Mathias Hinkel, WS 2010/11
|
|
|
- Gesche Feld
- vor 9 Jahren
- Abrufe
Transkript
1 Mathias Hinkel, WS 2010/11
2 1. Motivation und Einführungsbeispiel 2. Mathematische Beschreibung des Ofenprozesses 3. Lösungsansätze für Differentialgleichung 4. Einführung der Laplace-Transformation 5. Anwendung auf Beispiel 6. Bedeutung und Zusammenfassung Hinkel 2
3 Hinkel 3
4 Bäckerei: Backen von Broten und Brötchen Bestimmte Backtemperatur muss in vorgegebener Zeit erreicht werden, Schwankungen sind zu vermeiden Kontinuierlicher Prozess Lösung: Regelung der Backofentemperatur Hinkel 4
5 t Umgebung t Ofen w Heizung Hinkel 5
6 M c K w Heizung t Ofen t Umgebung Masse vom Backofen mit Inhalt Wärmekapazität der Backofenmasse Wärmeleitwert aufgrund der Isolation Leistung der Heizstäbe Temperatur im Ofen Umgebungstemperatur d dt t Ofen 1 ( t) w ( ) Heizung t K tofen ( t) tumgebung( t) cm Hinkel 6
7 1. Berechnung der Differentialgleichung im Zeitbereich 2. Simulation durch Matlab/Simulink 3. Laplace-Ansatz d dt t Ofen 1 ( t) w ( ) Heizung t K tofen ( t) tumgebung( t) cm Hinkel 7
8 Berechnung der homogenen Lösung Berechnung der inhomogenen Lösung Anfangswertbedingungen einsetzen Hier zwei Eingänge, ein Ausgang (MISO (Multiple Input, Single Output)-System) für kompliziertere Systeme zu aufwendig (Differentialgleichung 2. oder höherer Ordnung) Hinkel 8
9 Implementierung des mathematischen Modells in Simulink Matlab/Simulink 1/s K Modell Blockschaltbild Simulationsergebnisse Hinkel 9
10 Hinkel 10
11 Heizleistung in Watt Umgebungstemperatur in C Ofeninnentemperatur in C Hinkel 11
12 Eigentlich war exakte Lösung gesucht Langes Herumprobieren und erneutes Simulieren bei Parameterfindung vermeiden Lösung: Laplace-Transformation Hinkel 12
13 Pierre Simon Marquis de Laplace ( ) Oliver Heaviside ( ) Laplace: Betrachtungen zur Wahrscheinlichkeitsrechnung, Laplace-Integral Heaviside: Operatorenrechnung zur Lösung von Differentialgleichungen Doetsch: mathematische Begründung der Operatorenrechnung durch Laplace-Transformation F( s) 0 f Gustav Doetsch ( ) ( t) e st dt Hinkel 13
14 Problem im Zeitbereich Lösung der Differentialgleichung(en) Lösung im Zeitbereich F( s) 0 f ( t) e st dt Laplace- Transformation Laplace-Rück- Transformation Problem im Bildbereich Umstellen der Gleichung(en) Lösung im Bildbereich Hinkel 14
15 Look-Up-Tabellen nutzen statt Laplace- Integral lösen! d dt t 0 f(t) sf(s) f(τ) dτ Zeitbereich Bildbereich 1 s f 1 F(s) s (0) Einheitssprung ( Einschalten ) Ableitung Multiplikation mit s Integrieren Division durch s (1 e at ) a s ( s a) Tool-Unterstützung vorhanden (z.b. MuPAD) Hinkel 15
16 d dt t Ofen 1 K K ( t) wheizung( t) tofen ( t) tumgebung( t) cm cm cm st Ofen Transformation, Anwendung Korrespondenzen und Ableitungsregel 1 K K ( s) tofen (0) WHeizung( s) TOfen ( s) TUmgebung ( s) cm cm cm Hinkel 16
17 0 Annahme: Ofen wird bei eingeschalten Umgebungstemperatur = 20 C = const. Heizleistung: 2000W = const. t t Ofen (t) K w t Const 1 cm e t Const 1 K e K cm t t Const e K cm t t Ofen (t) e K cm t 20C Hinkel 17
18 Verhalten nach unendlicher Zeit berechnen Stabilität des Regelkreises sicherstellen Zielgerichtete Reglerparametrierung durchführen Anwendungen in der Wahrscheinlichkeitsrechnung Hinkel 18
19 Laplace-Transformation als hilfreiches mathematisches Werkzeug, vor allem in der Regelungstechnik Vereinfacht Berechnung von Differentialgleichungen: Algebraisches Umstellen, Multiplizieren/Dividieren statt Integrieren Einfache Anwendung durch Tools sowie Korrespondenztabellen Hinkel 19
20 L. Litz: Grundlagen der Automatisierungstechnik (Einführungsbeispiel), 2005, Oldenbourg Verlag H. Weber, H. Ulrich: Laplace-Transformation (Korrespondenzen, Geschichtlicher Hintergrund), 2008, Teubner-Verlag R. Hoffmann: Systemtheorie I/II (Handschriftliches Skript) Bilder: (D.Poschmann (Backofen I), Manni66 (Backofen II)) (Sophie Feytaud (Laplace-Portrait, 1842), Unbekannter Fotograph (Heaviside-Portrait), Friedrich Hund (Doetsch-Portrait, 1930)) Hinkel 20
Kybernetik Laplace Transformation
Kybernetik Laplace Transformation Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 [email protected] 08. 05. 202 Laplace Transformation Was ist eine Transformation? Was ist
Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort
Textuell: FederPendel yste FederPendel Dreh- Magnet Feder c Masse l Däpfer d lf ld ollwertgeber Regler Winkelsensor Regelungstechnische Begriffe: PT-Glied it Verstärkung Kp, Däpfung D, Zeitkonstante T
Einführung in die Systemtheorie
Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen
Formelanhang Mathematik II
Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)
Differenzialgleichungen erster Ordnung
Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche
Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage
Heinz JUnbehauen Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme 3., durchgesehene Auflage Mit 192 Bildern V] Friedr. Vieweg & Sohn Braunschweig/Wiesbaden
Lösung zur Übung 19 SS 2012
Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die
Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)
Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum
Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena
Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik 1. Einführung in die Regelungstechnik 1.1 Zielsetzung der Regelungstechnik und Begriffsdefinitionen 1.2 Beispiele
Regelungstechnik für Ingenieure
Manfred Reuter Regelungstechnik für Ingenieure 7., überarbeitete und erweiterte Auflage Mit 322 Bildern Friedr. Vieweg & Sohn Braunschweig/Wiesbaden Inhaltsverzeichnis Formelzeichen 1 Einführung 1 1.1
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.
Die Beschreibung von Signalen und Systemen kann in verschiedenen Bereichen erfolgen:
1 Grundlegende Begriffe 1.1 Signale und Systeme ein Signal: ein System: ist ein Satz von Daten setzt Signale in Beziehung Darstellung: Die Beschreibung von Signalen und Systemen kann in verschiedenen Bereichen
,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge
Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,
Mathematischer Vorkurs Lösungen zum Übungsblatt 3
Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester [email protected] Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)
Einführung in die Laplace Transformation
Einführung in die aplace Transformation Peter Riegler 17. Oktober 2 Zusammenfassung Dieser Text gibt Ihnen eine kurze Einführung in das Werkzeug der aplace Transformation. Es zeigt Ihnen, wo und warum
Autonome Mobile Systeme
Autonome Mobile Systeme Teil II: Systemtheorie für Informatiker Dr. Mohamed Oubbati Institut für Neuroinformatik Universität Ulm SS 2007 Wiederholung vom letzten Mal! Die Übertragungsfunktion Die Übertragungsfunktion
Regelungstechnik für Ingenieure
Manfred Reuter Serge Zacher Regelungstechnik für Ingenieure Analyse, Simulation und Entwurf von Regelkreisen 12., korrigierte und erweiterte Auflage Mit 388 Abbildungen, 11 Beispielen und 34 Aufgaben STUDIUM
Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik
Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik Jürgen Struckmeier [email protected], www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme der Beschleuniger-
Lineare Differentialgleichungen 1. Ordnung
Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl
- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.
- 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel
Die Laplace-Gleichung
http://www.flickr.com/photos/rocketdude/489565079/ Die Laplace-Gleichung 1-E1 http://img.allposters.com/6/lrg/17/1740/imj3d00z.jpg Pierre-Simon Laplace (1749-1827) war ein französischer Mathematiker und
(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0
Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die
Regelungstechnik für Ingenieure
Manfred Reuter Regelungstechnik für Ingenieure 9., überarbeitete und erweiterte Auflage Mit 291 Bildern, 43 Beispiele und 27 Aufgaben vieweg VII Inhaltsverzeichnis Formelzeichen XI 1 Einleitung 1 1.1 Das
Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie
Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie
Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN
Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke
Laplace-Transformation
Hubert Weber Laplace-Transformation fur Ingenieure der Elektrotechnik Hubert Weber Laplace-Transformation fur Ingenieure der Elektrotechnik 7., Oberarbeitete und erganzte Auflage Mit 111 Abbildungen und
Lösung zur 5. Übung Steuer- und Regelungstechnik
Lösung zur 5. Übung Aufgabe 5.1: Anwendung der Laplace-Transformation Gegeben ist die folgende Differentialgleichung y (t) + y (t) + 5 y (t) + 4 y(t) = u(t) mit den Anfangswerten y(t = 0) = y 0, y (t =
Hauptseminar SOI Regelalgorithmen für Totzeitsysteme
Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation
Einstieg in die Regelungstechnik
Hans-Werner Philippsen Einstieg in die Regelungstechnik Vorgehensmodell für den praktischen Reglerentwurf mit 263 Bildern und 17 Tabellen Fachbuchverlag Leipzig im Carl Hanser Verlag 1 Einführung 13 1.1
Laplacetransformation
Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele
Systemtheorie für Informatiker
Systemtheorie für Informatiker Dr. Ch. Grimm Professur Technische Informatik, Univ. Frankfurt/Main Vorlesung Systemtheorie Vorlesung: Übung: Veranstalter: Dr. Christoph Grimm Professur Technische Informatik
Willkommen zur Vorlesung Regelungstechnik I
Willkommen zur Vorlesung Regelungstechnik I Personen: Hauptziele: Übungen: Esfandiar Shafai [email protected] Vorlesung: Lino Guzzella [email protected] Mathematische Beschreibung dynamischer
Fourierreihen periodischer Funktionen
Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung
Klausur: Höhere Mathematik IV
Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 [email protected]
Regelungstechnik I (WS 13/14) Klausur ( )
Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den
UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik
Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.
Höhenregelung eines schwebenden Magneten
Technische Universität Berlin MRT M R T Prof. Dr.-Ing. R. King Fakultät III Institut für Prozess- und Anlagentechnik Fachgebiet Mess- und Regelungstechnik TU Berlin. Sekretariat. P2-1. Mess- und Regelungstechnik
Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten
) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s
1 Das Rätsel vom Käfer auf dem Gummiband Die alten Ägypter glaubten angeblich, Osiris habe am Tempel in Luor ein unsichtbares Gummiband der Länge L = 1m befestigt, auf dessen Anfang er einen Scarabaeus
Regelungstechnik für Ingenieure
Serge Zacher Manfred Reuter Regelungstechnik für Ingenieure Analyse, Simulation und Entwurf von Regelkreisen 13., überarbeitete und erweiterte Auflage Mit 397 Abbildungen, 96 Beispielen und 32 Aufgaben
Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler.
Ziel des vierten Versuchs: Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler. 4. Berechnung, Simulation und Messung des Frequenzgangs einer I-Strecke F R (s) F S (s)
Ableitung thermischer Randbedingungen für lineare Antriebseinheiten
Ableitung thermischer Randbedingungen für lineare Antriebseinheiten Dipl.-Ing. Matthias Ulmer, Prof. Dr.-Ing. Wolfgang Schinköthe Universität Stuttgart, Institut für Konstruktion und Fertigung in der Feinwerktechnik
Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am
Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 10.12.2010 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer:
Mathematische Grundlagen der dynamischen Simulation
Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei
Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
Grundkurs der Regelungstechnik
Grundkurs der Regelungstechnik Einführung in die praktischen und theoretischen Methoden von Dr.-Ing. Ludwig Merz em. o. Professor und Direktor des Instituts für Meßund Regelungstechnik der Technischen
Praktikum. Modellbildung und Simulation. Stichworte: Modellbildung Analoge Simulation Digitale Simulation
Praktikum Stichworte: Modellbildung Analoge Simulation Digitale Simulation Aufgabenstellung und Lösungsidee - Kennenlernen verschiedener Methoden zur Modellbildung eines mechanisches Schwingers - Abbildung
Übertragungsverhalten
Kapitel 3 Übertragungsverhalten Peter-Wolfgang Gräber Automatisierungstechnik in der Wasserwirtschaft KAPITEL 3. ÜBERTRAGUNGSVERHALTEN In der Systemtheorie kann jeder Prozess als so genannte black-box,
Problemreduktion durch Transformation am Beispiel des. Erweiterten Euklidschen Algorithmus
Problemreduktion durch Transformation am Beispiel des Erweiterten Euklidschen Algorithmus Wolfgang Windsteiger JKU Linz, A 4040 Linz, Austria Kurzfassung Transformation beschreibt im Wesentlichen die algorithmische
Modul SiSy: Einleitung
Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal,
Institut für Leistungselektronik und Elektrische Antriebe. Regelungstechnik II. Übung 1
Regelungstechnik II Übung 1 Übungen Regelungstechnik II Steffen Bintz M.Sc. Tel.: (0711) 685-67371 E-Mail: [email protected] Die Unterlagen und Aufgaben zu dieser Präsentation finden
a) Wandeln sie die Dezimalzahl 77 in eine Dualzahl um (2P) b) Bilden Sie die Differenz aus und der Dualzahl aus Aufgabenteil a) (3P)
Aufgabe 1: Zahlensysteme (5P) a) Wandeln sie die Dezimalzahl 77 in eine Dualzahl um (2P) b) Bilden Sie die Differenz aus 01100001 und der Dualzahl aus Aufgabenteil a) (3P) Aufgabe 2: Boolesche Algebra
Prozessidentifikation mit Sprungantworten
Fakultät Informatik, Institut für angewandte Informatik, Professur für technische Informationssysteme Hauptseminar Technische Informationssysteme Dresden, 27. April 2012 Überblick 1. Motivation und Begriffe
Das mathematische Pendel
1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2
Klausur zur HM3 (vertieft) für LRT und MaWi
Prof. M. Eisermann Höhere Mathematik 3 (vertieft) 1. September 016 Klausur zur HM3 (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Studiengang:
[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration
1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem
Nichtlineares Verhalten in Regelstrecken
Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Umdruck 4: Nichtlineares Verhalten in Regelstrecken 4.1 Einführung Bei allen bisherigen Untersuchungen durfte davon
1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung
Fakultät Informatik > Angewandte Informatik > Technische Informationssysteme Studentischer Vortrag 1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Mai, Tuan Linh Dresden, 17.Jan.2011 Inhalt 1. Motivation
2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.
Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll
Lineare DGL-Systeme 1. Ordnung
Lineare DGL-Systeme 1. Ordnung Eine Reihe von naturwissenschaftlichen Problemstellungen, wie z. B. Feder- Dämpfer-Systeme der Mechanik oder Kirchhoffsche Netzwerke der Elektrotechnik, lassen sich durch
3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.
unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit
Ergänzung zur Regelungstechnik
Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig
Kontinuierliche Fourier-Transformation. Laplace-Transformation
Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:
Zusammenfassung der 1. Vorlesung
Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem
Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2
Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten
Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am
Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am.. Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe
4 Gewöhnliche Differentialgleichungen
4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten
2 Periodische, nicht harmonische Signale
Hochfrequenztechnik I Signaldarstellung im Zeit- und Frequenzbereich S/ Harmonische Signale Zeitabhängige Gröÿen, wie z. B. Spannung, Strom oder Feld, sind häug harmonische Gröÿen. Solche sinus- oder kosinusförmigen
Regelungstechnik und Simulationstechnik mit Scilab und Modelica
Peter Beater Regelungstechnik und Simulationstechnik mit Scilab und Modelica Eine beispielorientierte Einführung für Studenten und Anwender aus dem Maschinenbau Inhaltsverzeichnis Begriffe und Formelzeichen
Mathematischer Einführungskurs für die Physik
Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt
1 Einführung, Terminologie und Einteilung
Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen
Kapitel 2. Signaldarstellung. Automatisierungstechnik in der Wasserwirtschaft
Kapitel 2 Signaldarstellung Peter-Wolfgang Gräber Automatisierungstechnik in der Wasserwirtschaft 2.1 Grundlagen Die System- und Steuerungstheorie stellen das theoretische Gerüst dar, mit dem die Steuerungsund
Differenzengleichungen. und Polynome
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich [email protected] 1 Einleitung Mit linearen Differenzengleichungen
Lineare Differenzengleichungen und Polynome. Franz Pauer
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. [email protected] Vortrag beim ÖMG-LehrerInnenfortbildungstag
Grundlagen der Regelungstechnik Theorie, elektronische Regelungen, digitale Regeleinrichtungen, Fuzzy-Regelung
Karl-Heinz Reuther Grundlagen der Regelungstechnik Theorie, elektronische Regelungen, digitale Regeleinrichtungen, Fuzzy-Regelung Berichte aus der Steuerungs- und Regelungstechnik Karl-Heinz Reuther Grundlagen
Lernziel: verallgemeinerbare Interpretation des Begriffs 'Ableitung einer Funktion' am Punkt
C: Calculus C1: Differenzieren (Ableiten) 1-dimensionaler Funktionen Lernziel: verallgemeinerbare Interpretation des Begriffs 'Ableitung einer Funktion' C1.1 Def. der Ableitung sei glatte Funktion. 'Ableitung
Zahlentheorie, Arithmetik und Algebra I
Zahlentheorie, Arithmetik und Algebra I Ulrich Rabenstein 18.06.2013 Ulrich Rabenstein Zahlentheorie, Arithmetik und Algebra I 18.06.2013 1 / 34 1 Modulare Arithmetik 2 Teiler 3 Primzahlen Ulrich Rabenstein
Differentialgleichungen sind überall!
Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium
Formelsammlung für Automatisierungstechnik 1 & 2
Formelsammlung für Automatisierungstechnik & 2 Aus Gründen der Vereinheitlichung, der gleichen Chancen bw. um etwaigen Diskussionen vorubeugen, sind als Prüfungsunterlagen für die Vorlesungsklausuren aus
Kybernetik LTI-Systeme
Kybernetik LTI-Systeme Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 [email protected] 26. 04. 2012 Was ist Kybernetik? environment agent Kybernetik ermöglicht, die Rückkopplung
Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2
Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung
Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen
MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass
Eigenschaften und Anwendung zeitdiskreter Systeme
Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Eigenschaften und Anwendung zeitdiskreter Systeme Dresden, den 3.8.2 Gliederung Vorbemerkungen Eigenschaften
15.5 Beschreibung von linearen Systemen
5.5 Beschreibung von linearen Systemen 965 5.5 Beschreibung von linearen Systemen Um das Übertragungsverhalten von Systemen zu bestimmen, untersucht man in der Regelungs- und Systemtechnik den Zusammenhang
Systemwissenschaften, Mathematik und Statistik
Systemwissenschaften, Mathematik und Statistik Systemwissenschaften: 1 WS: Systemwissenschaften 1, VO 2std 2 SS: Systemwissenschaften 2, VO 2std Übung zu Systemwissenschaften, UE 2std 3 WS: Systemwissenschaften
6 Differentialgleichungen
93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung
Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.
Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung
Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik
Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik
