Exponentialgleichungen

Größe: px
Ab Seite anzeigen:

Download "Exponentialgleichungen"

Transkript

1 GS f_epgl.mcd Eponentialgleichungen Definition: Eine Gleichung der Form b Definition: Die der Eponentialgleichung b Schreibweise: = log b ( a) Besondere Basen: = a mit a IR + und b IR + \ {} heißt Eponentialgleichung. = a heißt "Logarithmus von a zur Basis b". Basis b = 0 heißt "Dekadischer Logarithmus": 0 = a = log 0 ( a) = lg( a) Basis b = e heißt "Natürlicher Logarithmus": e = a = log e ( a) = ln( a) Basis b = heißt "Zweier - Logarithmus": = a = log ( a) = lb( a) Bestimmung der en: Zur Anwendung kommen die - Potenzgesetze: FS Seite 5 / C - Monotoniegesetze für Potenzen: FS Seite 6 / B - Rechengesetze für Logarithmen: FS Seite 6 / B - Basisumrechnung in die "Taschenrechnerbasen" 0 bzw. e: FS Seite 6 / C : () Bringe die Eponentialgleichung mit den Potenzrechenregeln auf die Form A = B und löse nach auf: = log A ( B) () Stelle beide Seiten der Eponentialgleichung als Potenz derselben Basis dar und löse dann durch Gleichsetzen der Eponenten beider Seiten. Beispiele dazu siehe auf den nächsten Seiten. / 9

2 Aufgabe : a) Bestimmen Sie die smenge folgender Gleichung in der Grundmenge IR. b) Veranschaulichen Sie die Ermittlung der smenge mit Hilfe der graphischen Darstellung von = sweg: Logarithmieren und Basis umrechnen. : = auflösen, ln( ) =.585 ln( ) IL = { ln( ) ln( ) } l( ) := r( ) := : d( ) := l( ) r( ) Bestimme diejenigen -Werte, für die gilt: d( ) = 0 auflösen, ln( ) ln( ) Graphische der 0 0 -Achse Graph von l() Graph von r() Fkt.wert: l() = r() Projektion auf die -Achse -Achse Graph von d() : d() = 0 / 9

3 Aufgabe : a) Bestimmen Sie die smenge folgender Gleichung in der Grundmenge IR. b) Veranschaulichen Sie die Ermittlung der smenge mit Hilfe der graphischen Darstellung von 7 = sweg : Substitution des Eponenten t = 7, Logarithmieren und Basis umrechnen, Resubstitution und nach auflösen. : 7 = auflösen, ln( 8) =.6 ln( ) IL = { ln( 8) } ln( ) : l( ) := 7 r( ) := d( ) := l( ) r( ) 7 Bestimme diejenigen -Werte, für die gilt: d( ) = 0 d( ) = 0 auflösen, ln( 8) ln( ) Graphische der 0 0 -Achse Graph von l() Graph von r() Fkt.wert: l() = r() Projektion auf die -Achse -Achse Graph von d() : d() = 0 / 9

4 Aufgabe : a) Bestimmen Sie die smenge folgender Gleichung in der Grundmenge IR. b) Veranschaulichen Sie die Ermittlung der smenge mit Hilfe der graphischen Darstellung von = sansatz: Substitution des Terms t =, quadratische Gleichung lösen, Resubstitution und nach auflösen : = auflösen, i π ln( ) ln( ) ln( ) =.860i 0.6 keine IL = { ln( ) ln( ) } l( ) := r( ) := : d( ) := l( ) r( ) Bestimme diejenigen -Werte, für die gilt: d( ) = 0 d( ) = 0 auflösen, i π ln( ) ln( ) ln( ) Graphische der 0 0 -Achse Graph von l() Graph von r() Fkt.wert: l() = r() Projektion auf die -Achse -Achse Graph von d() : d() = 0 / 9

5 Aufgabe : a) Bestimmen Sie die smenge folgender Gleichung in der Grundmenge IR. b) Veranschaulichen Sie die Ermittlung der smenge mit Hilfe der graphischen Darstellung von : 6 = 6 = auflösen, ln( ) ln( ) sansatz: Substitution des Terms t =, gleichartige Terme zusammenfassen, quadratische Gleichung lösen, Resubstitution und nach auflösen = IL = { ln( ) ln( ) ; } l( ) := r( ) := 6 : d( ) := l( ) r( ) Bestimme diejenigen -Werte, für die gilt: d( ) = d( ) = 0 auflösen, ln( ) ln( ) Graphische der Achse Graph von l() Graph von r() Fkt.wert: l() = r() Projektion auf die -Achse 5 -Achse Graph von d() : d() = 0 5 / 9

6 Aufgabe 5: a) Bestimmen Sie die smenge folgender Gleichung in der Grundmenge IR. b) Veranschaulichen Sie die Ermittlung der smenge mit Hilfe der graphischen Darstellung von 5 = + sansatz: Aufspalten der Potenzen, -Potenz und Zahlenpotenz separieren, Logarithmieren und Basis umrechnen. : 5 = + auflösen, ln 0 ln 5 =.8 IL = { ln 0 ln 5 } Aufspalten: Separieren: Logarithmieren: 5 = + erweitert auf = 5 9+ auflösen, = 9+ 5 = 5 9+ ln 0 ln 5 =.8 ( ) = 5 9+ = 9 l( ) := 5 r( ) := 5 9+ : d( ) := l( ) r( ) 5 0 Bestimme diejenigen -Werte, für die gilt: d( ) = 0 d( ) = 0 auflösen, ln 0 ln 5 6 / 9

7 Graphische der Variante A Achse Graph von l() Graph von r() Fkt.wert: l() = r() Projektion auf die -Achse 50 -Achse Graph von d() : d() = 0 7 / 9

8 Variante B l( ) := 5 r( ) := + : d( ) := l( ) r( ) 5 + Bestimme diejenigen -Werte, für die gilt: d( ) = 0 d( ) = 0 auflösen, ln 0 ln 5 =.8 Graphische der Variante B Achse Graph von l() Graph von r() Fkt.wert: l() = r() Projektion auf die -Achse 50 -Achse Graph von d() : d() = 0 8 / 9

9 9 / 9

Logarithmische Gleichungen

Logarithmische Gleichungen GS -.08.05 - g_loggl.mcd Logarithmische Gleichungen Definition: Eine Gleichung der Form log b ( ) = a mit > 0, a IR und b IR + \ {} heißt Logarithmusgleichung. Besondere Basen: Basis b = 0 heißt Dekadischer

Mehr

Grundlagen Algebra. Betragsgleichungen. Anschaulich kann man unter a die Maßzahl des Abstandes der Zahl a vom Nullpunkt der Zahlengeraden verstehen.

Grundlagen Algebra. Betragsgleichungen. Anschaulich kann man unter a die Maßzahl des Abstandes der Zahl a vom Nullpunkt der Zahlengeraden verstehen. GS -..5 - h_betragsgl.mcd Betragsgleichungen Definition: Betrag einer Zahl: a = a if a> if a = a if a< Betrag eines Terms: a b = ( a b) if a> b if a = b ( b a) if a< b Anschaulich kann man unter a die

Mehr

Gleichungen höheren Grades

Gleichungen höheren Grades GS -.08.05 - c_hoeheregl.mcd Definition: Eine Gleichung der Form k = 0 heißt "Gleichung n-ten Grades". Gleichungen höheren Grades n a k k = 0 mit der Definitionsmenge ID IR und a n 0 Schreibweise: n k

Mehr

Goniometrische Gleichungen

Goniometrische Gleichungen EL / GS - 3.8.5 - e_triggl.mcd Goniometrische Gleichungen Definition: Gleichungen, in denen die Variable als Argument von Winkelfunktionen vorkommen, nennt man "goniometrische Gleichungen". sweg: Mit Hilfe

Mehr

Betragsungleichungen

Betragsungleichungen GS -..5 - h_betragsungl.mcd Betragsungleichungen Definition: Betrag einer Zahl: a = a if a> if a = a if a< Betrag eines Terms: a b = ( a b) if a> b if a = b ( b a) if a< b Anschaulich kann man unter a

Mehr

Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs

Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs Exponentialgleichungen: Teil 1 1-E Mathematik, Vorkurs Exponentialgleichungen: Aufgaben 1, 2 Aufgabe 1: Berechnen Sie mithilfe der Potenzgesetze [ 36 2 3 6 ] : 1 3 6 ; [ 35 : 2 2 ] 3 2 5 3 Aufgabe 2: Fassen

Mehr

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses Mathematik-Referenzaufgaben zum Rahmenlehrplan für die

Mehr

Grundlagen Algebra. Bruchgleichungen

Grundlagen Algebra. Bruchgleichungen Bruchgleichungen EL / GS -.0.05 - _Bruchgl.mc Definition: Eine Gleichung, bei er eine Variable x auch im Nenner vorkommt, ohne ass man sie kürzen kann, heißt Bruchgleichung. Bezeichnung: Gleichungen, ie

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Das Rechnen mit Logarithmen -E Mathematik, Vorkurs Spezielle Logarithmen Der natürliche Logarithmus ist von besonderer Bedeutung in den Anwendungen: Basiszahl ist die Eulersche Zahl e: log e x ln x gelesen:

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,

Mehr

Logarithmen. 1 Logarithmenbegriff

Logarithmen. 1 Logarithmenbegriff Logarithmen 1 Logarithmenbegriff Beispiel Lösung Zeichnen Sie den Graphen der Funktion f: y = 2 x - 8 und bestimmen Sie die Nullstelle. Wertetabelle x - 2-1 0 1 2 3 4 y - 7,8-7,5-7 - 6-4 0 8 Bestimmung

Mehr

Wöchentliche Aufgabe zur Vorbereitung des Vortrags Zahlen / Algebra. Feedback zur 3. wöchentlichen Aufgabe (Zahlen und Algebra)

Wöchentliche Aufgabe zur Vorbereitung des Vortrags Zahlen / Algebra. Feedback zur 3. wöchentlichen Aufgabe (Zahlen und Algebra) Wöchentliche Aufgabe zur Vorbereitung des Vortrags Zahlen / Algebra Auf der Seite http://www.math.utah.edu/~alfeld/math/sexample.html werden zwei Herangehensweisen an das Umrechnen von Basen bei Logarithmen

Mehr

Einfach die Exponenten addieren, da gleiche Basis und Multiplikation

Einfach die Exponenten addieren, da gleiche Basis und Multiplikation Aufgabe : Berechnen Sie (ohne Taschenrechner) a) 4 Einfach die Eponenten addieren, da gleiche Basis und Multiplikation 4 4 b) Hier haben wir Division, also werden die Eponenten subtrahiert aber aufs Vorzeichen

Mehr

Jemand legt 1000 Fr. auf sein Sparkonto, wo es jährlich zu 0.5% verzinst wird. Nach wie vielen Jahren hat es mindestens 1500 Fr. auf dem Sparkonto?

Jemand legt 1000 Fr. auf sein Sparkonto, wo es jährlich zu 0.5% verzinst wird. Nach wie vielen Jahren hat es mindestens 1500 Fr. auf dem Sparkonto? Logarithmieren.1 Ziele Logarithmen in verschiedenen Logarithmensysteme können erechnet werden Grundlegenden Eigenschaften der Logarithmen und die Logarithmengesetze können in Beispielen angewendet werden.

Mehr

Logarithmen. Gesetzmäßigkeiten

Logarithmen. Gesetzmäßigkeiten Logarithmen Gesetzmäßigkeiten Einführung Als erstes muss geklärt werden, für was ein Logarithmus gebraucht wird. Dazu sollte folgendes einführendes Beispiel gemacht werden. Beispiel 1: 2 x = 8 Wie an diesem

Mehr

Thema: Der Logarithmus und die Logarithmusfunktion - Sportgymnasium Dresden Schüler: L. Beer und R. Rost Klasse: 10/2.

Thema: Der Logarithmus und die Logarithmusfunktion - Sportgymnasium Dresden Schüler: L. Beer und R. Rost Klasse: 10/2. Schüler: L. Beer und R. Rost Klasse: 0/ Der Logarithmus Zielstellung: Zeigt man natürliche Zahlen mit dem Computerbildschirm (o.ä.) an, ist es manchmal notwendig zu wissen, wie viele Ziffern die Zahl hat.

Mehr

Jemand legt 1000 Fr. auf sein Sparkonto, wo es jährlich zu 0.5% verzinst wird. Nach wie vielen Jahren hat es mindestens 1500 Fr. auf dem Sparkonto?

Jemand legt 1000 Fr. auf sein Sparkonto, wo es jährlich zu 0.5% verzinst wird. Nach wie vielen Jahren hat es mindestens 1500 Fr. auf dem Sparkonto? Logarithmieren.1 Ziele Logarithmen in verschiedenen Logarithmensysteme können erechnet werden Grundlegenden Eigenschaften der Logarithmen und die Logarithmengesetze können in Beispielen angewendet werden.

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können: Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

GF Mathematik 4c PAM Übungsfragen

GF Mathematik 4c PAM Übungsfragen GF Mathematik c PAM Übungsfragen Vektorgeometrie Repräsentanten von zwei Vektoren a und b b a a + b a b c b a b b b Vektorgeometrie ( a b + c ) = b ( a + b c ). Eine Vektorgleichung ( ) ( ) a b + c = b

Mehr

Übungen zum Vorkurs Mathematik

Übungen zum Vorkurs Mathematik Dr. Tatiana Samrowski Institut für Mathematik Universität Zürich Übungen zum Vorkurs Mathematik Mengenlehre Aufgabe : Stellen Sie die folgenden Menge durch Aufzählen ihrer Elemente dar: A = { N : ist Primzahl

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

2.4 Exponential - und Logarithmus - Funktionen

2.4 Exponential - und Logarithmus - Funktionen 25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >

Mehr

= 4 = x + 3. y(x) = x

= 4 = x + 3. y(x) = x Ü Aufgabenblatt Inhalt Brüche. Gleichungen. Summen. Potenzen. Logarithmen. Ebener Winkel (Definition und Einheiten). Trigonometrische Funktionen. Basisgrößen und Basiseinheiten des SI. Bequemes Rechnen

Mehr

Exponentialgleichungen und logarithmische Gleichungen

Exponentialgleichungen und logarithmische Gleichungen mathe online Skripten http://www.mathe-online.at/skripten/ Exponentialgleichungen und logarithmische Gleichungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 8. April 2011 Inhaltsverzeichnis 1 Definitionen 4 2 Gesetze 5 3 Logarithmen und Taschenrechner 5 4 Exponentialgleichungen 7 5 Übungsaufgaben zu Exponentialgleichungen

Mehr

B: 2 x = 7 logarithmiert zur Basis 10 nicht zu verwechseln mit lg( 7 / 2 ) = lg 7 - lg 2

B: 2 x = 7 logarithmiert zur Basis 10 nicht zu verwechseln mit lg( 7 / 2 ) = lg 7 - lg 2 7. Eponentialgleichungen. Typ: Lässt sich die Eponentialgleichung auf eine Form bringen, in der keine Operationen. Stufe vorkommen, so kann man die beiden Seiten beüglich einer ulässigen Basis, B., 0 oder

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

1 Das Problem, welches zum Logarithmus führt

1 Das Problem, welches zum Logarithmus führt 1 Das Problem, welches zum Logarithmus führt Gegeben sei die folgende Gleichung: a = x n Um nun die Basis hier x) auszurechnen, muss man die n-te Wurzel aus a ziehen: a = x n n ) n a = x Soweit sollte

Mehr

Die y Koordinate des Scheitelpunktes ist 0, der Scheitelpunkt liegt auf der x Achse, es gibt also genau eine Nullstelle.

Die y Koordinate des Scheitelpunktes ist 0, der Scheitelpunkt liegt auf der x Achse, es gibt also genau eine Nullstelle. Aufgabe 1 Schritt 1: Auswertung der Funktionsgleichung Die Parabel ist in der Scheitelpunktform angegeben. Öffnung a ist negativ, das heißt, die Parabel ist nach unten geöffnet. Scheitelpunkt Die Koordinaten

Mehr

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen. Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge

Mehr

Demo-Text für LN-Funktionen ANALYSIS INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

Demo-Text für  LN-Funktionen ANALYSIS INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. ANALYSIS LN-Funktionen Grundlagen Eigenschaften Wissen - Kompakt Datei Nr. 60 Neu geschrieben Stand: 0. Juni 0 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo-Tet für 60 Übersicht: Ln-Funktionen

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 27. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 4 2 Definitionen 5 3 Gesetze 6 4 Logarithmen und Taschenrechner 6 5 Exponentialgleichungen 8 6 Übungsaufgaben

Mehr

Der Logarithmus als Umkehrung der Exponentiation

Der Logarithmus als Umkehrung der Exponentiation Der Logarithmus als Umkehrung der Exponentiation -E -E2 Voraussetzungen Umkehrfunktion: Welche Funktionen haben eine Umkehrfunktion? Warum sind Umkehrfunktionen so wichtig? Exponentialfunktion: Definition

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

3. DER NATÜRLICHE LOGARITHMUS

3. DER NATÜRLICHE LOGARITHMUS 3. DER NATÜRLICHE LOGARITHMUS ln Der natürliche Logarithmus ln(x) betrachtet als Funktion in x, ist die Umkehrfunktion der Exponentialfunktion exp(x). Das bedeutet, für reelle Zahlen a und b gilt b = ln(a)

Mehr

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische

Mehr

Exponentialgleichungen und Logarithmen

Exponentialgleichungen und Logarithmen . Exponentialgleichungen und Logarithmen. Logarithmen Ergänzung 3. Logarithmenregeln Seiten 4. Aufgaben Exponentialgleichungen 5. Didaktisches 6. Was sind Logarithmen? 7. Exponentialgleichungen Kurzfassung

Mehr

19. Weitere elementare Funktionen

19. Weitere elementare Funktionen 19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Die Umkehrung des Potenzierens ist das Logarithmieren.

Die Umkehrung des Potenzierens ist das Logarithmieren. Die Umkehrung des Potenzierens ist das Logarithmieren. Gilt a x = b, a,b > 0, a 1, so heißt x der Logarithmus von b zur Basis a. Bezeichnung: x = log a (b). Manchmal lassen wir die Angabe der Basis auch

Mehr

BM Stoffplan Mathematik BMS 1 (3-jährig) Lehrmittel Mathematik I Algebra (hep Verlag) Skript Jakob/Göldi/Saier

BM Stoffplan Mathematik BMS 1 (3-jährig) Lehrmittel Mathematik I Algebra (hep Verlag) Skript Jakob/Göldi/Saier 1/6 L.8. Organisatorisches 0 6 Wo Arithmetik I 1.1.1-1.1.2 : Zahlenmengen, Zahlenstrahl S.1 Ü 1, 2 S. 0 23.8. MA I-1 1.1.3 Terme S. 7 Ü 3, S. 0 Addition, Subtraktion 1.2 Addition und Subtraktion S. Ü 5.

Mehr

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10 RMG Haßfurt Grundwissen Mathematik Jahrgangsstufe 0 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 0 Wissen und Können. Berechnungen am Kreis Bogenmaß Das Bogenmaß ist das zu

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Logrithmus 2 INHALTSVERZEICHNIS 1. BEGRIFF DES LOGARITHMUS... 3 2. RECHENGESETZE FÜR LOGARITHMEN... 5 3. LOGARITHMUSGLEICHUNGEN... 6 4. LOGARITHMUSFUNKTION... 8 5. DER ZUSAMMENHANG

Mehr

Volumen und Oberflächeninhalt der Kugel 10_01

Volumen und Oberflächeninhalt der Kugel 10_01 Volumen und Oberflächeninhalt der Kugel 10_01 Alle Punkte (des dreidimensionalen Raums), die von einem Punkt M die gleiche Entfernung r besitzen, liegen auf einer Kugel mit Mittelpunkt M und Radiuslänge

Mehr

Grundeigenschaften. Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Text ist einmalig in seiner Art!

Grundeigenschaften. Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Text ist einmalig in seiner Art! Logarithmusfunktionen und weil sie zusammen gehören auch Eponentialfunktionen Grundeigenschaften Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Tet ist einmalig

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

Wiederholen Sie diese Themen aus den Schulstufe 9 und 10:

Wiederholen Sie diese Themen aus den Schulstufe 9 und 10: Wiederholen Sie diese Themen aus den Schulstufe 9 und 0: Arithmetik, Termumformungen, Gleichungen (S.-G.-T. Kap. und 6) Zahlen, Zahlenrechnen, Arithmetik. Potenzen mit ganzen Eponenten, Fakultät und Binomialkoeffizienten,

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins Bogenmaß: α. α 360. b: Frequenz c: Phasenverschiebung 1,4 1,4 1,0

Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins Bogenmaß: α. α 360. b: Frequenz c: Phasenverschiebung 1,4 1,4 1,0 Wirsberg-Gmnasium Grundwissen Mathematik 0. Jahrgangsstufe Lerninhalte Fakten-Regeln-eispiele Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins ogenmaß: α b π r 0 α π

Mehr

Fit für die Oberstufe Teil II - Gleichungen

Fit für die Oberstufe Teil II - Gleichungen Gleichungen gibt es in verschiedenen Varianten: lineare und quadratische Gleichungen. Müssen zwei Gleichungen gleichzeitig erfüllt sein, ergibt sich daraus ein Gleichungssystem. Lineare Gleichungen (1

Mehr

LAP Berufsmatura Mathematik 28. Mai 2014

LAP Berufsmatura Mathematik 28. Mai 2014 LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50

Mehr

6.Gebrochen-rationale Funktionen

6.Gebrochen-rationale Funktionen Das solltest du können 6.Gebrochen-rationale Funktionen Eine gebrochen-rationale Funktion ist eine Bruchunktion, deren Nenner die Variable enthält. ( ) 4 Bsp: Der Unterschied zu den bisher bekannten linearen

Mehr

STOFFPLAN MATHEMATIK

STOFFPLAN MATHEMATIK STOFFPLAN MATHEMATIK 1. Semester (2 Wochenstunden) Mengenlehre Reelle Zahlen Lineare Gleichungen und Ungleichungen mit einer Unbekannten Funktionen und ihre Graphen Lineare Funktionen Aufgaben aus der

Mehr

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Gmnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Wissen / Können Aufgaben und Beispiele. Proportionalität Proportionale Zuordnungen und sind proportional zueinander, wenn zum n-fachen Wert von der n-fache

Mehr

Lösungen zu den Übungsaufgaben Übergang 10/ /2010 0hne Gewähr!

Lösungen zu den Übungsaufgaben Übergang 10/ /2010 0hne Gewähr! Lösungen zu den Übungsaufgaben Übergang 0/ 009/00 0hne Gewähr!. Lineare Funktionen und lineare Gleichungen; Terme a. Das Schaubild einer linearen Funktion ist immer eine Gerade. Setzt man in der Geradengleichung

Mehr

I Rechengesetze und Rechenarten

I Rechengesetze und Rechenarten Propädeutikum 2018 17. September 2018 Primfaktoren I Natürliche und ganze Zahlen Primfaktorzerlegung Klammerausdrücke Primfaktorzerlegung Jede natürliche (und auch ganze) Zahl n N kann in ein Produkt von

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

Anhang 1: Einige mathematische Grundlagen

Anhang 1: Einige mathematische Grundlagen Prof. Dr. H.-H. Kohler, WS 4/5 PC Anhang Anhang- Anhang : Einige mathematische Grundlagen. Funktion, Ableitung, Differential, Integral,. Näherung Wir schreiben eine Funktion f ( ) vereinfacht in der Form:

Mehr

Exponentialgleichungen und Logarithmen

Exponentialgleichungen und Logarithmen Exponentialgleichungen und Logarithmen 1. Löse die Gleichungen: a) 2 x = 16 b) 3 4x = 9 Tipp: Exponentialgleichungen (die Variable x steht im Exponenten) lassen sich durch Zurückführen auf die gleiche

Mehr

Arithmetik, Algebra, Mengen- und Funktionenlehre

Arithmetik, Algebra, Mengen- und Funktionenlehre Carsten Gellrich Regina Gellrich Arithmetik, Algebra, Mengen- und Funktionenlehre Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen VERLAG HARRI DEUTSCH Inhaltsverzeichnis

Mehr

3.1 Logarithmen. 1 Monate werden zu Tagen 2. 2 Der Logarithmus 3. 3 Der Basiswechsel 4. 4 Die Logarithmenregeln 5. 5 Exponentialgleichungen 7

3.1 Logarithmen. 1 Monate werden zu Tagen 2. 2 Der Logarithmus 3. 3 Der Basiswechsel 4. 4 Die Logarithmenregeln 5. 5 Exponentialgleichungen 7 3. Logarithmen Inhaltsverzeichnis Monate werden zu Tagen 2 2 Der Logarithmus 3 3 Der Basiswechsel 4 4 Die Logarithmenregeln 5 5 Exponentialgleichungen 7 5. einfache Exponentialgleichungen...............................

Mehr

Klasse 10; Mathematik Kessling Seite 1

Klasse 10; Mathematik Kessling Seite 1 Klasse 0; Mathematik Kessling Seite Übungen Eponentialfunktionen/Logarithmus Aufgabe Beim Wachstum einer bestimmten Bakterienart der Bestand der Bakterien stündlich um 43% zu. Am Beginn des Beobachtungszeitraumes

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Vorkurs Mathematik Wozu braucht man den Logarithmus? Schallpegel (db) Schallintensität (W/m 2 ) 120 Düsenjet in 500m Entfernung Rock-Konzert 1 90 U-Bahn 10-3 60 PKW leise Unterhaltung

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

Lösung zur Übung 6. Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x).

Lösung zur Übung 6. Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x). zur Übung 6 Aufgabe ) Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x). a) Man zeige: y(x) = ar sinh(x) = ln(x + x + ) durch einsetzen

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS 9.6.7 - m7_nt-a_lsg_gs.pdf Abschlussprüfung 7 - Mathematik Nichttechnik A II - Lösung Teilaufgabe. Der Graph einer ganzrationalen Funktion f vierten Grades mit D f IR ist symmetrisch zur y-achse und

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 0. Jahrgangsstufe Mathematik Kreis und Kugel. Kreissektor und Bogenmaß Kreis Umfang U π rπ d Flächeninhalt Aπ r Kreissektor mit Mittelpunktswinkel α Bogenlänge α π r 60 Flächeninhalt A α π

Mehr

Logarithmusgleichungen 50 Logarithmusgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Logarithmusgleichungen 50 Logarithmusgleichungen mit Ergebnissen und ausführlichen Lösungsweg Logarithmusgleichungen 5 Logarithmusgleichungen mit Ergebnissen und ausführlichen Lösungsweg Auflage: Dienstag 6.6.6 Copyright by Josef Raddy .Einfachste Logarithmusgleichungen a) b) c) d) e) f) g) h)

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Exponential und Logarithmusfunktion. Wachstum und Zerfall

Exponential und Logarithmusfunktion. Wachstum und Zerfall Wachstum und Zerfall Erklärung exponentielles Wachstum (Zerfall): eine Anfangsgröße W 0 vervielfacht (verringert) sich in gleichen Zeitabschnitten mit einem gleichbleibenden Wachstumsfaktor q, der größer

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

Station 1 TERME BEGRIFFE 1. Station 2 ADDITION UND SUBTRAKTION GANZER ZAHLEN. Berechne a) 7 13 = b) 7 13 = d) = h) = f) 9 28 = g) 9 28 =

Station 1 TERME BEGRIFFE 1. Station 2 ADDITION UND SUBTRAKTION GANZER ZAHLEN. Berechne a) 7 13 = b) 7 13 = d) = h) = f) 9 28 = g) 9 28 = Station 1 ADDITION UND SUBTRAKTION GANZER ZAHLEN Berechne a) 7 13 = b) 7 13 = c) 7 + 13 = d) 7 + 13 = e) 9 + 28 = f) 9 28 = g) 9 28 = h) 9 + 28 = Station 2 TERME BEGRIFFE 1 Benenne die einzelnen Elemente

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: In acht Leveln zum Meister! - Exponentialgleichungen lösen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: In acht Leveln zum Meister! - Exponentialgleichungen lösen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: In acht Leveln zum Meister! - Das komplette Material finden Sie hier: Download bei School-Scout.de S 1 In acht Leveln zum Meister!

Mehr

1. Ermitteln Sie zunächst sämtliche Nullstellen und deren Vielfachheit und geben Sie den Funktionsterm als Produkt an

1. Ermitteln Sie zunächst sämtliche Nullstellen und deren Vielfachheit und geben Sie den Funktionsterm als Produkt an Aufgabenblock. Ermitteln Sie zunächst sämtliche Nullstellen und deren Vielfachheit und geben Sie den Funktionsterm als Produkt an a = + Nullstellen = + = / Um die Nullstellen zu ermitteln, muss der Funktionsterm

Mehr

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik Kosinusfunktion: graphische Darstellung und Interpretation 1-E Vorkurs, Mathematik Kosinusfunktion: Erklärung der Aufgabe 1 Aufgabe 1: Zeichnen Sie die trigonometrische Kosinusfunktion g (x) = a cos x.

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Abschlussaufgabe Nichttechnik - A II - Lösung

Abschlussaufgabe Nichttechnik - A II - Lösung GS - 7 - m_nta_lsgmc Abschlussaufgabe - Nichttechni - A II - Lösung Gegeben ist ie relle Funtion f ( x) x = x mit IR > un ID f = IR Der Graph wir mit G f bezeichnet Bestimmen Sie Lage un Vielfachheit er

Mehr

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen Vorkurs Mathematik Übungsaufgaben 2 Dozent Dr. Arne Johannssen Lehrstuhl für Betriebswirtschaftslehre, insbesondere Mathematik und Statistik in den Wirtschaftswissenschaften Neues Logo: ie gesamte Universität

Mehr

Zahlen. Grundwissenskatalog G8-Lehrplanstandard

Zahlen. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Zahlen Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S -

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS.06.0 - m_nt-a_lsg_gs_pdf Abschlussprüfung 0 - Mathematik Nichttechnik A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. 0 x x 8 x mit der Definitionsmenge Teilaufgabe.

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Einstiegsvoraussetzungen 3. Semester

Einstiegsvoraussetzungen 3. Semester Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr