungsmethoden in der Sozialen Arbeit
Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences
STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet
Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen
Beschreibung von Daten
Kapitel 2 Beschreibung von Daten In diesem Kapitel geht es um die Beschreibung von empirisch erhobenen Daten Größere Datenmengen sind schwer zu überblicken Weil ein Bild leichter als eine Ansammlung von
Willkommen zur Vorlesung Statistik
Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen
Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska
Wirtschaftsstatistik für Studienanfänger
Günter Deweß / Helga Hartwig Wirtschaftsstatistik für Studienanfänger Begriffe - Aufgaben - Lösungen EAG. LE Edition am Gutenbergplatz Leipzig Inhalt Beschreibende Statistik: Daten und Maßzahlen 1 Grundgesamtheiten,
Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend
Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten
I Beschreibende Statistik 1
Inhaltsverzeichnis Vorwort ix I Beschreibende Statistik 1 Lernziele zu Teil I 2 1 Statistik, Daten und statistische Methoden 3 1.1 Statistik im Alltag, in Politik und Gesellschaft...... 3 1.2 Aufgaben
Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1
1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie
fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik
fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse
Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele
Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Georg Bol [email protected] Markus Höchstötter [email protected] Wahrscheinlichkeitstheorie Agenda:
Statistik für NichtStatistiker
Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung
Inhaltsverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen
Inhaltsverzeichnis Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch):
Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen
Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population
Über dieses Buch Die Anfänge Wichtige Begriffe... 21
Inhalt Über dieses Buch... 12 TEIL I Deskriptive Statistik 1.1 Die Anfänge... 17 1.2 Wichtige Begriffe... 21 1.2.1 Das Linda-Problem... 22 1.2.2 Merkmale und Merkmalsausprägungen... 23 1.2.3 Klassifikation
1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung. Statistik und Wahrscheinlichkeitsrechnung
1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 2 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung Stochastik Wahrscheinlichkeitsrechnung
Angewandte Statistik mit R
Reiner Hellbrück Angewandte Statistik mit R Eine Einführung für Ökonomen und Sozialwissenschaftler 2., überarbeitete Auflage B 374545 GABLER Inhaltsverzeichnis Vorwort zur zweiten Auflage Tabellenverzeichnis
Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6. Statistik-Tutorium. Lösungsskizzen Übung SS2005. Thilo Klein. Grundstudium Sommersemester 2008
Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6 Lösungsskizzen Übung SS2005 Grundstudium Sommersemester 2008 Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6 Inhalt Serie 1 Serie 2 Serie 3 Serie 4 Serie
Angewandte Statistik mit R. Eine Einführung für Ökonomen und
Reiner Hellbrück Angewandte Statistik mit R Eine Einführung für Ökonomen und Sozialwissenschaftler 3. Auflage Springer Gabler Inhaltsverzeichnis Vorwort zur dritten Auflage Vorwort zur ersten Auflage Vorwort
Arbeitsbuch zur deskriptiven und induktiven Statistik
Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen
Stochastik Deskriptive Statistik
Stochastik Deskriptive Statistik 3 % 3 8% % % % 99 997 998 999 3 7 8 % 99 997 998 999 3 7 8 8 8 99 997 998 999 3 7 8 99 99 998 8 8 Typ A % Typ B % 998 Typ C % 99 3 Diese Diagramme stellen weitgehend dieselben
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
4. Kumulierte Häufigkeiten und Quantile
4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter
Kreisdiagramm, Tortendiagramm
Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte
Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft
Inhaltsverzeichnis. Vorwort. Abbildungsverzeichnis. Tabellenverzeichnis. 1 Einleitung Gegenstand Aufbau 4
Inhaltsverzeichnis Vorwort Abbildungsverzeichnis Tabellenverzeichnis v xv xvii 1 Einleitung 1 1.1 Gegenstand 1 1.2 Aufbau 4 2 Datenerhebung - ganz praktisch 7 2.1 Einleitung 7 2.2 Erhebungsplan 7 2.2.1
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2010
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 010 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die
0 Einführung: Was ist Statistik
0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik Häufigkeitsverteilungen Statistische Kennwerte 3 Multivariate Statistik 4 Regression 5 Ergänzungen Deskriptive
Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit
Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung:
Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg
Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa
Graphische Darstellung einer univariaten Verteilung:
Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit
Wahrscheinlichkeitsrechnung und Statistik
9. Vorlesung - 2017 Monte Carlo Methode für numerische Integration Sei g : [0, 1] R stetige Funktion; man möchte 1 0 g(t)dt numerisch approximieren mit Hilfe von Zufallszahlen: Sei (U n ) n eine Folge
Häufigkeitsverteilungen
Häufigkeitsverteilungen Eine Häufigkeitsverteilung gibt die Verteilung eines erhobenen Merkmals an und ordnet jeder Ausprägung die jeweilige Häufigkeit zu. Bsp.: 100 Studenten werden gefragt, was sie studieren.
Statistik mit und ohne Zufall
Christoph Weigand Statistik mit und ohne Zufall Eine anwendungsorientierte Einführung Mit 118 Abbildungen und 10 Tabellen Physica-Verlag Ein Unternehmen von Springer Inhaltsverzeichnis Teil I Deskriptive
Univ.-Prof. Dr. Georg Wydra
Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4
Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2011/12.
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2011/12 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer
Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15
Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2
Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)
Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) [email protected] Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein
f j = ( 2) = 5.5.
Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Statistik Dr. Thomas Zehrt Merkmale und Häufigkeitsverteilung Motivation In der heutigen Zeit fällt jeden Tag eine unvorstellbare Menge von Daten
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
