5 Mechanische Eigenschaften
|
|
|
- Alexander Bretz
- vor 8 Jahren
- Abrufe
Transkript
1 5 Mechanische Eigenschaften 5.1 Mechanische Beanspruchung und Elastizität 5.1 Antwort a) Stahlseil eines Förderkorbes: statische einachsige Zugbeanspruchung und überlagerte kleine Schwingungsamplituden (Zugschwellbelastung). b) Rotorblatt eines Hubschraubers: Zentrifugalkräfte beim Rotieren erzeugen Zugbeanspruchung (maximale Zugspannung an der Blatteinspannung) und schwingende Zug-/Druckbeanspruchung. An der Befestigung der Blätter kann es Reibermüdung geben. Im Stand verbiegen sich die Rotorblätter unter ihrem Eigengewicht und werden durch Biegespannungen (Oberseite Zugspannung, Unterseite Druckspannung) beansprucht. c) Gleitlagerschale: Druck aus dem Eigengewicht der Welle und Schubspannungen aus Reibungskräften. d) Generatorwelle (horizontale Lagerung): statische Biegebeanspruchungen und umlaufende Zug-/Druckbeanspruchungen infolge der Durchbiegung der Welle und Reibung im Lager. e) Hüllrohr eines Reaktorbrennelementes: Bestrahlung durch Neutronen, statische Zugspannung aus dem Eigengewicht bei erhöhter Temperatur (Kriechbeanspruchung); durch Temperaturzyklen entsteht zusätzlich eine thermische Ermüdungsbeanspruchung. Außerdem sind noch (chemische) Beanspruchungen durch Brennstoff und Umgebung vorhanden. f) Gasturbinenschaufel: Der Zugbeanspruchung infolge der Rotation sind Schwingungen (Zug-/Druck-Wechselbeanspruchung) überlagert. Diese Beanspruchungen treten bei sehr hohen Temperaturen auf, so dass noch Kriechen und Heißgaskorrosion hinzukommen. Antwort a) Werkzeugschneide (Drehmeißel, Fräser): Schubspannungen und erhöhte Temperatur infolge Reibung, b) Walzen beim Kaltwalzen: Ein mit zunehmender Verformung verfestigender Werkstoff übt eine Druckspannung auf die Walze aus, die zur Durchbiegung der Walze führt. Zusätzlich treten Schubspannungen in der Walzenoberfläche auf (Relativbewegung von Walze und Walzgut, ähnlich der Überrollung einer Schiene durch ein Eisenbahnrad).
2 Mechanische Eigenschaften Walzen beim Warmwalzen: Der Werkstoff verhält sich nahezu ideal plastisch (keine Verfestigung), so dass die mechanische Beanspruchung geringer ist. Allerdings wird die Walze auf Grund der höheren Temperatur zusätzlich thermisch belastet. In beiden Fällen muss der Walzenwerkstoff härter sein als der gewalzte Werkstoff. c) Draht beim Ziehen: Der radialen Druckspannung im Werkzeug ist eine Zugspannung auf der Austrittsseite überlagert. Die Oberfläche des Drahtes erfährt im Werkzeug eine mäßige Scherbeanspruchung durch Reibung. d) Tiefziehen: Kombination aus Biegen, einachsigem Recken und zweiachsigem Zug (im Boden). Reibung (gering) zwischen Werkzeug und verarbeitetem Werkstoff. Streckziehen: Wie beim Tiefziehen, jedoch sind die Ränder des Werkstücks eingespannt, so dass eine weitere Verformung in Dickenrichtung auftritt. Antwort Siehe dazu Abb. II.5.1. a) Linear elastisches Verhalten bezeichnet eine reversible Verformung, wobei der Zusammenhang zwischen Lastspannung σ und Verformung ε dem Hookeschen Gesetz folgt: σ = Eε. E ist der Elastizitätsmodul. Im Gegensatz verhält sich Gusseisen mit Lamellengraphit nichtlinear elastisch. b) Gummielastizität ist eine nichtlineare elastische Verformung in verknäuelten und schwach vernetzten Polymeren. c) Viskoelastizität ist eine zeitabhängige reversible Verformung. d) Die Elastizitätsgrenze R e ist jene Spannung, bei der erstmals plastische Verformung auftritt. R e elastisch (0) ( t) viskoelastisch gummielastisch Abbildung II.5.1. Linear elastisches, viskoelastisches und gummielastisches Verhalten
3 5.1 Mechanische Beanspruchung und Elastizität 235 Antwort Siehe dazu Abb. II.5.2. x bezeichnet die Belastungsrichtung, die beiden dazu senkrechten Querrichtungen sind y und z. a) Elastische Verformung ε el x = σ E = R p0,2 E = 300 =0, Bei Isotropie gilt: ε el y = εel z = νel ε el x = 0, 34 0, 0042 = 0, b) Die gesamte Verformung ε ges setzt sich aus der elastischen und plastischen Verformung zusammen, ε ges = ε el + ε pl.inx-richtung gilt: ε ges x = ε el x + εpl x =0, , 002 = 0, In Querrichtung gilt: ε ges y = ε el y + ε pl y = ε ges z = ε el z + ε pl z = ν ges ε ges x. Bei der plastischen Verformung gilt Volumenkonstanz, daher ist ν pl =0, 5 und ε pl y = ε pl z = ν pl ε pl x = 0, 5 0, 002 = 0, 001. Die gesamte Querkontraktionszahl ist: ν ges = εel y + εpl y 0, , 001 ε ges = =0, 387. x 0, 0062 R p0,2 R p x pl x el x Abbildung II.5.2. Elastische und plastische Verformung bei einachsiger Belastung
4 Mechanische Eigenschaften Schließlich ist die gesamte Verfomung in y- bzw.z-richtung: ε ges y = ε ges z = 0, 387 0, 0062 = 0, Anmerkung: Obwohlν el und ν pl unabhängig von der jeweiligen Dehnung sind, hängt die gesamte Querkontraktionszahl ν ges vom Verformungsgrad ab, da dieser über die Anteile der elastischen und plastischen Verformung an der gesamten Verformung ε ges entscheidet. Antwort In der Technik werden vier Konstanten benutzt, die voneinander abhängen. Es sind dies die Größen: Elastizitätsmodul E = σ/ε [GPa], Schubmodul G = τ/γ [GPa] (γ... Scherung), Kompressionsmodul K = p/(δv/v)[gpa] (p... Druck, ΔV... Volumenänderung) und die Querkontraktionszahl (Poissonsche Zahl) ν = ε q /ε l (q... quer, l... längs). Die Beziehungen zwischen diesen Konstanten lauten: K = E 3(1 2ν), G = E 2(1 + ν), E G = 9 3+G/K. Antwort Bei plastischer Verformung tritt keine Volumenänderung auf, die Querkontraktionszahl ist 0,5. Bei elastischer Verformung tritt eine Volumenänderung auf, daher beträgt die Querkontraktionszahl 0 <ν el < 0, 5. Antwort Die Volumenänderung bei plastischer Verfomung ist Null (Annahme der Inkompressibilität des Materials). Antwort Beim ebenen Dehnungszustand ist die Verformung in einer der drei Richtungen Null. Entsprechendes gilt für den ebenen Spannungszustand.
5 5.1 Mechanische Beanspruchung und Elastizität 237 Antwort Energieelastische Festkörper dehnen sich bei Erwärmung aus. Verhält sich der Körper isotrop, so kommt es nur zur Volumenänderung, verhält er sich anisotrop, so ändert er Volumen und Gestalt. Bei entropieelastischenkörpern (Elastomere) führt eine Erwärmungzur Kontraktion. Antwort Einen mehrachsigen Spannungszustand beschreibt man durch eine Vergleichsspannung, mit der man verschiedene Beanspruchungen miteinander vergleichen kann. Mit Hilfe der Vergleichsspannung lässt sich auch feststellen, wann ein mehrachsig belasteter Körper plastisch zu fließen beginnt, auch wenn man nur die Streckgrenze des Materials aus einem einachsigen Zug- oder Druckversuch kennt. Es ist praktisch, wenn man den mehrachsigen Spannungszustand mit den sog. Hauptnormalspannungen beschreibt (die Schubspannungen sind dann alle Null). Dazu muss der Spannungstensor in ein geeignetes Koordinatensystem transformiert werden. Fließbedingungen basieren auf Festigkeitshypothesen, wobei Versagen eintritt, wenn die Vergleichsspannung im Bauteil die Fließgrenze des Werkstoffs erreicht. In der Praxis sind zwei Fließbedingungen bedeutsam. - Fließbedingung nach Tresca: Die Bedingung besagt, dass plastisches Fließen unter der Einwirkung einer kritischen Schubspannung beginnt, welche Scherfließgrenze k genannt wird. Für die Hauptnormalspannungen σ 1 σ 2 σ 3 gilt σ 1 σ 3 =2k. Zwischen der Scherfließgrenze k und der Fließspannung R p eines Zugstabs besteht der Zusammenhang R p =2k. - Fließbedingung nach von Mises: Plastisches Fließen setzt ein, wenn die Gestaltänderungsenergiedichte einen kritischen Wert annimmt. Für die Hauptnormalspannungen σ 1,σ 2,σ 3 ist die Gestaltänderungsenergiedichte: Ū g = 1+ν 6 E [ (σ1 σ 2 ) 2 +(σ 2 σ 3 ) 2 +(σ 3 σ 1 ) 2]. Für den einachsigen Zugversuch (σ 1 0,σ 2 = σ 3 = 0) gelten bei Fließbeginn σ 1 = R p und
6 Mechanische Eigenschaften Ū g = 1+ν 6 E 2R2 p. Somit lautet die Fließbedingung nach von Mises: 1 2 [(σ 1 σ 2 ) 2 +(σ 2 σ 3 ) 2 +(σ 3 σ 1 ) 2 ]=R p. Für den ebenen Fall (σ 3 = 0) ergibt sich σ σ 2 2 σ 1σ 2 = R p. Zeichnet man diese Kurve in der (σ 1 σ 2 )-Ebene, so ergibt sich eine zu den beiden Achsen um 45 gedrehte Ellipse (,,Mises-Ellipse ) Zugversuch und Kristallplastizität Antwort a) E = σ/ε, Steigung des linearen Bereichs des Spannungs-Dehnungs-Diagramms (Hookesche Gerade). b) ν = ε q /ε l. c) Die Streckgrenze ist diejenige Spannung, bei der erstmals plastische Verformung auftritt. In der Praxis wird eine kleine plastische Verformung, oft 0,2 %, zur exakteren Festlegung der Einsatzspannung der Plastizität vorgegeben. Man spricht dann von der Dehngrenze R p0,2. d) Die Zugfestigkeit R m ist im technischen Spannungs-Dehnungs-Diagramm die maximale Spannung. Bei dieser Spannung beginnt eine Zugprobe einzuschnüren. Antwort Bei der Auswertung des Zugversuchs muss bei höheren Verformungsgraden berücksichtigt werden, dass die Probe während der Verlängerung ihren Querschnitt ändert. Für plastische Verformung kann im Gegensatz zur elastischen Verformung von konstantem Volumen ausgegangen werden. Bei steigender Last F der Zugmaschine muss deshalb die Verfestigung des Werkstoffs dσ/dϕ die Querschnittsabnahme da/dϕ kompensieren. Sonst tritt Versagen durch plastische Instabilität auf, d.h. es bildet sich eine Einschnürungszone, in der
7
5 Mechanische Eigenschaften
5 Mechanische Eigenschaften 5.1 Mechanische Beanspruchung und Elastizität 5.1 Frage 5.1.1: Kennzeichnen Sie qualitativ die Art der Beanspruchung des Werkstoffes unter folgenden Betriebsbedingungen: a)
Mechanische Spannung und Elastizität
Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die
Verzerrungen und Festigkeiten
Verzerrungen und Festigkeiten Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Verzerrungen
Elastizitätslehre. Verformung von Körpern
Baustatik II Seite 1/7 Verformung von Körpern 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Elastische Verformungen 3 4.1 Allgemeines 3 4.2 Achsiale Verformungen und E-Modul 3
Praktikum Materialwissenschaft II. Zugversuch
Praktikum Materialwissenschaft II Zugversuch Gruppe 8 André Schwöbel 132837 Jörg Schließer 141598 Maximilian Fries 147149 e-mail: [email protected] Betreuer: Herr Lehmann 5.12.27 Inhaltsverzeichnis
Zugversuch - Versuchsprotokoll
Gruppe 13: René Laquai Jan Morasch Rudolf Seiler 16.1.28 Praktikum Materialwissenschaften II Zugversuch - Versuchsprotokoll Betreuer: Heinz Lehmann 1. Einleitung Der im Praktikum durchgeführte Zugversuch
Spannungs-Dehnungskurven
HVAT Metalle Paul H. Kamm Tillmann R. Neu Technische Universität Berlin - Fakultät für Prozesswissenschaften Institut für Werkstoffwissenschaften und -technologien FG Metallische Werkstoffe 01. Juli 2009
Werkstoffprüfung und FEM-Simulation zur Materialcharakterisierung
zur Materialcharakterisierung Mekonnen Tesfay Tesfu (Dr.-Ing.) DHBW Mosbach Email: [email protected] Telefon: +49 06261 939 413 www.dhbw-mosbach.de Zielsetzung und Definitionen In diesem
Praktikum Fertigungstechnik. Umformtechnik I
Praktikum Fertigungstechnik Umformtechnik I Theoretische Grundlagen Umformmechanismus gezielte Änderung der Form, der Öberfläche und der Werkstoffeigenschaften unter Beibehaltung der Masse und Stoffzusammenhalt.
Modellierung von duktilen Stählen bei Verwendung von kommerziellen FE-Programm. Programm- systemen
Modellierung von duktilen Stählen bei Verwendung von kommerziellen FE-Programm Programm- systemen Dr.-Ing Ing.. S. Mesecke-Rischmann, C. Hornig 3. Norddeutsches Simulationsforum, 21. Oktober 2010 Motivation
Zusammenfassung. Reale feste und flüssigekörper
Zusammenfassung Kapitel l6 Reale feste und flüssigekörper 1 Reale Körper Materie ist aufgebaut aus Atomkern und Elektronen-Hülle Verlauf von potentieller Energie E p (r) p und Kraft F(r) zwischen zwei
Aus Kapitel 4 Technische Mechanik Aufgaben
6 Aufgaben Kap. 4 Aus Kapitel 4 Aufgaben 4. Zugproben duktiler Werkstoffe reißen im Zugversuch regelmäßig mit einer größtenteils um 45 zur Kraftrichtung geneigten Bruchfläche. F F 3. Mohr scher Spannungskreis:
Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L
Zugversuch Zugversuch Vor dem Zugversuch Verlängerung ohne Einschnürung Beginn Einschnürung Bruch Zerrissener Probestab Ausgangsmesslänge L 0 Verlängerung L L L L Verformung der Zugprobe eines Stahls mit
Übungen zur Vorlesung. Verformungsverhalten technischer Werkstoffe
Institut für Werkstofftechnik Lehrstuhl für Materialkunde und Werkstoffprüfung Prof. Dr.-Ing. Hans-Jürgen Christ Übungen zur Vorlesung Verformungsverhalten technischer Werkstoffe Aufgabe 1: Dargestellt
Zugstab
Bisher wurde beim Zugstab die Beanspruchung in einer Schnittebene senkrecht zur Stabachse untersucht. Schnittebenen sind gedankliche Konstrukte, die auch schräg zur Stabachse liegen können. Zur Beurteilung
Zugversuch. Der Zugversuch gehört zu den bedeutendsten Versuchen, um die wichtigsten mechanischen Eigenschaften von Werkstoffen zu ermitteln.
Name: Matthias Jasch Matrikelnummer: 2402774 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 26. Mai 2009 Betreuer: Vera Barucha Zugversuch 1 Einleitung Der Zugversuch gehört zu den
Skript. Technische Mechanik. Festigkeitslehre
Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Verfahrens- und Chemietechnik Skript zur Vorlesung Technische Mechanik Teil Festigkeitslehre Prof. Dr. Werner Diewald Stand: März
Zugversuch (ZV) 1 Einleitung. 2 Grundlagen. 2.1 Elastisches Verhalten eines Festkörpers. 2.2 Plastische Verformung metallischer Materialien
Zugversuch (ZV) 1 Einleitung Der Zugversuch ist der wichtigste und am weitesten verbreitete Test zur Charakterisierung der mechanischen Eigenschaften von Konstruktionswerkstoffen. Der Praktikumsversuch
Kritische Dehnungen als Auslegungskriterien - auch in FEM-Simulationen
Kunststoffe + SIMULATION 10. /11. April 2013, München Kritische Dehnungen als Auslegungskriterien - auch in FEM-Simulationen Prof. Dipl.-Ing. Johannes Kunz Dipl.-Ing. Mario Studer Das IWK ein Institut
Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:
Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse
Umformen - Grundlagen
Umformen - Grundlagen Einteilung der Umformverfahren - Unterscheidung nach dem Spannungszustand nach DIN 8582 (Druck-, Zug-, Zugdruck-, Biege- und Schubumformen) - Unterscheidung nach der Einsatztemperatur
Elastizität und Torsion
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den
1 Technische Mechanik 2 Festigkeitslehre
Russell C. Hibbeler 1 Technische Mechanik 2 Festigkeitslehre 5., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Nicoleta Radu-Jürgens, Frank Jürgens Fachliche Betreuung und Erweiterungen:
Das Verformungsverhalten metallischer Werkstoffe
σ w in N/mm² Das Verformungsverhalten metallischer Werkstoffe Das Spannungs-Dehnungs-Diagramm Das Spannungs-Dehnungs-Diagramm (Abb.1) beschreibt das makroskopische Veformungsverhalten metallischer Werkstoffe
Zugversuch - Metalle nach DIN EN ISO
WT-Praktikum-Zugversuch-Metalle.doc 1 1. Grundlagen 1.1. Zweck dieses Versuchs Im Zugversuch nach DIN EN ISO 689-1 (DIN EN 1) an Proben mit konstanten Querschnitten über die Prüflänge, wird das Werkstoffverhalten
Festigkeit und Härte
Festigkeit und Härte Wichtige Kenngrößen für die Verwendung metallischer Werkstoffe sind deren mechanische Eigenschaften unter statischer Beanspruchung bei Raumtemperatur (RT). Hierbei hervorzuheben sind
Praktikum Werkstoffmechanik Studiengang: Chemie-Ingenieurwesen Technische Universität München SS 2004. Zugversuch. Oliver Gobin.
Praktikum Werkstoffmechanik Studiengang: Chemie-Ingenieurwesen Technische Universität München SS 2004 Zugversuch Oliver Gobin 01 Juli 2004 Betreuer: Dr. W. Loos 1 Aufgabenstellung 2 Theoretischer Hintergrund
Kompendium Festigkeitsberechnung
Kompendium Festigkeitsberechnung Erstellt von Daniel Schäfer 2014 Betreuer Prof. Dr. Ing. Manfred Reichle Inhalt 1. Einleitung... 4 1.1 Aufgaben der Festigkeitsrechnung... 4 1.2 Größen in der Festigkeitsrechnung...
Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1
Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.
Inhaltsverzeichnis. Ä Preis und Verfügbarkeit 11. B Die elastischen Konstanten 21
Inhaltsverzeichnis Vorwort zur deutschen Ausgabe Allgemeine Einführung Begleitmaterialien V XIII XV 1 Konstruktionswerkstoffe und ihre Eigenschaften 1 1.1 Einführung 1 1.2 Beispiele für die Werkstoffauswahl
M b W. Die Gleichung für das Widerstandsmoment W kann Tabellenbüchern entnommen werden und ist z.b. für den Kreisquerschnitt
Versuch: Biegeversuch 1 Versuchsziel und Anwendung Der Biegeversuch ist besonders geeignet ür die Untersuchung spröder erkstoe, da hier der gewünschte Spannungszustand im elastischen Gebiet leichter einzuhalten
Bestimmung von. Prager-Plastizität zur Simulation von unverstärktem PBT. Bernd Kleuter und Marc Bosseler
Bestimmung von Materialparametern für Drucker- Prager-Plastizität zur Simulation von unverstärktem PBT Bernd Kleuter und Marc Bosseler PARSOLVE GmbH, Düsseldorf Inhalt Einleitung Aufgabenstellung: Ermittlung
Festigkeitsprüfung (Zug)
TU Ilmenau Ausgabe: Oktober 2013 Fakultät für Elektrotechnik und Informationstechnik Dr. Bre Institut für Werkstofftechnik 1 Versuchsziel Festigkeitsprüfung (Zug) Bestimmung von Festigkeits- und Verformungskennwerten
M 4 Bestimmung des Torsionsmoduls
M 4 Bestimmung des Torsionsmoduls. Aufgabenstellung. Bestimmen Sie den Torsionsmodul von Metallen mittels rehschwingungen.. Bestimmen Sie das Trägheitsmoment des schwingenden Systems..3 Führen Sie zur
Der Elastizitätsmodul
Der Elastizitätsmodul Stichwort: Hookesches Gesetz 1 Physikalische Grundlagen Jedes Material verormt sich unter Einwirkung einer Krat. Diese Verormung ist abhängig von der Art der Krat (Scher-, Zug-, Torsionskrat
Festigkeitslehre, Kinematik, Kinetik, Hydromechanik
Festigkeitslehre, Kinematik, Kinetik, Hydromechanik Von Prof. Dipl. Ing. Dr. Hans G. Steger, Linz Prof. Dipl. Ing. Johann Sieghart, Linz Prof. Dipl. Ing. Erhard Glauninger, Linz 2., verbesserte und erweiterte
Zugversuch. 1. Aufgabe. , A und Z! Bestimmen Sie ihre Größe mit Hilfe der vorliegenden Versuchsergebnisse! Werkstoffkennwerte E, R p0,2.
1. Aufgabe An einem Proportionalstab aus dem Stahl X3CrNi2-32 mit rechteckigem Querschnitt im Messbereich (a 6,7 mm; b 3 mm; L 8mm) wurde in einem das dargestellte Feindehnungs- bzw. Grobdehnungsdiagramm
Werkstoffkunde II - 2. Übung
Werkstoffkunde II - 2. Übung Mechanisches Werkstoffverhalten von Kunststoffen Barbara Heesel [email protected] Hendrik Kremer [email protected] Anika van Aaken [email protected]
1 Versuchsziel und Anwendung. 2 Grundlagen und Formelzeichen
Versuch: 1 Versuchsziel und Anwendung Zugversuch Beim Zugversuch werden eine oder mehrere Festigkeits- oder Verformungskenngrößen bestimmt. Er dient zur Ermittlung des Werkstoffverhaltens bei einachsiger,
Institut für Werkstofftechnik Universität Siegen. Übung zur Vorlesung Werkstofftechnik I
Institut für Werkstofftechnik Universität Siegen Übung zur Vorlesung Werkstofftechnik I 2 Literatur E. Werner, E. Hornbogen, N. Jost & G. Eggeler: Fragen und Antworten zu Werkstoffe, 6. Auflage, Springer,
Umwelt-Campus Birkenfeld Technische Mechanik II
10. 9.4 Stoffgesetze Zug und Druck Zug- und Druckbeanspruchungen werden durch Kräfte hervorgerufen, die senkrecht zur Wirkfläche stehen. Zur Übertragung großer Zugkräfte eignen sich Seile und Stäbe, Druckkräfte
Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung
1. Schwingungen Fast alles schwingt, d.h. der Zustand ändert sich periodisch it der Zeit wie in Kreisbewegung. Bsp. Uhr, Kolben i Autootor, wippende Boote auf de Wasser. Haronische Schwingung die einfachste
2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.
FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.
rissfreier Proben bei steigender Beanspruchung
6 Mechanische Eigenschaften rissfreier Proben bei steigender Beanspruchung 6.1 Zugversuch Der Zugversuch dient der Ermittlung des Werkstoffverhaltens bei einer äußeren Zugbeanspruchung, die stoßfrei aufgebracht
Zugversuch - Metalle nach DIN EN 10002
WT-Praktikum-Verbundstudium-Versuch1-Zugversuch-Metalle 1 1. Grundlagen 1.1. Zweck dieses Versuchs Im Zugversuch nach DIN EN 1 an Proben mit konstanten Querschnitten über die Prüflänge, wird das Werkstoffverhalten
Aufgabe III: Die Erdatmosphäre
Europa-Gymnasium Wörth Abiturprüfung 212 Leistungskurs Physik LK2 Aufgabe III: Die Erdatmosphäre Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Taschenrechner
Vereinfachte Fließzonentheorie
1 Vereinfachte Fließzonentheorie mit ANSYS Hartwig Hübel FH Lausitz, Cottbus 1. Lausitzer FEM-Symposium, 12. November 1999 Ermüdungs- und Ratcheting-Nachweise 2 Miner: Uf = n N Ermüdung: 1 Wanddicke Dehnungsakkumulation:
9. Mechanik der deformierbaren Körper
9. Mechanik der deformierbaren Körper Nach der Betrachtung der Kinematik (d.h. der Bewegung von Massenpunkten), wurden mit starren Körpern Gebilde mit innerer Struktur eingeführt. Deren Bewegungen, insbesondere
FVK Kontrollfragen. 2. Nennen Sie aus werkstofftechnischer Sicht mögliche Versagensarten.
Institut für Werkstofftechnik Metallische Werkstoffe Prof. Dr.-Ing. Berthold Scholtes FVK Kontrollfragen Abschnitt 1 1. Erläutern Sie den Zusammenhang zwischen Werkstoff, Fertigung, konstruktiver Gestaltung,
Umformtechnik. Harald Kugler. Umformen metallischer Konstruktionswerkstoffe. mit 247 Abbildungen, 20 Tabellen, 273 Fragen sowie einer DVD
Harald Kugler Umformtechnik Umformen metallischer Konstruktionswerkstoffe mit 247 Abbildungen, 20 Tabellen, 273 Fragen sowie einer DVD rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis
Spannungszustand
1. Spannungszustand 1.1 Spannungsvektor und Spannungstensor 1.2 Hauptspannungen 1.3 Mohrsche Spannungskreise 1.4 Fließbedingung 1.5 Gleichgewichtsbedingungen 1.1-1 1.1 Spannungsvektor und Spannungstensor
-BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg TEIL 7 BEMESSUNG IM STAHLBAU.
STAHLBAU -BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg Nachweiskonzept Die Beanspruchung S d darf nicht größer sein als die Beanspruchbarkeit R d eines Bauteils
In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.
6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander
TECHNISCHE MECHANIK. Übungen zur Elastostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer
TECHNISCHE MECHANIK Übungen zur Elastostatik Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer Fachhochschule München Fachbereich 06 - Feinwerk- und Mikrotechnik Technische
4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.
4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische
Arbeitsunterlagen für das Baustofftechnologie-Praktikum. Stahlwerkstoffe
Arbeitsunterlagen für das Baustofftechnologie-Praktikum Stahlwerkstoffe 0 Deckblatt 1 Aufgabenstellung 2 Prüfvorschriften 3 Anleitung zur Durchführung für die Prüfungen 4 Literaturhinweise 5 Auswertungsblätter
Metallische Werkstoffe. Zugversuch. Teil 1: Prüfverfahren bei Raumtemperatur /1/
Metallische Werkstoffe Zugversuch Teil 1: Prüfverfahren bei Raumtemperatur /1/ I Grundlagen: Der Zugversuch ist der wichtigste Versuch in der Werkstoffprüfung. Mit diesem Prüfverfahren werden Festigkeitskennwerte
Einsatz von höherfesten unlegierten Gusseisensorten in Windenergie-Getrieben
Artikel Einsatz von höherfesten unlegierten Gusseisensorten in Windenergie-Getrieben verfasst von Dipl.-Ing. Steffen Schreiber und Dipl.-Ing. Fabio Pollicino Germanischer Lloyd WindEnergie GmbH Abteilung
Protokoll zum Versuch: Zugversuch
Protokoll zum Versuch: Zugversuch Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 18.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3 Versuch 2 3.1
von Werkstoffkennwerten
9.4 Werkstoffkennwerte Stoffgesetze Das Werkstoffverhalten wird durch Werkstoffkennwerte beschrieben, deren experimentelle Ermittlung Gegenstand der Werkstoffkunde ist. Als Stoffgesetze bezeichnet man
Dehnung eines Gummibands und einer Schraubenfeder
Aufgabe Durch schrittweise Dehnung eines Gummibandes und einer soll der Unterschied zwischen plastischer und elastischer Verformung demonstriert werden. Abb. 1: Versuchsaufbau Material 1 Hafttafel mit
Grobblech Feinblech Blech Folien. >6mm <0,1 mm <6mm
Klassifizieren Sie folgende Blechsorten nach Ihrer Dicke. Kreuzen Sie das entsprechende Feld in nachfolgender Tabelle an (Achtung, Einträge nicht sortiert!). ~0,18 mm >6mm
Physik I im Studiengang Elektrotechnik
hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:
Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS
Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie
Klassische Bruch- und Versagenshypothesen
Kapitel 2 Klassische Bruch- und Versagenshypothesen In diesem Kapitel soll ein kurzer Einblick in einige klassische Bruch- und Versagenshypothesen für statische Materialbeanspruchung gegeben werden. Das
Verfahren zur Extrapolation der Fließkurve aus den Daten des Zugversuches jenseits der Gleichmaßdehnung
Verfahren zur Extrapolation der Fließkurve aus den Daten des Zugversuches jenseits der Gleichmaßdehnung Mustafa-Seçkin Aydın*, Dr. Jörg Gerlach, Dr. Lutz Keßler Filderstadt, 12.11.09 ThyssenKrupp Steel
Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)
Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, ([email protected]) 0. 0. 009 1 Aufgaben
Inhaltsverzeichnis. 0 Einleitung 1. 1 Kinematik der geradlinigen Bewegung eines Punktes Grundbegriffe und Formeln... 1
Inhaltsverzeichnis 0 Einleitung 1 1 Kinematik der geradlinigen Bewegung eines Punktes 1 1.1 Grundbegriffe und Formeln... 1 1.1.1 Ort, Geschwindigkeit, Beschleunigung... 1 1.1.2 Kinematische Diagramme...
Belastungsarten, Belastungsfälle
Belastungsarten, Belastungsfälle Werkstücke können auf vielerlei Arten beansprucht werden: Bei den Volumenbeanspruchungen (führen zu einer Verformung) kennt man Zug, Druck, Scherung, Biegung oder Torsion.
1. Einleitung 2. Grundlagen
Protokoll: Zugversuch Datum: 09.06.2009 Verfasser: Dimitrij Fiz Mitarbeiter: Sarah Löwy, Felix Jörg, Christian Niedermeier Gruppe: 12 Betreuer: Timo Herberholz 1. Einleitung Der Zugversuch ist ein wichtiges
Maschinenelemente 1. von Hubert Hinzen. Oldenbourg Verlag München Wien
Maschinenelemente 1 von Hubert Hinzen Oldenbourg Verlag München Wien Inhalt 1 Grundlagen der Dimensionierung metallischer Bauteile 1 1.1 Das grundsätzliche Problem der Bauteildimensionierung 1 1.2 Quasistatische
Mechanische Eigenschaften
Mechanische Eigenschaften Die mechanischen Eigenschaften von Festkörpern werden im Wesentlichen von folgenden Einflussgrößen bestimmt: Art und Stärke der interatomaren Bindungen Verteilung von Verunreinigungen
Universität Bremen, Fachgebiet Keramische Werkstoffe und Bauteile. Bearbeiter: Auftraggeber: Aufgabe: Proben:
Prof. Dr.-Ing. Kurosch Rezwan Fachgebiet Keramische Werkstoffe und Bauteile IW 3, Raum 2131 Am Biologischen Garten 2 28359 Bremen Universität Bremen, Fachgebiet Keramische Werkstoffe und Bauteile Am Biologischen
Werkstoffmodellierung für die Umformtechnik
- Werkstoffmodellierung für die Umformtechnik F Lehrstuhl für Fertigungstechnik Und Werkzeugmaschinen Universität Siegen F 1 Arbeitsschwerpunkt Biegen Klassisches Verfahren: Dornbiegen Innovatives Verfahren:
KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds
Blatt. ederkennlinie Die ederkennlinie gibt die Abhängigkeit zwischen Belastung (Kraft, Moment) und Verformung (Weg, Winkel) an. Man unterscheidet drei grundsätzlich unterschiedliche Verhaltensweisen mit
Umformen und Feinschneiden
Umformen und Feinschneiden Handbuch für Verfahren, Stahlwerkstoffe, Teilegestaltung von R.-A. Schmidt, Franz Birzer, Buderus Edelstahl Band GmbH, Feintool Technologie AG Lyss, Hoesch Hohenlimburg GmbH
Abb.1 Zur Veranschaulichung: Scherung eines Fluids zwischen zwei Platten
Viskosität Die innere Reibung von Fluiden wird durch ihre dynamische Viskosität η beschrieben. Die dynamische Viskosität η eines Fluids stellt dessen Widerstand gegen einen erzwungenen, irreversiblen Ortswechsel
COPYRIGHTED MATERIAL. Stichwortverzeichnis. Ermüdungsbruch 143 Sprödbruch 144 Bruchdehnung 141 Bruchzähigkeit 147 und Zähigkeit 147
Stichwortverzeichnis A Aktionsprinzip 90 Allgemeines Kräftesystem 37 Angriffspunkt 33 Arbeit 28, 94 Beschleunigungsarbeit 96 Hubarbeit 96 Spannarbeit 96 Arbeiten mit Größen 27 Äußere Kraft 113 Aussparung
Arbeitsunterlagen für das Baustoffkunde-Praktikum. Stahlwerkstoffe
Arbeitsunterlagen für das Baustoffkunde-Praktikum Stahlwerkstoffe 0 Deckblatt 1 Aufgabenstellung 2 Prüfvorschriften 3 Anleitungen zur Durchführung für die Prüfungen 4 Literaturhinweise 5 Auswertungsblätter
Was Sie nach der Vorlesung Werkstoffkunde I wissen sollten. Werkstofftechnik
Was Sie nach der Vorlesung Werkstoffkunde I wissen sollten Einführung in die Werkstoffkunde Welche nach Werkstoffen benannten Perioden der Menschheitsgeschichte kennen Sie? Was versteht man unter einem
FINITE ELEMENT METHODE ZUSAMMENFASSUNG MOTIVATION/GRUNDGEDANKE: ALLGEMEINES ZU FEM: AUFBAU EINER FEM STRUKTUR. Finite Element Methode Zusammenfassung
1 von 5 FINITE ELEMENT METHODE ZUSAMMENFASSUNG MOTIVATION/GRUNDGEDANKE: Mathematisch: Ein numerisches Verfahren zur Lösung von partiellen Differentialgleichungen, welche in ein algebraisches Gleichungssystem
V1: Zugversuch. Praktikum Materialwissenschaft II. Lukas S Marius S Andreas E Lukas R
Praktikum Materialwissenschaft II V1: Zugversuch Lukas S Marius S Andreas E Lukas R Gruppe 1 Versuch vom 22.4.29 Protokollabgabe Nr. 1 Betreut durch: Katharina von Klinski-Wetzel, Fachgebiet PhM Inhaltsverzeichnis
Aufgabensammlung Werkstoffmechanik
Institut für Mechanik und Fluiddynamik (IMFD) Lehrstuhl für Technische Mechanik Festkörpermechanik Prof. Dr. rer. nat. habil. Meinhard Kuna Aufgabensammlung Werkstoffmechanik Wintersemester 2013 Freiberg,
2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen
Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...
Grundmodul Metalltechnik
Grundmodul Metalltechnik Inhaltsverzeichnis 1 Längenberechnungen... 4 1.1 Allgemein... 4 1.2 Randabstand gleich der Teilung... 4 1.3 Randabstandteilung ungleich Teilung... 4 1.4 Trennung von Teilstücken...
Universell anwendbares Verfahren zur Bestimmung von Materialkarten für die FE-Simulation M. Bosseler, B. Kleuter, (Parsolve GmbH, Düsseldorf)
Universell anwendbares Verfahren zur Bestimmung von Materialkarten für die FE-Simulation M. Bosseler, B. Kleuter, (Parsolve GmbH, Düsseldorf) Simulation von Werkstoffverhalten bei automobilen Anwendungen
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften
a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)
Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche
Grundlagen des Rohrbiegens
Grundlagen des Rohrbiegens 24. November 2005 Prof. Dr.-Ing. Bernd Engel 1 Vorstellung Lehrstuhl Tiefziehen Endenbearbeitun Biegen Innenhochdruck-Umformen 2 Übersicht Abschätzung von Biegeeinflüssen Simulation
Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen
Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Name: Vorname: Mat.-Nr.: Studiengang: Datum: Note: Betreuer: Dipl.-Ing. Matthias vom Stein / fml Versuch 1: Drehzahl und Beschleunigung
Thermische Eigenschaften von Polymeren. Thermische Eigenschaften von Polymeren
Thermische Eigenschaften von Polymeren Thermische Eigenschaften von Polymeren Vier wichtige Temperaturen/Temperaturintervalle charakterisieren teilkristalline Polymere: 1. Glastemperatur T g Beim Abkühlen
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
Stahlbau Grundlagen. Der plastische Grenzzustand: Plastische Gelenke und Querschnittstragfähigkeit. Prof. Dr.-Ing. Uwe E. Dorka
Stahlbau Grundlagen Der plastische Grenzzustand: Plastische Gelenke und Querschnittstragfähigkeit Prof. Dr.-Ing. Uwe E. Dorka Einführungsbeispiel: Pfette der Stahlhalle Pfetten stützen die Dachhaut und
Inhaltsverzeichnis. 1 Einleitung 1
Inhaltsverzeichnis 1 Einleitung 1 2 Mathematische Grundlagen 5 2.1 Koordinatensystem... 5 2.2 Koordinatentransformation... 7 2.3 Indexschreibweise... 9 2.4 Tensoren... 11 2.5 Tensoroperationen... 14 2.6
Dozentin: A. Pfennig Datum: Hochschule: FHTW Fachhochschule für Technik und Wirtschaft, Berlin Studiengang: WT für WIW Unterlagen: Siehe
PRAKTIKUM WERKSTOFFTECHNIK FHTW FACHHOCHSCHULE FÜR TECHNIK UND WIRT- SCHAFT A. PFENNIG VERSUCH: ZUGVERSUCH Dozentin: A. Pfennig Datum: 18.01.2008 Hochschule: FHTW Fachhochschule für Technik und Wirtschaft,
Technical Note Nr. 105
Seite 1 von 8 DMS-AUSGANGSSIGNALE BEI FREIER WÄRMEAUSDEHNUNG, NICHT-THERMISCHEN UND THERMISCHEN SPANNUNGEN Einführung Spannungsanalysen haben oft das Ziel, den Spannungszustand eines Teils oder einer Struktur
Energie und Energieerhaltung
Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen
1 Versuchsziel und Anwendung. 2 Grundlagen
Versuch: Druckversuch 1 Versuchsziel und Anwendung Zweck des Druckversuches ist es, das Verhalten metallischer Werkstoffe unter einachsiger, über den Querschnitt gleichmäßig verteilter Druckbeanspruchung
