Das Rechnen mit Logarithmen
|
|
|
- Helge Kaufman
- vor 9 Jahren
- Abrufe
Transkript
1 Das Rechnen mit Logarithmen -E Mathematik, Vorkurs
2 Spezielle Logarithmen Der natürliche Logarithmus ist von besonderer Bedeutung in den Anwendungen: Basiszahl ist die Eulersche Zahl e: log e x ln x gelesen: natürlicher Logarithmus von x Der Logarithmus für die Basiszahl a = 0, Zehnerlogarithmus, auch Briggscher oder Dekadischer Logarithmus genannt log 0 x lg x gelesen: Zehnerlogarithmus von x Der Logarithmus für die Basiszahl a = 2, Zweierlogarithmus, auch Binärlogarithmus genannt log 2 x lb x gelesen: Zweierlogarithmus von x - Mathematik, Vorkurs
3 Aufgaben 2-A Mathematik, Vorkurs
4 Logarithmen: Aufgaben, 2 Aufgabe : Verwandle folgende Potenzgleichungen in Logarithmengleichungen: a ) 2 5 = 32, 2 7 = 28, 2 3 = 8 b ) 3 3 = 27, 3 4 = 8, 3 2 = 9 c ) 4 0 =, 4 3 = 64, 4 2 = 6 Aufgabe 2: Verwandle folgende Logarithmengleichungen in Potenzgleichungen: log 3 9 = 2, log 7 49 = 2, log 6 6 =, log 8 = 0, log 4 2 = 2 2- Mathematik, Vorkurs
5 Logarithmen: Lösung a ) 2 5 = 32, log 2 32 = 5, 2 7 = 28, log 2 28 = 7, 2 3 = 8, log 2 8 = 3, b ) 3 3 = 27, log 3 27 = 3, 3 4 = 8, log 3 8 = 4, 3 2 = 9, log 3 9 = 2, c ) 4 0 =, log 4 = 0, 4 3 = 64, log 4 64 = 3, 4 2 = 6, log 4 6 = 2, 2-2 Mathematik, Vorkurs
6 Logarithmen: Lösung 2 log 3 9 = 2, 3 2 = 9 log 7 49 = 2, 7 2 = 49 log 6 6 =, 6 = 6 log 8 = 0, 8 0 = log 4 2 = 2, 4 2 = 4 = Mathematik, Vorkurs
7 Logarithmen: Aufgaben 3, 4 Aufgabe 3: Berechnen Sie die gegebenen Ausdrücke ohne Taschenrechner: a ) log 2 32, log 2 64, log 2 6, log 2 b ) log 4 4, log 4 6, log 4 64, log 8 64, log 8 28, log 2 2 4, log 2 8, log c ) log 6 36, log 5 25, log 6 6, log 7, log 7 7 3, log d ) lg 00, lg 00000, lg 0, lg 000, lg 0.0, lg Aufgabe 4: Berechnen Sie x: log x 25 = 2, log x 27 = 3, log x 9 = 2, log x 9 =. 3- Mathematik, Vorkurs
8 Logarithmen: Lösung 3 a ) log 2 32 = 5, log 2 64 = 6, log 2 6 = 4, log 2 28 = 7, log = 4, log 2 = 0, b ) log 4 4 =, log 4 6 = 2, log 4 64 = 3, log 8 64 = 2, log 8 8 =, log = 3, c ) log 6 36 = 2, log 5 25 = 3, log 6 6 =, log 7 = 0, log = 3, log = 4, d ) lg 00 = 2, lg = 5, lg 0 =, lg = 3, 000 lg 0.0 = 2, lg = Mathematik, Vorkurs
9 Logarithmen: Lösung 4 log x 25 = 2, x 2 = 25, x = 5, log x 27 = 3, x 3 = 27, x = 3, log x 9 = 2, x 2 = 9 = 3 2 = 3 2, x = 3 log x 9 =, x = 9 = 9, x = Mathematik, Vorkurs
10 Logarithmen: Aufgaben 5-8 Berechnen Sie: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: 4- Mathematik, Vorkurs
11 Logarithmen: Lösung Mathematik, Vorkurs
12 Logarithmen: Lösungen 6, 7 Lösung 6: Lösung 7: 4-3 Mathematik, Vorkurs
13 Logarithmen: Lösung Mathematik, Vorkurs
14 Erste Rechenregel log b x y = log b x log b y Der Logarithmus eines Produkts ist gleich der Summe der Logarithmen der beiden Faktoren b, x, y > 0 5- Mathematik, Vorkurs
15 Zweite Rechenregel log b x y = log b x log b y Der Logarithmus eines Quotienten ist gleich der Differenz der Logarithmen von Zähler und Nenner b, x, y > Mathematik, Vorkurs
16 Dritte Rechenregel log b x n = n log b x Der Logarithmus einer Potenz ist gleich dem Produkt aus dem Exponenten und dem Logarithmus der Basis. b, x > Mathematik, Vorkurs
17 Rechenregeln für Logarithmen 5-4 Mathematik, Vorkurs
18 Logarithmen: Aufgabe 9 Aufgabe 9: Berechnen Sie die gegebenen Ausdrücke: a ) log log 2 3, log log 4 7, log log 33, b ) lg 2 + lg 5000, log 5 75 log 5 3, lg 300 lg 3, c ) log 4 log , log 6 log Mathematik, Vorkurs
19 Logarithmen: Lösung 9 a ) log log 2 3 = log 2 (4 3) = log 2 2 =, log log 4 7 = log 4 (2 7) = log 4 4 =, log log 33 = log 33 (3 ) = log =, b ) lg 2 + lg 5000 = lg = lg 0 4 = 4 lg 0 = 4, log 5 75 log 5 3 = log = log 5 25 = 2 log 5 5 = 2, lg 300 lg 3 = lg 00 = 2. c ) log 2 4 log = log 2 ( log 3 6 log = log 3 3 = ) = log 2 2 =, 6-2 Mathematik, Vorkurs
20 Logarithmen: Aufgabe 0 Die gegebenen Terme sind mit Hilfe der Rechengesetze für Logarithmen (so weit wie möglich) additiv zu zerlegen: a ) log 3 5 x, log 3 3 x, log 2 4 x b ) log 3 3, log 3 9, 2 log 3 27 c ) log a b, log a b c, log a b c d d ) log a b, log a c b, log a b c d e ) log a 2 b, log a 3 b 2, log a 5 b 3 c f ) log a2 c b, log a c b d 3, log a b c 4 7- Mathematik, Vorkurs
21 Logarithmen: Lösung 0 a ) log 3 5 x = log 3 5 log 3 x, log 3 3 x = log 3 3 log 3 x = log 3 x log 2 4 x = log 2 4 log 2 x = log log 2 x = 2 log 2 x b ) log 3 3 = log 3 log 3 3 =, log 3 3 = log 3 3 = log 3 3 =, log 3 9 = log 3 log 3 9 = 0 log 3 32 = 2 log 3 3 = 2 2 log 3 27 = 2 log 3 log 3 27 = 2 log 3 log 3 33 = 2 3 log 3 3 = 6 c ) log a b = log a log b, log a b c = log a log b log c log a b c d = log a log b log c log d d ) log a b log a b c d = log a log b, log a c b = log a log b log c log d = log a log c log b 7-2 Mathematik, Vorkurs
22 Logarithmen: Lösung 0 e ) log a 2 b = log a 2 log b = 2 log a log b log a 3 b 2 = log a 3 log b 2 = 3 log a 2 log b log a 5 b 3 c = log a 5 log b 3 log c = 5 log a 3 log b log c f ) log a2 c b = log a2 log c log b = 2 log a log c log b log a c b d 3 = log a c log b d 3 = log a log c log b log d 3 = = log a log c log b 3 log d log a b c 4 = log a b log c 4 = log a /2 log b 4 log c = = log a log b 4 log c Mathematik, Vorkurs
23 Logarithmen: Aufgabe Fassen Sie die folgenden Logarithmen zusammen: a ) log u a 2 log u b b ) log u a log u b log u c c ) log u a 2 log u b 2 log u c d ) log u a 2 log u b 3 log u c e ) log u a 2 log u b 4 log u c 8- Mathematik, Vorkurs
24 Logarithmen: Lösung a ) log u a 2 log u b = log u a log u b 2 = log u a b 2 b ) log u a log u b log u c = log u a b c c ) log u a 2 log u b 2 log u c = log u a log u b log u c 2 = log u a b c 2 d ) log u a 2 log u b 3 log u c = log u a log u b log u c 3 = = log u a b c 3 = log u a b c 3 e ) log u a 2 log u b 4 log u c = log u a log u b 2 log u c = log u a log u b 2 log u c 4 = log u a b 2 c 4 = 4 = logu a b c 8-2 Mathematik, Vorkurs
25 Logarithmen: Aufgaben 2, 3 Die gegebenen Terme sind mit Hilfe der Rechengesetze für Logarithmen (so weit wie möglich) additiv zu zerlegen: Aufgabe 2: a) b) c) Aufgabe 3: 9- Mathematik, Vorkurs
26 Logarithmen: Lösung 2 a) b) c) 9-2 Mathematik, Vorkurs
27 Logarithmen: Lösung Mathematik, Vorkurs
28 Logarithmen: Aufgaben 4, 5 Die gegebenen Terme sind mit Hilfe der Rechengesetze für Logarithmen (so weit wie möglich) additiv zu zerlegen: Aufgabe 4: Aufgabe 5: 0- Mathematik, Vorkurs
29 Logarithmen: Lösungen 4, 5 Lösung 4: Lösung 5: 0-2 Mathematik, Vorkurs
Logarithmen. 1 Logarithmenbegriff
Logarithmen 1 Logarithmenbegriff Beispiel Lösung Zeichnen Sie den Graphen der Funktion f: y = 2 x - 8 und bestimmen Sie die Nullstelle. Wertetabelle x - 2-1 0 1 2 3 4 y - 7,8-7,5-7 - 6-4 0 8 Bestimmung
Potenzen - Wurzeln - Logarithmen
Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl
Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN
Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Für das Rechnen mit Logarithmen gibt es nun natürlich eigene Rechengesetze, welche wir uns nun anschauen
Logarithmen. Gesetzmäßigkeiten
Logarithmen Gesetzmäßigkeiten Einführung Als erstes muss geklärt werden, für was ein Logarithmus gebraucht wird. Dazu sollte folgendes einführendes Beispiel gemacht werden. Beispiel 1: 2 x = 8 Wie an diesem
Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.
1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:
Potenzen mit ganzzahligen Exponenten: Rechenregeln
Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die
1 Das Problem, welches zum Logarithmus führt
1 Das Problem, welches zum Logarithmus führt Gegeben sei die folgende Gleichung: a = x n Um nun die Basis hier x) auszurechnen, muss man die n-te Wurzel aus a ziehen: a = x n n ) n a = x Soweit sollte
Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs
Exponentialgleichungen: Teil 1 1-E Mathematik, Vorkurs Exponentialgleichungen: Aufgaben 1, 2 Aufgabe 1: Berechnen Sie mithilfe der Potenzgesetze [ 36 2 3 6 ] : 1 3 6 ; [ 35 : 2 2 ] 3 2 5 3 Aufgabe 2: Fassen
Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:
2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen
Exponentialfunktion, Logarithmus
Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Mengen
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2018/19 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Mengen
Logarithmen und Exponentialgleichungen
Logarithmen und Exponentialgleichungen W. Kippels 8. April 2011 Inhaltsverzeichnis 1 Definitionen 4 2 Gesetze 5 3 Logarithmen und Taschenrechner 5 4 Exponentialgleichungen 7 5 Übungsaufgaben zu Exponentialgleichungen
Exponentialgleichungen
GS -.08.05 - f_epgl.mcd Eponentialgleichungen Definition: Eine Gleichung der Form b Definition: Die der Eponentialgleichung b Schreibweise: = log b ( a) Besondere Basen: = a mit a IR + und b IR + \ {}
Exponentielles Wachstum und Logarithmus
Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:
Begriffe Mathematik 4. Klasse
Begriffe Mathematik 4. Klasse Die mit einem gekennzeichneten Fragen sind für die 5 Kurzfragen relevant. Vektoren Kurzfrage 1 Was ist ein Vektor? Vektoren Kurzfrage 2 Was ist ein Repräsentant eines Vektors?
Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich!
Exponential- u. Logarithmusfunktionen Los geht s Klick auf mich! Melanie Gräbner Inhalt Exponentialfunktion Euler sche Zahl Formel für Wachstum/Zerfallsfunktionen Logarithmen Logarithmusfunktionen Exponentialgleichung
Logarithmen und Exponentialgleichungen
Logarithmen und Exponentialgleichungen W. Kippels 27. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 4 2 Definitionen 5 3 Gesetze 6 4 Logarithmen und Taschenrechner 6 5 Exponentialgleichungen 8 6 Übungsaufgaben
Wirtschaftsmathematik: Mathematische Grundlagen
Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.
Brückenkurs Mathematik zum Sommersemester 2015
HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende
Logarithmische Gleichungen
GS -.08.05 - g_loggl.mcd Logarithmische Gleichungen Definition: Eine Gleichung der Form log b ( ) = a mit > 0, a IR und b IR + \ {} heißt Logarithmusgleichung. Besondere Basen: Basis b = 0 heißt Dekadischer
2.4 Exponential - und Logarithmus - Funktionen
25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >
Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2
Exponentialgleichungen und logarithmische Gleichungen
mathe online Skripten http://www.mathe-online.at/skripten/ Exponentialgleichungen und logarithmische Gleichungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: [email protected]
2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der
1 DEFINITION DER POTENZIERUNG 1 Potenzgesetze 1 Definition der Potenzierung Wir definieren für eine rationale Zahl a und eine natürliche Zahl n die Potenzierung wie folgt: a n := a a a ::: a Diese Art
n: Exponent (= Hochzahl. Zeigt an, wie oft die Basis mit sich selber multipliziert wird.)
10. Potenzen 10.1 Definition Potenz (Repetition)Begriffe Potenz: n gleiche Faktoren a a n = a a a a a a a a a n n: Exponent (= Hochzahl. Zeigt an, wie oft die Basis mit sich selber multipliziert wird.)
Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch
Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-
Übungen zu Mathematik für ET
Wintersemester 2017/18 Prof. Dr. Henning Kempka Übungen zu Mathematik für ET Übungsblatt 0 zum Thema Elementaraufgaben. Aufgabe 1 Vereinfachen Sie folgende Ausdrücke so weit wie möglich: a) 100 [(b + 20)
Potenzen, Wurzeln & Logarithmen
Potenzen, Wurzeln & Logarithmen 4. Kapitel aus meinem ALGEBRA - Lehrgang Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 22. November 2011 Überblick über die bisherigen
Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis
Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur
Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch
Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische
1 Beschreibung der Grundlagen
Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen
Wirtschafts- und Finanzmathematik
Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen
Die Umkehrung des Potenzierens ist das Logarithmieren.
Die Umkehrung des Potenzierens ist das Logarithmieren. Gilt a x = b, a,b > 0, a 1, so heißt x der Logarithmus von b zur Basis a. Bezeichnung: x = log a (b). Manchmal lassen wir die Angabe der Basis auch
Mathematik für Studierende der Biologie und des Lehramtes Chemie
Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 03.11.2017 (Stand: 02.11.2017, 23:25 Uhr) Mathematik für Studierende der Biologie und des Lehramtes
Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen
Aufgabensammlung Klasse 8
Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................
Examen GF Mathematik (PAM) Kurzfragen 2017
Examen GF Mathematik (PAM) Kurzfragen 2017 Die mit einem + gekennzeichneten Fragen sind längere Kurzfragen. Kurzfrage 1+ Was ist ein Vektor? Ein Vektor ist die Menge aller gerichteten Strecken ( Pfeile
GF Mathematik 4c PAM Übungsfragen
GF Mathematik c PAM Übungsfragen Vektorgeometrie Repräsentanten von zwei Vektoren a und b b a a + b a b c b a b b b Vektorgeometrie ( a b + c ) = b ( a + b c ). Eine Vektorgleichung ( ) ( ) a b + c = b
Einige Übungsaufgaben zum Thema Exponentialfunktion und ihre Anwendungen. Aufgabe 1 Gib die Lösung folgender Gleichung an: 4 3 (x 2) = 2 5 3x
Einige Übungsaufgaben zum Thema Exponentialfunktion und ihre Anwendungen Ich habe die Aufgaben sehr ausführlich gelöst, meistens noch eine Probe gemacht und alle Zwischenschritte aufgeschrieben. Das müsst
Logarithmen näherungsweise berechnen
Logarithmen näherungsweise berechnen (Zehner)Logarithmen waren vor der Taschenrechner-Ära ein wichtiges Rechenhilfsmittel, da mit ihrer Hilfe Produkte in Summen und, wichtiger noch, Potenzen und Wurzeln
Rechengesetze und ihre Anwendungen. a + b = b + a. Assoziativgesetz ( Verbindungsgesetz ) a + ( b + c ) Distributivgesetz ( Verteilungsgesetz )
Rechengesetze und ihre Anwendungen Es gibt 3 verschiedene Gesetze, die in der Mathematik angewandt werden. Es sind : Kommutativgesetz ( Vertauschungsgesetz ) a + b = b + a Assoziativgesetz ( Verbindungsgesetz
Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst
Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,
MTG Grundwissen Mathematik 5.Klasse
MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig
1.3 Warum es sich lohnt, die Regeln für Termumformungen zu beherrschen
Rechentrainiung Termumfornungen 1.3 Warum es sich lohnt, die Regeln für Termumformungen zu beherrschen 1.3.1 Wie man Terme nicht umformen soll - Ein abschreckendes Beispiel Stellen Sie sich vor, Sie haben
A5 Exponentialfunktion und Logarithmusfunktion
A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart
Exponentialgleichungen und Logarithmen
. Exponentialgleichungen und Logarithmen. Logarithmen Ergänzung 3. Logarithmenregeln Seiten 4. Aufgaben Exponentialgleichungen 5. Didaktisches 6. Was sind Logarithmen? 7. Exponentialgleichungen Kurzfassung
Münchner Volkshochschule. Planung. Tag 02
Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B
2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a
2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels
Übungen zum Vorkurs Mathematik
Dr. Tatiana Samrowski Institut für Mathematik Universität Zürich Übungen zum Vorkurs Mathematik Mengenlehre Aufgabe : Stellen Sie die folgenden Menge durch Aufzählen ihrer Elemente dar: A = { N : ist Primzahl
3 Zahlen und Arithmetik
In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren
Übungsaufgaben mit Lösungen Basisumformungen, [B] Grundlagenrechnen
Mathe-Trainings-Heft Prüfungsvorbereitung für Oberstufe und Abitur Übungsaufgaben mit Lösungen Basisumformungen, [B] Grundlagenrechnen Terme, Brüche und Potenzen Logarithmen, Kopfrechnen Teilbarkeitsregeln
) sind keine Terme. Setzt man für die Variable eines Terms eine Zahl ein, so erhält man als Ergebnis wieder eine Zahl. y = 2 3 y = 11
Wert eines Terms berechnen sind sinnvolle Rechenausdrücke, die aus Zahlen, Variablen, Rechenzeichen und Klammern bestehen können. Setzt man für die Variablen Zahlen ein, so erhält man als Ergebnis wieder
Rechentrainer. "Schlag auf Schlag - Rechnen bis ichs mag" SILVIO GERLACH
Rechentrainer "Schlag auf Schlag - Rechnen bis ichs mag" SILVIO GERLACH EBOOK Inhaltsverzeichnis Inhaltsverzeichnis Vorwort... 5 Inhaltsverzeichnis... 7 Glossar mathematischer Begriffe... 9 Einleitung
1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.
Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B
Mathematik-Übungssammlung für die Studienrichtung Facility Management
Mathematik-Übungssammlung für die Studienrichtung Facility Management Auf den nachfolgenden Seiten finden Sie Übungen zum Stoff, welcher bei Studienbeginn vorausgesetzt wird. Der dazugehörige Stoff wird
Vorkurs Mathematik (Allgemein) Übungsaufgaben
Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002
1.Rationale und irrationale Zahlen. Quadratwurzel.
1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.
Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie
Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1
Vorkurs Mathematik für Informatiker 3 Logarithmen
3 Logarithmen Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 3: Logarithmen 1 Logarithmen: Definition Definition: Zu x > 0 und b > 0, b 1 sei der Logarithmus von x zur Basis b folgende
Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014
Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen
1.2 Rechnen mit Termen II
1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7
Weitere einfache Eigenschaften elementarer Funktionen
Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...
Wirtschaftsmathematik für International Management (BA)
Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg Logarithmen Wie löst man die Gleichung a x = b nach x auf? (dabei soll gelten a, b > 0 und a 1) Neues
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich LÖSUNGEN Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte.
Exponentialfunktionen, Eulersche Zahl, Logarithmen
Exponentialfunktionen, Eulersche Zahl, Logarithmen Jörn Loviscach Versionsstand: 16. November 2009, 19:01 1 Exponentialfunktionen Eine Funktion der Art x 7 3 x heißt Exponentialfunktion [exponential function].
Funktionen einer Variablen
Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.
Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.
Name: Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Inhalt: Potenzen Die zweite Wurzel (Quadratwurzel) Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen
Mathematik 3 für Informatik
Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren
2x 10x 5x 7x 8x 6xy 2xy. 4xy. 6xy z 12xy z 10xy z. 8xy z. 8 x. Gleichartige Terme
Gleichartige Terme 1Banane+3Bananen=4Bananen 1x1x 2x 10x 5x 7x 8x 6xy 2xy 4xy 2 2 2 6xy z 12xy z 10xy z 2 x 10x 5x 7x Gleichartige Dinge kann man addieren und Subtrahieren. 2 8xy z x y x y 8x y 23 15 klar
3.1 Logarithmen. 1 Monate werden zu Tagen 2. 2 Der Logarithmus 3. 3 Der Basiswechsel 4. 4 Die Logarithmenregeln 5. 5 Exponentialgleichungen 7
3. Logarithmen Inhaltsverzeichnis Monate werden zu Tagen 2 2 Der Logarithmus 3 3 Der Basiswechsel 4 4 Die Logarithmenregeln 5 5 Exponentialgleichungen 7 5. einfache Exponentialgleichungen...............................
2. Schularbeit Mathematik 3 10./11. Dezember 2015
2. Schularbeit Mathematik 3 10./11. Dezember 2015 Name: Klasse: Wichtige Anmerkungen: Rechne OHNE Taschenrechner! Schreibe alle Rechenwege oder Nebenrechnungen übersichtlich auf! Ergebnisse ohne Nebenrechnung,
Sammlung von 10 Tests
ALGEBRA Potenzen und Wurzeln Sammlung von 0 Tests Die hier gezeigten Aufgen sind thematisch geordnet alle in der Datei 00 enthalten. Hier nur die Gruppierung zu Tests. Datei Nr. 0 September 00 Friedrich
Exponentialgleichungen und Logarithmen
Exponentialgleichungen und Logarithmen 1. Löse die Gleichungen: a) 2 x = 16 b) 3 4x = 9 Tipp: Exponentialgleichungen (die Variable x steht im Exponenten) lassen sich durch Zurückführen auf die gleiche
Klasse 10; Mathematik Kessling Seite 1
Klasse 0; Mathematik Kessling Seite Übungen Eponentialfunktionen/Logarithmus Aufgabe Beim Wachstum einer bestimmten Bakterienart der Bestand der Bakterien stündlich um 43% zu. Am Beginn des Beobachtungszeitraumes
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis
ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich
Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen
2. Vorlesung im Brückenkurs Mathematik 2018 Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen Dr. Markus Herrich Markus Herrich Reelle Zahlen, Gleichungen und Ungleichungen 1 Die Menge der
Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger
Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger Internet Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart
Aufgabensammlung Grundrechenarten
Aufgaensammlung Grundrechenarten Aufgae 1 Bruchrechnen: Vereinfachen Sie die folgenden Terme so weit wie möglich: a d r 11r 55r pqp q 1 pq e 7pq 10q 15q 1p c x x+6 x + x xy 7z 9z f s5 16x 1+6s 6+s s 5
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Oktober 2010 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net Dort können Sie Materialien
