Photonenstatistik und Quantenradierer
|
|
|
- Monica Althaus
- vor 8 Jahren
- Abrufe
Transkript
1 Photonenstatistik und Quantenradierer Antje Bergmann 1 und Günter G Quast 2 1 Institut für f r Theoretische Festkörperphysik, Photonics Group EKP 2 Institut für f r Experimentelle Kernphysik Universität t Karlsruhe (TH) [email protected] psi.physik.kit.edu
2 Quantenradierer - Hintergründe nde Doppelspaltexperiment Mach-Zehnder Zehnder-Interferometer Einzelphotonmessung Detektoren (APD) Aufbau eines einfachen Experiments Experimente mit Schülern am MZI mit APDs Abschätzung der Photonenzahlen Messung per Hand mit einem Detektor Auswertung: Poisson-Statistik Messung mit 2 Detektoren im MZI
3 Analogieversuch zum Quantenradierer - Doppelspaltexperiment Strahlaufweitung 5-6x Laser λ = 632,8nm Polfilter (Radierer) Doppelspalt mit Polfilter
4 Analogieversuch zum Quantenradierer - Doppelspaltexperiment Rein klassische, elektrodynamische Beschreibung Elektrisches Feld an einem Ort P auf dem Schirm: E = E + E 1 2 Intensität an diesem Punkt P: ' ' ' ' I = E = E1 + E2 + 2 E1 E2 cosδ Interferenzterm
5 Analogieversuch zum Quantenradierer - Doppelspaltexperiment Rein klassische, elektrodynamische Beschreibung 0 Elektrisches Feld an einem Ort P auf dem Schirm: ABER: 1 2 E = E + E E E 1 2 Intensität an diesem Punkt: ' ' ' ' I = E = E1 + E2 + 2 E1 E2 cosδ = 0 90 Keine Interferenz
6 Analogieversuch zum Quantenradierer - Doppelspaltexperiment Rein klassische, elektrodynamische Beschreibung 0 45 Elektrisches Feld an einem Ort P auf dem Schirm: ABER: 1 2 E = E + E E E Intensität an diesem Punkt: ' ' ' ' I = E = E1 + E2 + 2 E1 E2 cosδ Interferenz 0
7 Analogieversuch zum Quantenradierer - Doppelspaltexperiment Quantenmechanische Beschreibung Aufenthaltswahrscheinlichkeit eines Photons beschrieben durch Ψ 2 Unterscheidbarer Fall: I 2 2 ' 2 ' 2 = Ψ = Ψ 1 + Ψ 2 = Ψ 1 + Ψ2 Ununterscheidbarer Fall: I 2 2 ' 2 ' 2 '* ' i e δ = Ψ = Ψ + Ψ = Ψ + Ψ + 2Re( Ψ Ψ ) Interferenzterm Ψ ( r ) = Ψ ' 1,2 1,2 e i k r 1,2 Mit Wellenfunktionen bzgl. Spalt 1 bzw. 2 ' und δ Phase, Ψ 1,2 Amplituden
8 Analogieversuch zum Quantenradierer - Doppelspaltexperiment Welcher-Weg-Information zerstört die Interferenz Ununterscheidbare Möglichkeiten interferieren (Feynman) I 2 2 ' 2 ' 2 = Ψ = Ψ 1 + Ψ 2 = Ψ 1 + Ψ2 I 2 ' 2 ' 2 '* ' i e δ = Ψ = Ψ + Ψ + 2Re( Ψ Ψ )
9 Aufbau: Mach-Zehnder-Interferometer
10 Mach-Zehnder-Interferometer Aufbau Spiegel 1 Strahlteiler 2 Laser Strahlteiler 1 Spiegel 2
11 Mach-Zehnder-Interferometer Zur klassischen Erklärung der Interferenz: Vorgänge am Strahlteiler Strahlteiler: Glas (n G ) mit einseitiger dielektrischer Beschichtung (n S < n G ) Reflexion Luft auf Schicht : Phasensprung 180 (n L < n S ) Transmission: kein Phasensprung Reflexion Glas auf Schicht : Kein Phasensprung (n G > n S ) Transmission: kein Phasensprung
12 Mach-Zehnder-Interferometer Zur klassischen Erklärung der Interferenz Destruktive Interferenz der beiden Strahlen an Schirm 1 ϕ = π
13 Mach-Zehnder-Interferometer Zur klassischen Erklärung der Interferenz Konstruktive Interferenz der beiden Strahlen an Schirm 2 ϕ = 0
14 Mach-Zehnder-Interferometer Übergang zur Quantenradierer Analogie: Hinzufügen der Polarisatoren
15 Mach-Zehnder-Interferometer Orientierung der Polarisatoren zueinander: 0 Interferenz (QM: Keine Wegmarkierung)
16 Mach-Zehnder-Interferometer Orientierung der Polarisatoren zueinander: 90 Keine Interferenz (QM: Wegmarkierung)
17 Mach-Zehnder-Interferometer Interferenz Keine Interferenz
18 Übergang zur Photonstatistik: Einzelphoton-Detektoren Auge Mit Schülern nicht durchführbar Photomultiplier (PMT) Nachteile: - geringe Quanteneffizienz (meist < 5% im roten Bereich) - Hochspannung zum Betrieb erforderlich, extra Netzteil Halbleiter: Avalanche-Photodiode (APD) Vorteile: - bessere Quanteneffizienz im roten Bereich (> 20%) - keine Hochspannung, handliche Bedienung - normierte Signale Nachteil: Rauschrate bis 60 Hz
19 Avalanche Photodioden - Detektor Der Detektor: id Betrieb im Geiger-Modus Detektorfläche 20 µm Peltier gekühlt Kosten ca. 1,5 k
20 Avalanche Photodioden - Detektor Der Detektor: id Kenngrößen: Quantenausbeute: bei 600nm: 20 25% bei 700nm: 15 18% Dunkelzählrate: Maximale Zählrate: < 60Hz 20MHz Ausgabesignal: Pulsbreite: Pulshöhe: 10ns 2V Totzeit: 45 ns (Pulsdauer + hold-off)
21 Einfaches Einzelphoton-Experiment Spiegel ND-Filter (Absorber), Linse Laser Optional: Spiegel oder Strahlteiler Detektor
22 Kosten Mach-Zehnder-Aufbau (Phywe): Grundplatte und alle Komponenten ca Euro außerdem: Qualität Mach-Zehnder-Aufbau (Thorlabs) Grundplatte und alle Komponenten ca Euro
23 Experimente mit Schülern 1. Abschätzung, wie viele N Photonen am Detektor erwartet werden N P t λ = h c A D A Erwartete Werte, z.b.: 2,5%-Absorber: 4,6 6,4 Photonen/10µs 1% - Absorber: 1,8 2,6 Photonen/10µs P Laserleistung λ Wellenlänge Laser A Gesamtfläche A Detektorfläche D
24 Experimente mit Schülern 2. Messung per Hand mit dem Speicher-Oszilloskop, zunächst an nur einem Detektor Schnelles Speicheroszi mit hoher Sample-Rate erforderlich (hier: 200 MHz, 2 GSa/s) Triggern der richtigen Signale Dann: Zählen der Photonen in gestopptem Zeitfenster (single shot mode) Brauchbare Ergebnisse schon nach relativ wenigen Messungen
25 3. Auswertung am PC Experimente mit Schülern z.b. 1%-Graufilter: Mittelwert: Erwartet: 2,5 Photonen/10µs 1,8 2,6 Photonen/10µs 100 Auswertung der Poisson-Verteilung: Bestimme Häufigkeit H(k) der auftretenden Photonzahlen Häufigkeit Messung Poisson k λ λ H ( k ) = n e k! Photonen Ermitteln der theoretisch erwarteten Verteilung anhand des Mittelwerts und Vergleich
26 Experimente mit Schülern 4. Messung mit zwei Detektoren im MZI Wir ersetzen die Schirme durch APDs und bauen einen Absorber ein Absorber Polfilter Detektor 1 Detektor 2
27 Experimente mit Schülern Einstellung hier: Polarisatoren parallel eingestellt Interferenz: Minimum an Kanal 1 Maximum an Kanal 2 Wieder zählen der Ereignisse, diesmal mit elektronischem Zähler oder Oszi mit Zählfunktion Interferenz des Photons mit sich selbst (Dirac, 1930), d.h. Photon ist sozusagen gleichzeitig in beiden Teilstrahlen vorhanden (Superposition der Zustände) Wahrscheinlichkeitsinterpretation: gilt für einzelnes Photon, ist aber nur im Kollektiv erkennbar
28 Experimente mit Schülern Variation der Polarisator-Einstellungen Tabellen: Photonenrate/[kHz] (2,5%-Absorber) ohne Wegmarkierung: Detektor 1 Detektor Wegmarkierung: Detektor 1 Detektor Mittelwerte: Maximum Minimum keine Interferenz
29 Experimente mit Schülern 4. Hinzufügen des Radierers Anbringen weiterer Polarisatoren vor den Detektoren Wegmarkierung + Radierer: Detektor 1 Detektor Mittelwerte: Maximum Minimum Wegmarkierung ausradiert
30 Delayed choice Experimente Wheeler s Gedankenexperiment: Verzögerte Entscheidung: Hinzufügen des Radierers erst dann, wenn Photon den Spalt bzw. Strahlteiler schon passiert hat The past has no existence except as it is recorded in the present. (J.A. Wheeler in Mathematical Foundations of Quantum Theory (ed. A.R. Marlow), 9-48 (Academic, New York, 1978)) Experimentelle Bestätigung, z.b.: Hellmuth, Walther, Zajonc, Schleich, Phys. Rev. A 35, 2532 (1987)
31 Dank Dr. Wolfgang Löffler L (Institut für f r Angewandte Physik, Uni Karlsruhe) Carmen Kohler Sven Röhrauer Sponsoren:
Quantenphysik II. Quantenphysik in Beispielen
inhalt file:///i /fernlehre skriptum/studienbrief5/inhalt.htm Quantenphysik in Beispielen Quantenphysik II Die Quantenphysik findet bereits in sehr vielen Gebieten moderner Technologie Anwendung. So etwa
Mach-Zehnder Interferometer
Mach-Zehnder Interferometer 1891/2 von Ludwig Mach und Ludwig Zehnder entwickelt Sehr ähnlich Michelson-Interferometer Aber: Messobjekt nur einmal durchlaufen 1 Anwendung: Mach-Zehnder Interferometer Dichteschwankungen
Quantenphysik in elementaren Portionen, Karlsruhe, Komplementarität
Quantenphysik in elementaren Portionen, Karlsruhe, 12.11. 13.11.2007 Komplementarität Quantenphysik in elementaren Portionen, Karlsruhe, 5.3. 6.3.2007 Komplementarität beim Interferometer Dr. Josef Küblbeck
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung
VORANSICHT II/E. Der Knaller-Test ein grundlegendes (Gedanken)-Experiment der Quantenphysik. Sehen, was nicht gesehen wird. Der Beitrag im Überblick
8. Der Knaller-Test 1 von 22 Der Knaller-Test ein grundlegendes (Gedanken)-Experiment der Quantenphysik Axel Donges, Isny im Allgäu 1962 stellte Dennis Gabor (1900 1979) der neun Jahre später den Physik-Nobel-Preis
Einführung in die Quantentheorie der Atome und Photonen
Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich
FK Experimentalphysik 3, Lösung 3
1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl
Quanten-Interferenz. Physikalisches Institut Fachbereich Physik Johann Wolfgang Goethe-Universität Frankfurt am Main. Betreuer-Kontaktdaten
Quanten-Interferenz Physikalisches Institut Fachbereich Physik Johann Wolfgang Goethe-Universität Frankfurt am Main Betreuer-Kontaktdaten Dr. Wissem Zouaghi Raum-Nr.: _0.215 Labor-Nr.: _0.206 Tel. Büro:
Bildung einer Quantentheorie im Physik-Unterricht der Oberstufe Zusammenfassung:
Bildung einer Quantentheorie im Physik-Unterricht der Oberstufe Zusammenfassung: In vielen Lehrplänen ist für die Physik des 20. Jahrhunderts nur wenig Raum vorgesehen, im Abitur findet man kaum Aufgaben
Dieter Suter - 337 - Physik B3
Dieter Suter - 337 - Physik B3 6.6 Interferenz 6.6.1 Linearität für Felder, nicht für Intensitäten Wie mehrfach betont sind die Maxwell Gleichungen oder auch andere Wellengleichungen lineare Gleichungen
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 3 Beugung und Interferenz Aufgabe 1: Seifenblasen a) Erklären Sie, warum Seifenblasen in bunten Farben schillern.
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen
Physik auf grundlegendem Niveau. Kurs Ph
Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden
Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt
Interferenz makroskopischer Objekte Vortragender: Johannes Haupt 508385 1 Inhalt 1. Motivation 2. Geschichtliche Einführung 3. Experiment 3.1. Aufbau 3.2. Resultate 4. Thermische Strahlung 4.1. Grundidee
Zweiphotoneninterferenz
Zweiphotoneninterferenz Patrick Bürckstümmer 11. Mai 2011 Einführung: Gewöhnliche Interferometrie Übersicht Theorie der 2PHI für monochromatische Photonen Das Experiment von Hong,Ou und Mandel (1987) Versuchsaufbau
ÜBER KURZE UND LANGE PHOTONEN. Oder was ist Licht überhaupt Thomas Feurer Uni Bern
ÜBER KURZE UND LANGE PHOTONEN Oder was ist Licht überhaupt Thomas Feurer Uni Bern Albert Einstein 1916: WAS MEINT EIN GENIE DAZU... Für den Rest meines Lebens will ich nachdenken, was Licht ist.... Albert
Welle-Teilchen-Dualismus am Beispiel der
1 Welle-Teilchen-Dualismus Tatzel Welle-Teilchen-Dualismus am Beispiel der wechselwirkungsfreien Messung : 1. Der Aufbau des Mach-Zehnder-Interferometers. 2. Grundidee der wechselwirkungsfreien Messung.
= 6,63 10 J s 8. (die Plancksche Konstante):
35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O07 Michelson-Interferometer (Pr_PhII_O07_Michelson_7, 5.10.015) 1.. Name Matr. Nr. Gruppe
Doppelspaltexperiment. Katarzyna Huzar Angela Streit
Doppelspaltexperiment Katarzyna Huzar Angela Streit Überblick Thomas Young Wellen-Teilchen-Dualismus Doppelspalt mit Maschinengewehr Beugung und Interferenz Doppelspalt mit Licht Vergleich klassische Physik
Insitu-Monitoring bei der Herstellung von Dünnfilmen durch Elektronenstrahlverdampfen
Insitu-Monitoring bei der Herstellung von Dünnfilmen durch Elektronenstrahlverdampfen Dipl.-Ing. Sabine Peters Universität Karlsruhe (TH) Herstellung von Dünnfilmen durch Elektronenstrahlverdampfen Rezipient
Photonen im Mach-Zehnder-Interferometer ein Zugang zur Deutung der Quantenphysik
Photonen im Mach-Zehnder-Interferometer ein Zugang zur Deutung der Quantenphysik Rainer Müller und Hartmut Wiesner 1. Der Welle-Teilchen-Dualismus im Unterricht Ein wichtiges Thema im Quantenphysik-Unterricht
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante
Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael
Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky
Schrödinger Katzen und Messung von Photonenfeldern
Schrödinger Katzen und Messung von Photonenfeldern Universität Ulm 9. Juli 2009 Gliederung Was ist eine Schrödinger Katze? Realisierung von Schrödinger Katzen mit Ionen Realisierung von Schrödinger Katzen
Grundfakten
WQPK: Würzburger QuantenphysikKonzept www.forphys.de Bild Didaktisches Konzept zur Quantenphysik an der Schule Grundfakten Lautrach 2015-1 A1 Un-be-stimmtheit Ein Q-Obj. ist Träger ( hat ) einiger weniger
Einführung in Quantencomputer
Einführung in Quantencomputer Literatur M. Homeister, (jetzt FB Informatik und Medien an der Fachhochschule Brandenburg) Quantum Computing verstehen, Springer Vieweg Verlag (25) E. Rieffel und W. Polak,
Die seltsame Welt der Quanten
Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt [email protected]
Michelson - Interferometer
Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers
Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg
Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Vortragender: Imran Khan Betreuer: Dr. Christine Silberhorn, Dipl. Phys. Andreas Eckstein Datum: Gliederung 1. Einführung
7. Klausur am
Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34
13. Elektromagnetische Wellen
13. Elektromagnetische Wellen 13.1 Erzeugung elektromagnetischer Wellen 13.2 Eigenschaften elektromagnetischer Wellen 13.3 Ausbreitung elektromagnetischer Wellen 13.4 Reflexion und Brechung 13.5 Interferenz
Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer
Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Inhalt 1. Grundlagen 1.1 Interferenz 1.2 Das Mach-Zehnder- und das Michelson-Interferometer 1.3 Lichtgeschwindigkeit und Brechzahl
Versuch 4.1b: Interferenzrefraktor von Jamin
PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher
Praktikum über Spektroskopie
Praktikum über Spektroskopie Versuch 8 Nd YAG Laser Vorbemerkungen: 1. Der linke Abdeckkasten muss bei sämtlichen Experimenten den Diodenlaser, den Kollimator und die Fokussierlinse auf der optischen Bank
Phasenmessung in der nichtlinearen Optik
Phasenmessung in der nichtlinearen Optik Th. Lottermoser, t. Leute und M. Fiebig, D. Fröhlich, R.V. Pisarev Einleitung Prinzip der Phasenmessung Experimentelle Durchführung Ergebnisse YMnO 3 Einleitung
3.9 Interferometer. 1 Theoretische Grundlagen
FCHHOCHSCHULE HNNOVER Physikalisches Praktikum 3.9. 3.9 Interferometer 1 Theoretische Grundlagen Licht ist eine elektromagnetische Strahlung mit sehr geringer Wellenlänge (auf den Welle - Teilchen - Dualismus
Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16
Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch 16/03/16 Inhaltsverzeichnis Technische Universität München 1 Kohärenz 1 2 Beugung 1 2.1 Huygenssches Prinzip.............................
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen
Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015
Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher
De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik
Physikalisches Institut Albert- Ludwigs- Universität Freiburg De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Thomas Filk Physikalisches Institut, Universität Freiburg Parmenides Center
Physik 4, Übung 2, Prof. Förster
Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.
Informationsübertragung mit Licht. Projektpraktikum WS 2013/14
Informationsübertragung mit Licht Projektpraktikum WS 2013/14 Frederike Erb Benedikt Tratzmiller 30.01.2014 Seite 2 Gliederung Aufbau und Funktionsweise der Kerrzelle Statische Messung Dynamische Messung
Informationsübertragung mittels Photonen
Informationsübertragung mittels Photonen Inhaltsverzeichnis 1 Einführung 1 Theoretischer Hintergrund 3 Experimentelle Umsetzung 3 4 Zusammenfassung 6 5 Literatur 7 1 Einführung Dadurch, daß Quantenzustände
Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.
2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion
NG Brechzahl von Glas
NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes
Strukturaufklärung (BSc-Chemie): Einführung
Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme
Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie
Photochemie 1 PC 2 2016 Photochemie 2 PC 2 2016 1 Wichtige photophysikalische Prozesse 3 PC 2 2016 Der Grundzustand Boltzmann Verteilung: Alle Moleküle sind im elektronischen Grundzustand (0) chwingungsgrundzustand
Die Wesenszüge der Quantenphysik unterrichten
Die Wesenszüge der Quantenphysik unterrichten Rainer Müller TU Braunschweig Osnabrück, 12. 9. 2007 1. Traditionelle Unterrichtsinhalte Inhaltsübersicht aus einem LK-Schulbuch: Schwerpunkt: (Bohr-)Atomphysik
6. Unschärferelation & Doppelspalt
phys4-filipp Page 1 6. Unschärferelation & Doppelspalt Eine der zentralen Eigenschaften der Quantenmechanik ist die Unschärfe in der Bestimmung von konjugierten Variablen: x - p (Ort - Impuls) Lx -Ly(Komponenten
Quantenphysik in der Sekundarstufe I
Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände
SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik)
SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Optik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1. Mai
Labor Optische Messtechnik
Fachbereich MN Fachhochschule Darmstadt Studiengang Optotechnik und Bildverarbeitung Labor Optische Messtechnik Versuch: Michelson Interferometer durchgeführt am: 30. April 003 Gruppe: Tobias Crößmann,
Aharonov-Bohm-Effekt. Quantenmechanisches Seminar bei Prof. Dr. Georg Wolschin Projekt von Mathis Brosowsky
Aharonov-Bohm-Effekt Quantenmechanisches Seminar bei Prof. Dr. Georg Wolschin Projekt von Mathis Brosowsky 15.11.13 15.11.13 Motivation 15.11.13 Gliederung I. Definition und Geschichte II. klassisch: geladenes
Festkörperelektronik 2008 Übungsblatt 1
Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 1. Übungsblatt 17. April 2008 Dozent:
Das Doppelspalt-Experiment. Einleitung
Das Doppelspalt-Experiment Einleitung Quantenmechanik ist die Beschreibung des Verhaltens von Materie und Licht in allen Einzelheiten, insbesondere der Vorgänge in atomaren Dimensionen. In sehr kleinen
Interferenz und Beugung
Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben
Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 3: Messung der Lichtgeschwindigkeit Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch Theoretische Grundlagen: Drehbewegungen
Lichtteilchen, Quantensprünge und Materiewellen
Lichtteilchen, Quantensprünge und Materiewellen - eine experimentelle Reise in die Quantenwelt - Prof. Dr. Lutz Feld 1. Physikalisches Institut, RWTH Aachen Novembervorlesung am 24. 11. 2007 1 Worum geht
Schrödingers Hund. Verschränkung und Dekohärenz. Versuch einer didaktischen Reduktion. J. Küblbeck beim. KPK Workshop 2009
Schrödingers Hund Verschränkung und Dekohärenz Versuch einer didaktischen Reduktion J. Küblbeck beim KPK Workshop 2009 1 Überraschungen 1 1. Teilchen zeigen Interferenz Maßnahme: keine Kügelchen 2a 2.
Das Goldhaber Experiment
ν e Das Goldhaber Experiment durchgeführt von : Maurice Goldhaber, Lee Grodzins und Andrew William Sunyar 19.12.2014 Goldhaber Experiment, Laura-Jo Klee 1 Gliederung Motivation Physikalische Grundlagen
Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN
Praktische ktivität: Bestimmung der Dicke eines Haars mittels Beugung von Licht 1 Quantenphysik Die Physik der sehr kleinen Teilchen mit großartigen nwendungsmöglichkeiten Teil 3: PRKTISCHE KTIVITÄTEN
Vorlesung 23: Roter Faden: Die Schrödingergleichung. (Bedeuting in der Quantenmechanik wie F=ma in der klassischen Mechanik)
Vorlesung 23: Roter Faden: Die Schrödingergleichung (Bedeuting in der Quantenmechanik wie F=ma in der klassischen Mechanik) Juli 12, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Welle Teilchen
Nichtlineare Transmission
Universität Potsdam Institut für Physik Physikalisches Praktikum für Fortgeschrittene 2006 O4 Nichtlineare Transmission Abbildung 1: Versuchsaufbau O4 "Nichtlineare Transmission 1 Versuchsziel Bei der
Beugung am Spalt und Gitter
Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: [email protected] Gruppe: 4 Durchgeführt
Aufgaben zum Photoeffekt
Aufgaben zum Photoeffekt 1. Die Türe einer U-Bahn wird durch eine Lichtschranke gesichert. Die Lichtschranke besteht aus einer Lichtquelle, die Licht der Wellenlänge λ = 549 nm emittiert und als Lichtbündel
Verschränkung und Dekohärenz
Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik Verschränkung und Dekohärenz Rainer Müller, TU Braunschweig Legitimation Ziele des Quantenphysikunterrichts Welche
Untersuchungen zur lokalen Abscheidung von SiO x -Schichten mittels Plasmajet
Untersuchungen zur lokalen Abscheidung von SiO x -Schichten mittels Plasmajet M. Janietz, Th. Arnold e.v. Permoserstraße 15, 04318 Leipzig 1 Inhalt Motivation Experimenteller Aufbau Plasma Abscheidung
Wellenoptik I Interferenz und Beugung
Physik A VL40 (9.01.013) Interferenz und Beugung g Strahlenoptik vs. Wellenoptik Interferenz Kohärenz Zweistrahlinterferenz Interferometer als Messinstrumente Beugung Nahfeld und Fernfeld Fraunhofer-Beugung
Übungsblatt 4 zur Experimentalphysik IV
Übungsblatt 4 zur Experimentalphysik IV Anton Haase, Michael Goerz 12. Mai 2005 Aufgabe 10 a) Detektor 2 halbdurchlässiger Detektor 1 A halbdurchlässiger B Abbildung 1: Mach-Zehnder-Interferometer Das
Wellen. Experimentalphysik. B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5
Experimentalphysik Wellen B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5 Pendelkette www.berndbaumann.de [email protected] page 2 Elongation Amplitude Wellenzahl Nullphase Kreisfrequenz
Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17
Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Themenüberblick Schwingungsspektroskopie Physikalische Grundlagen: Mechanisches Bild
Ultrakurze Lichtimpulse und THz Physik
Ultrakurze Lichtimpulse und THz Physik 1. Einleitung 2. Darstellung ultrakurzer Lichtimpulse 2.1 Prinzip der Modenkopplung 2.2 Komplexe Darstellung ultrakurzer Lichtimpulse 2.2.1 Fourier Transformation
Gequetschte Zustände beim harmonischen Oszillator
Seminar zur Theorie der Atome, Kerne und kondensierten Materie Gequetschte Zustände beim harmonischen Oszillator Melanie Kämmerer 16. Oktober 011 1 1 Wiederholung Die Wellenfunktion eines kohärenten Zustandes
Aufgabe 1: Interferenz von Teilchen und Wellen
Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen
Materiewellen und Welle-Teilchen-Dualismus
Materiewellen und Welle-Teilchen-Dualismus Vortrag zur Vorlesung Nanostrukturphysik Saarbrücken, den Vortragender: Tobias Baur > Welle-Teilchen-Dualismus Quantenobjekte sind gleichzeitig Wellen und Teilchen
Michelson Interferometer zur Wegmessung mit Komponenten aus dem 3D Drucker
Michelson Interferometer zur Wegmessung mit Komponenten aus dem 3D Drucker Dieses Projekt wurde mit Unterstützung realisiert. Unterstützung durch: Projektarbeit : UNI Hannover, Hannoversches Zentrum für
Physikalisches Praktikum
Physikalisches Praktikum Versuch 17: Lichtbeugung Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 Versuch 17: Lichtbeugung Im Modell
Protokoll zum Anfängerpraktikum
Protokoll zum Anfängerpraktikum Michelson Interferometer Gruppe 2, Team 5 Sebastian Korff Frerich Max 26.06.06 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 Funktionsweise -4-1.3 Relative
Die Macht und Ohnmacht der Quantenwelt
Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik
Praktikum GI Gitterspektren
Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings
Akusto-Optische Effekte
Begrüßung Uwe Peterson - GAMPT mbh Akusto-Optische Effekte Experimente zur Wechselwirkung von Laserlicht mit mechanischen Wellen im MHz-Bereich Berlin, 2. Juni 2015 6. DPG-Workshop "Innovative Lehrmittel..."
Einzelphotonen-Experiment Welchen Weg wählt das Photon?
Physik-Institut Universität Zürich Winterthurerstrasse 190 8057 Zürich Anleitung zum Praktikumsversuch: Einzelphotonen-Experiment Welchen Weg wählt das Photon? Verfasst von: Rosa María Rodríguez 2. Dezember
Geschwindigkeitsmessung mit Lasern
Geschwindigkeitsmessung mit Lasern Andreas Buschermöhle Universität Osnabrück 3. Juli 2007 1 2 3 4 berührungslose Messung berührungslose Messung sehr präzise Messung berührungslose Messung sehr präzise
Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs
1 Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs Max v. Vopelius, Matthias Brasse 25.02.2009 Aufgabe 1: Dreifachspalt Abbildung 1: Spalt Gegeben ist ein Dreifachspalt 1. Alle Spaltbreiten
V. Optik. V.2 Wellenoptik. Physik für Mediziner 1
V. Optik V. Wellenoptik Physik für Mediziner 1 Beschreibungen des Lichts Geometrische Optik charakteristische Längen >> Wellenlänge (μm) Licht als Strahl Licht Quantenoptik mikroskopische Wechselwirkung
Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!
Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten
Fazit: Wellen haben Teilchencharakter
Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch
Der Large Hadron Collider (LHC) und ein. Elektron-Positron-Linearbeschleuniger
1 Die großen Zukunftsprojekte: Der Large Hadron Collider (LHC) und ein Elektron-Positron-Linearbeschleuniger Prof. Dr. G. Quast Institut für experimentelle Kernphysik Universität Karlsruhe (TH) 2 Ursprung
Der Welle-Teilchen-Dualismus
Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.
Interferenzrefraktor von Jamin
Technische Universität Darmstadt Fachbereich Physik Institut für Angewandte Physik Versuch 4.1: Interferenzrefraktor von Jamin Praktikum für Fortgeschrittene Von Daniel Rieländer (1206706) & Mischa Hildebrand
Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt
Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken
Abitur 2006: Physik - Aufgabe I
Abitur 2006: Physik - Aufgabe I Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2006 Aufgabe : I a) Im
Appendix 1. Quantum mathematics. (Deutsche Version)
Appendix 1 Quantum mathematics (Deutsche Version) Quantenmathematik 1 1. Jeder sich propagierenden ichtwelle wird eine Amplitude A zugeschrieben. A ist ein Pfeil, der sich wie ein Uhrzeiger dreht. Die
Fortgeschrittene Photonik Technische Nutzung von Licht
Fortgeschrittene Photonik Technische Nutzung von Licht Fresnel Formeln Fresnel sche Formeln Anschaulich Fresnel sche Formeln Formeln Fresnel schen Formeln R k = r 2 k = R? = r 2? = Energieerhaltung:
Gebrauchsanweisung Martin Henschke, Fresnel-Spiegel Art.-Nr.:
Gerätebau - Physikalische Lehrmittel Dr. Martin Henschke Gerätebau Dieselstr. 8, D-50374 Erftstadt www.henschke-geraetebau.de Gebrauchsanweisung Martin Henschke, 2006-05-16 Fresnel-Spiegel Art.-Nr.: 650272
12. Vorlesung. I Mechanik
12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene
1.2 Grenzen der klassischen Physik Michael Buballa 1
1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:
