L. Grundlagen der Thermodynamik. Erster Hauptsatz der Thermodynamik. Zweiter Hauptsatz der Thermodynamik

Größe: px
Ab Seite anzeigen:

Download "L. Grundlagen der Thermodynamik. Erster Hauptsatz der Thermodynamik. Zweiter Hauptsatz der Thermodynamik"

Transkript

1

2 Grundlagen der Thermodynamik Erster Hauptsatz der Thermodynamik Zweiter Hauptsatz der Thermodynamik Das ideale Gas in Maschinen und Anlagen Der Dampf und seine Anwendung in Maschinen und Anlagen Gemische Strömungsvorgänge Wärmeübertragung Energieumwandlung durch Verbrennung und in Brennstoffzellen Lösungsergebnisse der Aufgaben L

3 7 Inhaltsverzeichnis 1 Grundlagen der Thermodynamik Aufgabe der Thermodynamik Größen und Einheitensysteme Thermische Zustandsgrößen Volumen Druck Temperatur Thermische Zustandsgleichung Thermische Zustandsgleichung eines homogenen Systems Thermische Zustandsgleichung des idealen Gases Mengenmaße Kilomol und Normvolumen; molare Gaskonstante Thermische Ausdehnung Erster Hauptsatz der Thermodynamik Energieerhaltung, Energiebilanz Arbeit am geschlossenen System Innere Energie Wärme Arbeit amoffenen System und Enthalpie Formulierungen des ersten Hauptsatzes der Thermodynamik Kalorische Zustandsgleichungen Kalorische Zustandsgleichungen eines homogenen Systems Spezifische Wärmekapazitäten eines homogenen Systems Kalorische Zustandsgleichungen des idealen Gases Spezifische Wärmekapazitäten des idealen Gases Molare Wärmekapazitäten des idealen Gases Zweiter Hauptsatz der Thermodynamik Definition der Entropie Entropie und zweiter Hauptsatz der Thermodynamik T,S-Diagramm Einfache Zustandsänderungen des idealen Gases... 38

4 8 Inhaltsverzeichnis Isochore Zustandsänderung Isobare Zustandsänderung Isotherme Zustandsänderung Isentrope Zustandsänderung Polytrope Zustandsänderung Zustandsänderungen in adiabaten Systemen Kreisprozesse Adiabate Drosselung Füllen eines Behälters Temperaturausgleich Exergie und Anergie Begrenzte Umwandelbarkeit der inneren Energie und der Wärme Exergie und Anergie eines strömenden Fluids Exergie und Anergie eines geschlossenen Systems Exergie und Anergie der Wärme Exergieverlust Exergetischer Wirkungsgrad Energiequalitätsgrad Energie- und Exergie-Flussbild Das ideale Gas inmaschinen und Anlagen Kreisprozesse für Wärme- und Verbrennungskraftanlagen Kreisprozesse der Gasturbinenanlagen Arbeitsprinzip der Gasturbinenanlagen Joule-Prozess als Vergleichsprozess der Gasturbinenanlage Ericsson-Prozess als Vergleichsprozess der Gasturbinenanlage Der wirkliche Prozess inder Gasturbinenanlage Kreisprozess des Heißgasmotors Kreisprozesse der Verbrennungsmotoren Übertragung des Arbeitsprinzips der Motoren ineinen Kreisprozess Otto-Prozess als Vergleichsprozess des Verbrennungsmotors Diesel-Prozess als Vergleichsprozess des Verbrennungsmotors... 98

5 Inhaltsverzeichnis Seiliger-Prozess als Vergleichsprozess des Verbrennungsmotors Der wirkliche Prozess in den Verbrennungsmotoren Kolbenverdichter Der Dampf und seine Anwendung in Maschinen und Anlagen Das reale Verhalten der Stoffe Wasserdampf Dampfkraftanlagen Kombiniertes Gas-Dampf-Kraftwerk (GUD-Prozess) Organische Rankine-Prozesse (ORC) Linkslaufende Kreisprozesse mit Dämpfen Gemische Die Zusammensetzungen von Gemischen Ideale Gemische Gemisch idealer Gase Gas-Dampf-Gemisch Strömungsvorgänge Kontinuitätsgleichung Der erste Hauptsatz der Thermodynamik für Strömungsvorgänge Kraftwirkung bei Strömungsvorgängen Düsen- und Diffusorströmung Wärmeübertragung Arten der Wärmeübertragung Wärmeleitung Ebene Wand Zylindrische Wand Hohlkugelwand Konvektiver Wärmeübergang Wärmeübergang bei erzwungener Strömung Wärmeübergang bei freier Strömung Wärmeübergang beim Kondensieren und Verdampfen

6 10 Inhaltsverzeichnis 8.4 Temperaturstrahlung Wärmedurchgang Wärmeübertrager Energieumwandlung durch Verbrennung und in Brennstoffzellen Umwandlung der Brennstoffenergie durch Verbrennung Verbrennungsrechnung Feste und flüssige Brennstoffe Gasförmige Brennstoffe Näherungslösungen Verbrennungskontrolle Theoretische Verbrennungstemperatur Abgasverlust und feuerungstechnischer Wirkungsgrad Abgastaupunkt Emissionen aus Verbrennungsanlagen Chemische Reaktionen und Irreversibilität der Verbrennung Brennstoffzellen Lösungsergebnisse der Aufgaben

7 1 Grundlagen der Thermodynamik 1.1 Aufgabe der Thermodynamik 1.2 Größen und Einheitensysteme 11 1 Beispiel 1.1 Ein Gegenstand (Gewichtskraft: F G =1000 N)wird in20sekunden um 10 mim Erdschwerefeld angehoben. a) Welche Leistung ist hierfür erforderlich? b) Wie lautet die zugeschnittene Größengleichung, in die die Kraft in N, der Weg in cm und die Zeit in min eingesetzt werden kann und mit der die Leistung in kw ausgerechnet wird? c) Geben Sie die Zahlenwertgleichung an, in der die Zahlenwerte eingesetzt werden müssen bzw. als Ergebnis herauskommen, die man erhält, wenn der Wert der Kraft in N, der Wert des Weges incm, der Wert der Zeit inmin und der Wert der Leistung inkwangegeben werden. Gegeben: F G =1000 N, τ =20s, h=10 m Zu a): Gesucht: P = W G 1000 N 10m J W s 500 W τ = F h P τ = 20 s N m J = (T 1.3) Zu b): P = W J W = F s, Nm= J, = W (T 1.3) s FG h N m τ s FG h m P 1000 W = Nm100 cm W kw τ 60 s smin FG h 1 N cm P= kw τ min kw 1000

8 12 1 Grundlagender Thermodynamik Zu c): FG h -7 N cm P= 1, kw τ min { P } = 1, { F G}{ h } { τ } F G in N, h in cm, τ in min, Pin kw Aufgabe 1.1 Ein Fahrzeug fahre mit einer Geschwindigkeit von10km/h. a) Wieheißtdie in deraufgabenstellung gegebene Größe? b) Welches Formelzeichen wird fürdiese Größe verwendet? c) Welchen Wert hat diese Größe? d) Geben Sie die Größe sowieden Zahlenwert unddie Einheit der Größe als Formeln an. e) Handelt es sich imsi-einheitensystem um eine Basisgröße? f) Wie lautet diedefinitionsgleichung dieser Größe? g) Geben Sie denwert dieser Größe mithilfe der Basiseinheitenan. h) Geben Sie die Dimension der Größe an. 1.3 Thermische Zustandsgrößen Volumen Aufgabe 1.2 In einem Behälter Abefinden sich 10 kg Luft bei einem Druck von 100 kpa. Das spezifische Volumen der Luft beträgt 0,84 m 3 /kg. In einem zweiten Behälter Bbefinden sich ebenfalls 10 kg Luft, aber bei einem Druck von 200 kpa. Die Luft in diesem Behälter hatein spezifisches Volumen von 0,42 m 3 /kg. a) Berechnen Sie die Volumina der beiden Behälter. b) Die beiden Behälter sind mit einer dünnen Rohrleitung verbunden, in der sich ein Trennschieber befindet. Der Trennschieber wird geöffnet, und die beiden Drücke in den Behältern gleichen sich durch Überströmen von Luft aus. Welches Gesamtvolumen nimmt die Luft nun ein? (Das Volumen der Rohrleitungkann vernachlässigt werden.) c) Wie groß ist nundas spezifische Volumen der Luft?

9 1.3 Thermische Zustandsgrößen Druck Beispiel 1.2 In einer Druckkammer unter Wasser herrscht ein Überdruck von 150 kpa. Der Atmosphärendruck beträgt 98kPa. Für Arbeiten inder Druckkammer wird Druckluft mit einem gegenüber dem Druck in der Kammer um 100 kpa höheren Druck benötigt. Die Druckluft wird aus einer Flasche außerhalb der Druckkammer von Land geliefert. a) Ermitteln Sie den erforderlichen Absolutdruck der Druckluft hinter dem Reduzierventil der Druckluftflasche und b) den Höhenunterschiedder Quecksilberspiegel (Menisken), wenn die Druckmessung hinter dem Reduzierventil der Flasche mit einem U-Rohr mit Quecksilberfüllung erfolgen würde (ρ Hg = kg/m 3 ). Zu a): Gegeben: p P p ek =150 kpa, p amb =98kPa, p dp =100 kpa bezogenauf p K p amb p K Zu b): Gesucht: p P (Gl 1.6) (Gl 1.5) Gesucht: h (Gl 1.7) p K = p ek +p amb p K =150 kpa +98kPa =248 kpa p P = p dp + p K p P =100 kpa +248 kpa =348 kpa p P = p amb + ρ gh pp pamb h= ρ g ρ Hg = kg/m 3 g=9,81 m/s ( )Pa m s N kg m h= kg 9,81 m Pa m Ns h =1,88 m

10 14 1 Grundlagender Thermodynamik Aufgabe 1.3 In einem U-Rohr-Manometer befindet sich ein Stoff Amit einer Dichte von 1800 kg/m 3.Inbeide Schenkel wird zusätzlich ein spezifisch leichterer Stoff B mit einer Flüssigkeitshöhe von 60 mm im linken Schenkel und 100 mm im rechten Schenkel gefüllt. Die beiden Stoffe sollen gegenseitig unlösbar und unmischbar sein und eine gut erkennbare Trennfläche bilden. Zwischen den beiden freienmenisken stellt sichein Höhenunterschiedvon 20 mm ein. Skizzieren Sie die Anordnung und berechnen Sie die Dichte des Stoffes B. Aufgabe 1.4 Ein gut isoliertes Ausgleichsgefäß wird von warmem Wasser durchströmt. Die Temperatur des Wassers im Ausgleichsgefäß beträgt 60 C, der Druck über der Wasseroberfläche 102 kpa. Zur Wasserstandskontrolle ist ein U-Rohr angebracht, dessen Flüssigkeitsinhalt Umgebungstemperatur von 20 Cangenommen hat. Vereinfachend soll angenommen werden, dass sich die Wassertemperatur zwischen Gefäßund U-Rohrsprunghaft ändert. a) Wirkt auf den freien Schenkel des U-Rohres derselbe Druck wie auf die Wasseroberfläche im Gefäß, wird ein Wasserstand von 500 mm angezeigt. Wie groß ist die tatsächliche Höhe des Wasserstandes im Ausgleichsgefäß? b) Welcher Wasserstand wird im U-Rohr angezeigt, wenn bei dem nach a) ermittelten Wasserstand imgefäß auf den freien Schenkel der Umgebungsdruck 101 kpa wirkt? Aufgabe 1.5 Gegeben: 2 g = 9,81 m/s, Mit einem Kolbenmanometer soll ein Druck ausgewogen werden. Im Ausgangszustand (siehe Skizze) liegt der Kolben auf. Nun wird auf dem freien Schenkel der zu messende Druck p aufgebracht. Dabei hebt sichder Kolbenum1,5 cm an. Wie groß ist der Druck p (Absolutdruck)? Öl 3 ρ = 840 kg/m, pamb = 100 kpa m =5kg m K =1kg A i =1cm 2 Hg Öl amb 5cm A i =1cm 2 (Der Kolben wird bei der Messung in Drehung versetzt. Daher kann die Reibung zwischen Kolben undzylinderwandvernachlässigt werden.)

11 1.3 Thermische Zustandsgrößen 15 1 Aufgabe 1.6 Ein Goethe-Barometer besteht aus einem geschlossenen, bauchigen Gefäß und einem langen Ausgussschnabel ähnlich einer Teekanne. Es wird bei einem mittleren Atmosphärendruck p amb1 so mit Wasser (ρ =998,2 kg/m 3 )gefüllt, dass dieses im Gefäß und imschnabel gleich hoch steht. Ändert sich der Atmosphärendruck, ändert sich die Höhe des Wasserspiegels im Schnabel, und diese kann als Maß für den Atmosphärendruck verwendet werden. Für den Befüllungszustand sollen die in der Abbildung gegebenen Werte gelten. Dabei wurden das Gefäß und der Schnabel als zylindrisch angenommen. p amb1= Pa h = l1 10 cm A= A= G 80 cm 2 S 1cm 2 t= 20 C Für den Fall, dass bei gleich bleibender Temperatur der Atmosphärendruck einen geringeren Wert angenommen hat und der Wasserspiegel im Schnabel um 8cm gestiegenist, sollenberechnet werden: a) der Wert, um den der BadspiegelimGefäß gefallen ist, b) der Luftdruck im Gefäß (Die Luft im Gefäß soll näherungsweise als ideales Gas angenommen werden.) und c) der Atmosphärendruck Temperatur Aufgabe 1.7 a) Rechnen Sie die Celsius-Temperatur t =55 CinK, F, R, b) die Temperatur t F =97 Fin C, Kund R und c) die Temperatur T R =110 R in C, Kund F um. Aufgabe 1.8 Leiten Sie Zahlenwertgleichungen a) fürdie Umrechnung von T in t F, b) fürdie Umrechnung von T R in t und c) zwischen der Temperaturdifferenz in Grad Celsius und der Temperaturdifferenz in Grad Rankine her.

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 2., aktualisierte Auflage Mit 36 Beispielen und 154 Aufgaben HANSER Inhaltsverzeichnis 1 Grundlagen der Thermodynamik 11 1.1 Aufgabe der Thermodynamik

Mehr

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 4., aktualisierte Auflage Grundlagen der Thermodynamik ErsterHauptsatz der Thermodynamik ZweiterHauptsatz derthermodynamik Das ideale Gas in Maschinenund

Mehr

Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen

Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen Günter Cerbe, Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen ISBN-10: 3-446-41561-0 ISBN-13: 978-3-446-41561-4 Inhaltsverzeichnis Weitere Informationen oder

Mehr

Technische Thermodynamik

Technische Thermodynamik Günter Cerbe Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen 16., aktualisierte Auflage Mit 213 Bildern, 40 Tafeln, 130 Beispielen, 137 Aufgaben und 181 Kontrollfragen

Mehr

Inhaltsverzeichnis. Günter Cerbe, Gernot Wilhelms. Technische Thermodynamik. Theoretische Grundlagen und praktische Anwendungen

Inhaltsverzeichnis. Günter Cerbe, Gernot Wilhelms. Technische Thermodynamik. Theoretische Grundlagen und praktische Anwendungen Inhaltsverzeichnis Günter Cerbe, Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen ISBN (Buch): 978-3-446-43638-1 ISBN (E-Book): 978-3-446-43750-0 Weitere Informationen

Mehr

Technische Thermodynamik

Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 6., überarbeitete und erweiterte Auflage Grundlagen der Thermodynamik Erster Hauptsatz der Thermodynamik Zweiter Hauptsatz der Thermodynamik Das

Mehr

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

Technische Thermodynamik

Technische Thermodynamik Günter Cerbe Gernot Wilhelms 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Technische Thermodynamik Theoretische

Mehr

Technische Thermodynamik

Technische Thermodynamik Gunter Cerbe Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen 15., aktualisierte Auflage Mit213 Bildern, 40 Tafeln, 130 Beispielen, 137 Aufgaben und 181 Kontrollfragen

Mehr

Technische Thermodynamik

Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 6., überarbeitete und erweiterte Auflage Grundlagen der Thermodynamik Erster Hauptsatz der Thermodynamik Zweiter Hauptsatz der Thermodynamik Das

Mehr

Einführung in diethermodynamik

Einführung in diethermodynamik Günter Cerbe Hans-Joachim Hoffmann Einführung in diethermodynamik Von den Grundlagen zur technischen Anwendung Mit 201 Bildern, 32 Tafeln, 124 Beispielen, 132 Aufgaben und 170 Kontrollfragen 12., verbesserte

Mehr

Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen

Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen Günter Cerbe, Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen ISBN-10: 3-446-41561-0 ISBN-13: 978-3-446-41561-4 Vorwort Weitere Informationen oder Bestellungen

Mehr

Technische Thermodynamik

Technische Thermodynamik Günter Cerbe Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen 17., überarbeitete Auflage Grundlagen der Thermodynamik Erster Hauptsatz der Thermodynamik Zweiter

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Thermodynamik mit Mathcad

Thermodynamik mit Mathcad Thermodynamik mit Mathcad von Prof. Dr.-Ing. Michael Reimann Oldenbourg Verlag München Inhalt Vorwort V Einleitung 1 1 Grundbegriffe 7 1.1 Das thermodynamische System >... 7 1.2 Zustandsgrößen und Prozessgrößen

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Technische Thermodynamik

Technische Thermodynamik Heinz Herwig Christian H Kautz Technische Thermodynamik Studium Inhaltsverzeichnis Vorwort 11 Kapitel 1 Das Buch und sein Konzept 13 1.1 Umfang des vorliegenden Buches 14 1.2 Inhalt des vorliegenden Buches

Mehr

6.4.2 Verdampfen und Eindampfen Destillieren und Rektifizieren Absorbieren

6.4.2 Verdampfen und Eindampfen Destillieren und Rektifizieren Absorbieren Inhaltsverzeichnis 1 Allgemeine Grundlagen................................... 1 1.1 Thermodynamik....................................... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2

Mehr

Die Grundzüge der technischen Wärmelehre

Die Grundzüge der technischen Wärmelehre DIPL.-ING. GUSTAV PUSCHMANN DR.-ING. RAIMUND DRATH Die Grundzüge der technischen Wärmelehre 26., neubearbeitete Auflage mit 178 Bildern, einem A,«-Diagramm für Wasserdampf, einem A,a-Diagramm für Feuchtluft,

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis 1 Grundlagen 1 1.1 Mathe für Thermodynamiker und -innen 1 1.2 Deutsch für Thermodynamiker (m/w) 2 1.2.1 Hier geht nix verloren - die Sache mit der Energie 4 1.2.2 Erst mal Bilanz ziehen

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Thermodynamik. ^J Springer. Hans Dieter Baehr Stephan Kabelac. Grundlagen und technische Anwendungen

Thermodynamik. ^J Springer. Hans Dieter Baehr Stephan Kabelac. Grundlagen und technische Anwendungen Hans Dieter Baehr Stephan Kabelac Thermodynamik Grundlagen und technische Anwendungen Dreizehnte, neu bearbeitete und erweiterte Auflage Mit 290 Abbildungen und zahlreichen Tabellen sowie 76 Beispielen

Mehr

Keine Panik vor Th e r m ody n a m i k!

Keine Panik vor Th e r m ody n a m i k! Dirk Labuhn Oliver Romberg Keine Panik vor Th e r m ody n a m i k! Erfolg und SpaB im klassischen,,dickbrettbohrerfach" des Ingenieurstudiums Mit Cartoons von Oliver Romberg vieweg Inhaltsverzeichnis 1

Mehr

Thermodynamik Memory

Thermodynamik Memory M1 Langeheinecke/Jany/Thielecke Eine Gleichung finden im Sich schnell informieren im Einen Abschnitt kurz wiederholen im Das ist mit Kapiteln und Abschnitten aufgebaut wie das Lehrbuch Thermodynamik für

Mehr

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l Inhaltsverzeichnis Häufig verwendete Formelzeichen XVII 1 Allgemeine Grundlagen l 1.1 Thermodynamik 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 Was ist Thermodynamik? 9 1.2 System

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Neunte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Neunte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Neunte Auflage Mit 262 Abbildungen und zahlreichen Tabellen sowie 57 Beispielen JjjJ Springer Inhaltsverzeichnis

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach" des Ingenieurstudiums

Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach des Ingenieurstudiums Dirk Labuhn Oliver Romberg Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach" des Ingenieurstudiums \ 4., aktualisierte Auflage STUDIUM... V : ;; VIEWEG+ TEUBNER Inhaltsverzeichnis

Mehr

Keine Panik vor Thermodynamik!

Keine Panik vor Thermodynamik! Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen "Dickbrettbohrerfach" des Ingenieurstudiums Bearbeitet von Dirk Labuhn, Oliver Romberg 1. Auflage 2013. Taschenbuch. xii, 351 S. Paperback

Mehr

Heinz Herwig Christian H. Kautz Technische Thermodynamik

Heinz Herwig Christian H. Kautz Technische Thermodynamik Heinz Herwig Christian H. Kautz Technische Thermodynamik ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Technische

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436 Inhaltsverzeichnis 1 Allgemeine Grundlagen... 1 1.1 Thermodynamik... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 WasistThermodynamik?... 9 1.2 SystemundZustand... 11 1.2.1 SystemundSystemgrenzen...

Mehr

Technische Thermodynamik

Technische Thermodynamik Günter Cerbe Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen 17., überarbeitete Auflage Grundlagen der Thermodynamik Erster Hauptsatz der Thermodynamik Zweiter

Mehr

Grundlagen der Technischen Thermodynamik

Grundlagen der Technischen Thermodynamik Ernst Doering Herbert Schedwill Martin Dehli Grundlagen der Technischen Thermodynamik Lehrbuch füjr Studierende der Ingenieürwissenschaften 6., überarbeitete und erweiterte Auflage Mit 303 Abbildungen,

Mehr

Technische Thermodynamik

Technische Thermodynamik Technische Thermodynamik Einführung und Anwendung von Erich Hahne 3., überarbeitete Auflage Oldenbourg Verlag München Wien Inhaltsverzeichnis Vorwort 15 Vorwort zur 2. Auflage 17 Formelzeichen 19 I Grundbegriffe

Mehr

Thermodynamik 1 Klausur 08. September 2016

Thermodynamik 1 Klausur 08. September 2016 Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Eine Einführung in die Grundlagen. und ihre technischen Anwendungen. Von

Eine Einführung in die Grundlagen. und ihre technischen Anwendungen. Von Thermo Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor und Direktor des Instituts für Tliermodynamik der Teclinischen Hochschule Braunschweig

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Grundlagen der Technischen Thermodynamik

Grundlagen der Technischen Thermodynamik Grundlagen der Technischen Thermodynamik Lehrbuch für Studierende der Ingenieurwissenschaften Bearbeitet von Ernst Doering, Herbert Schedwill, Martin Dehli 1. Auflage 2012. Taschenbuch. xii, 494 S. Paperback

Mehr

Repetitorium. Thermodynamik. 3., überarbeitete und ergänzte Auflage. von. Wilhelm Schneider. unter Mitarbeit von. Stefan Haas und Karl Ponweiser

Repetitorium. Thermodynamik. 3., überarbeitete und ergänzte Auflage. von. Wilhelm Schneider. unter Mitarbeit von. Stefan Haas und Karl Ponweiser Repetitorium Thermodynamik 3., überarbeitete und ergänzte Auflage von Wilhelm Schneider unter Mitarbeit von Stefan Haas und Karl Ponweiser Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundbegriffe 1

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik. ISBN (Buch): ISBN (E-Book):

Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik. ISBN (Buch): ISBN (E-Book): Gernot Wilhels Übungsaufgaben Technische Therodynaik ISBN (Buch): 978--446-45-6 ISBN (E-Book): 978--446-459- Weitere Inforationen oder Bestellungen unter http://www.hanser-fachbuch.de/978--446-45-6 sowie

Mehr

Thermodynamik 1 Klausur 02. August 2010

Thermodynamik 1 Klausur 02. August 2010 Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE

ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE VON ING. WERNER BERTIES 16., verbesserte Auflage Mit 74 Bildern einem h,s-, h,x- und lg p,/i-diagramm sowie einer Zusammenstellung der Gleichungen Friedr. Vieweg & Sohn

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 2., aktualisierte Auflage Fachbuchverlag

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 01. März 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Einführung in die Thermodynamik

Einführung in die Thermodynamik Günter Cerbe Hans-Joachm Hoffmann Enführung n de Thermodynamk Von den Grundlagen zur technschen Anwendung Mt 203 Bldern, 32 Tafeln, ] 124 Bespelen, 131 Aufgaben und 170 Kontrollfragen 10., neubearbetete

Mehr

Technische Thermodynamik

Technische Thermodynamik Technische Thermodynamik Einführung und Anwendung von Prof. Dr.-Ing.em. Erich Hahne 5., völlig überarbeitete Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Formelzeichen Indizes V IX XIII

Mehr

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen 1. Allgemeine Grundlagen... 1 1.1 Energie-undStoffumwandlungen... 1 1.1.1 Energieumwandlungen... 2 1.1.2 Stoffumwandlungen... 6 1.1.3 Energie- und Stoffumwandlungen in technischen Prozessen... 9 1.1.4

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Repetitorium der Technischen Thermodynamik

Repetitorium der Technischen Thermodynamik Repetitorium der Technischen Thermodynamik Von Prof. Dr.-Ing. habil. Achim Dittmann, Prof. Dr.-Ing. habil. Siegfried Fischer, Prof. Dr.-Ing. habil. Jörg Huhn und Dr.-Ing. Jochen Klinger, Technische Universitäf

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

Technische Thermodynamik

Technische Thermodynamik Günter Cerbe Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen 17., überarbeitete Auflage Grundlagen der Thermodynamik Erster Hauptsatz der Thermodynamik Zweiter

Mehr

Ohne Energie geht nichts

Ohne Energie geht nichts 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Berichte aus der Energietechnik Werner Litzow Ohne Energie geht nichts

Mehr

Technische Universität Hamburg

Technische Universität Hamburg NAME, Vorname Studiengang Technische Universität Hamburg ÈÖÓ º Öº¹ÁÒ º Ö Ö Ë Ñ ØÞ Prüfung am 16. 08. 2016 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer:

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 8. September 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 18. März 2011 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik I Klausur SS 2010

Thermodynamik I Klausur SS 2010 Thermodynamik I Klausur 00 Prof. Dr. J. Kuck, Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten/eite Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und

Mehr

Grundlagen der Technischen Thermodynamik

Grundlagen der Technischen Thermodynamik Grundlagen der Technischen Thermodynamik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. von Prof. (em.) Dr.-Ing.

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Thermodynamik II Klausur SS 2006

Thermodynamik II Klausur SS 2006 Thermodynamik II Klausur SS 0 Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten / Blatt Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur, 3. August 2009 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 12. März 2014 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr