Dr. Anita Kripfganz SS 2014

Größe: px
Ab Seite anzeigen:

Download "Dr. Anita Kripfganz SS 2014"

Transkript

1 Dr. Anita Kripfganz SS Spieltheorie 6.1 Gegenstand und Ziele Zielstellung: qualitative und quantitative Analyse von Konflikten in strategischen Entscheidungssituationen = Theorie des rationalen optimalen Verhaltens von Entscheidungsträgern (Spielern) Schlüsselannahmen: rationales optimales Verhalten, d.h. (A1) Spieler verhalten sich vernünftig (A2) Spieler verfolgen ihren eigenen Vorteil Strategische Entscheidungssituationen: (S1) Das Handlungsergebnis hängt von den Spielern ab. (S2) Jeder Spieler kennt die Regeln und die Auswirkung von Handlungen und weiß, dass auch die anderen Spieler sie kennen. (S3) Alle Spieler berücksichtigen diese Tatsachen. Merkmale eines Spiels: Anzahl der Spieler Gesamtheit der Spielregeln Interessen der Spieler weitere Grundbegriffe: Aktion, Aktionsraum Gewinnfunktion endliches Spiel: Aktionsraum endlich Strategie: Regel zur Wahl von Aktionen reine Strategie: Wahl einer Aktion gemischte Strategie: Wahrscheinlichkeismaß auf dem Aktionsraum Nullsummenspiel: Summe aller Gewinne ist Null Matrixspiel: endliches 2-Personen-Nullsummenspiel Gewinnfunktion: Bewertung von Aktionen Gegenstand der mathematischen Spieltheorie: (u.a.) Lösungsbegriffe Existenz, Eigenschaften von Lösungen Lösungskriterien numerische Lösung. 1

2 Beispiele 1. Beispiel Max und Moritz haben jeder eine große Anzahl Münzen zu 1 Cent, 5 Cent, 10 Cent. In jeder Spielrunde legen beide je eine davon auf den Tisch. für Max (in Cent): Ist die Summe gerade, so gewinnt Max die Münze von Moritz, anderenfalls gewinnt Moritz die Münze von Max. \ Moritz Max \ 1 Cent 5 Cent 10 Cent 1 Cent Cent Cent Wie sollten Max und Moritz spielen? 2. Beispiel Richard und Cecilie planen eine Zeltreise. Das Zielgebiet ist mit Schneisen bzw. Wegen durchzogen. Richard möchte möglichst hoch und Cecilie möglichst tief übernachten. Sie einigen sich auf folgende Auswahlregeln: Cecilie (C) darf die Längswege wählen, Richard (R) darf die Querwege wählen. für Richard (in 100 m): \ C R \ Können sich beide vernünftig einigen? 2

3 3. Beispiel Ein Laborgebäude soll mit 10 Handfeuerlöschern ausgerüstet werden. Hierzu stehen verschiedene Typen zur Verfügung. Ihre Brauchbarkeit (technisch, ökonomisch) zur Bekämpfung unterschiedlicher Brände ist durch die folgenden fünf Noten gekennzeichnet: für Löscher (in Eignungsnoten): 0 : unbrauchbar.. 4 : sehr gut geeignet \ Brand feste Flüssig- elektrische Hochdruck- empfind- \ Körper keiten Anlagen stahl- liche Löscher\ flaschen Geräte Kohlensäureschneelöscher Trockenlöscher Schaumlöscher Tetralöscher Nasslöscher Wie soll das Laborgebäude am besten ausgerüstet werden? 4. Beispiel Ein Investor plant, insgesamt 60 neue Maschinen vom Typ M 1 bzw. M 2 aufzustellen. Diese Maschinen sollen insbesondere die Herstellung zweier neuer ProdukteP 1,P 2 übernehmen. Er weiß, dass ein starker Konkurrent ebenfalls die Produktion von P 1 bzw. P 2 aufnehmen will, und möchte sich mit seiner Investitionsentscheidung darauf einstellen. für den Investor (in Eignungskennziffern) Konkurrent fertigt P 1 P 2 \ Investor Maschine\fertigt P 2 P 1 M M Wieviele Maschinen sollten jeweils gekauft werden? 3

4 6.2 Matrixspiele und reine Strategien Betrachte: Matrixspiel mit ZeilenspielerRmitm AktionenR 1,...,R m SpaltenspielerC mitnaktionenc 1,...,C n fürr: A = (a ij ) R m n fürc: A T = (a ji ) R n m, also a ij : Gewinn fürr, falls R die AktionR i und C die AktionC j wählt Verlust fürc, fallsc die AktionC j und R die AktionR i wählt Grundvoraussetzung: Jeder Spieler rechnet mit dem stärksten Gegenspiel. Unter dieser Voraussetzung wählt jeder Spieler seine Strategie so, dass er mit seiner Entscheidung seinen Mindestgewinn maximiert bzw. den Höchstschaden minimiert. Hieraus ergibt sich ein Lösungsbegriff, der eine risikoscheue Haltung widerspiegelt. Diese Herangehensweise ist bei vernünftigen (rational denkenden) Gegenspielern in antagonistischen Konfliktsituationen berechtigt. Definition. Die Aktionen der Spieler heißen reine Strategien. In der Menge der reinen Strategien impliziert rationales Spielen dann folgende Herangehensweisen der Spieler: R bewertet jede Aktion R i mit min 1 j n a ij und kann sich bei Wahl von Aktion R i mit i aus ν(a) := max min a ij = a ij 1 i m 1 j n eine Mindestauszahlung vonν(a) sichern C bewertet jede AktionC j mitmax 1 i m a ij und kann sich bei Wahl von AktionC j mitj aus ν(a) := max min a ij = a ij 1 i m 1 j n auf eine Höchstverlust von ν(a) einstellen. Definition. Sei A R m n eines Matrixspiels. Dann heißen (i) ν(a) unterer Wert des Spiels undν(a) oberer Wert des Spiels (ii) R i undc j reine Minimax-Strategien der Spieler. Lemma 6.1. Es gilt stetsν(a) ν(a). Beweis: Ausa ij max 1 i m a ij für allei,j folgt also min a ij min max a ij 1 j n 1 j n1 i m j = 1,...,n, ν(a) = max 1 i m min 1 j n a ij min 1 j n max 1 i m a ij = ν(a). q.e.d. Der Interessenskonflikt im Spiel lässt sich also lösen, wenn die Gleichgewichtsbedingung ν(a) = ν(a) erfüllt ist, also die Minimaxstrategie des Zeilenspielers dieselbe Auszahlung wie die Minimaxstrategie des Spaltenspielers liefert. 4

5 Definition. Sei A = (a ij ) R m n eines Matrixspiels. Dann heißt (i) der Eintraga rs Sattelpunkt von A, falls a is a rs a rj für allei,j gilt (ii) das Paar (R r,c s ) Sattelpunkt des Matrixspiels in der Menge der reinen Strategien. Damit lässt sich nun ein erster Lösungsbegriff für Matrixspiele formulieren. 1. Lösungsbegriff: Sattelpunkt in der Menge der reinen Strategien Den Zusammenhang zwischen Sattelpunkten und der Gleichgewichtsbedingung stellt der folgende Satz her. Satz 6.2. Ein Matrixspiel mit A besitzt einen Sattelpunkt in der Menge der reinen Strategien genau dann, wenn ν(a) = ν(a) gilt. Beweis: ( ) : Sei (R r,c s ) ein Sattelpunkt des Matrixspiels in der Menge der reinen Strategien, also a rs ein Sattelpunkt der Matrix A. Dann ergibt sich aus a is a rs a rj für alle i,j unmittelbar ν(a) = min 1 j n max 1 i m a ij max 1 i m a is a rs = min 1 j n a rj max 1 i m min 1 j n a ij = ν(a) Zusammen mit Lemma 6.1 folgt hierausν(a) = ν(a). ( ) : Es seiν(a) = ν(a) = a rs. Dann ergibt sich aus der Definition vonν(a) und ν(a): a is ν(a) = a rs = ν(a) = min 1 j n a rj a rj i,j, also ist(r r,c s ) ein Sattelpunkt des Matrixspiels in der Menge der reinen Strategien. q.e.d. Besitzt die einen Sattelpunkt, dann kann das Spiel bei Wahl einer geeigneten Aktion durch die Spieler gelöst werden. Die Auszahlung an die Spieler ist in diesem Fall gegeben durch den Wert ν(a) = ν(a). Im Allgemeinen ist diese Gleichgewichtsbedingung aber nicht erfüllt. Dieser Lösungsbegriff ist also zu stark. 6.3 Gemischte Strategien Ein schwächerer Lösungsbegriff resultiert aus einer Erweiterung der Menge der zulässigen Strategien. Definition. Sei A R m n eines Spiels. Dann heißen (i) x R m mitx 0 und m i=1 x i = 1 gemischte Strategie des ZeilenspielersR (ii) y R n mitx 0 und m j=1 y j = 1 gemischte Strategie des Spaltenspielers C. Gemischte Strategien entsprechen diskreten Wahrscheinlichkeitsmaßen auf dem jeweiligen Aktionsraum. Die reinen Strategien sind spezielle gemischte Strategien, wobei x = e i der Wahl von AktionR i undy = e j der Wahl von AktionC j entspricht. Dabei bezeichnene i bzw. e j die entsprechenden Einheitsvektoren im R m bzw. im R n. Als Gewinnfunktion bietet sich der erwartete Gewinn bei jeweilig unabhängiger Wahl vonxundy an. 5

6 Die grundlegende Begriffe lassen sich für diese Erweiterung des Matrixspiels mit SpielmatrixAdann folgendermaßen festlegen: Spielsituation:( x, ẙ) Gewinnfunktion fürr : E(x,y) := m i=1 n j=1 a ijx i y j = x T Ay Gewinnfunktion fürc : E(x,y) := m i=1 n j=1 a ijy j x i = y T ( A) T x Der resultierende Lösungsbegriff ergibt sich auch hier aus einer Gleichheit der Auszahlungen für jeweils zulässige Strategien. Bei der Modellierung geht man wieder von einer risikoscheuen Herangehensweise der Spieler aus. Es ist zu prüfen, ob das Spiel dann in der Menge der gemischten Strategien lösbar ist. mathematisches Modell: (mit 1 als Summationsvektor entsprechender Dimension) für ZeilenspielerR: für SpaltenspielerR: ( P R ) : f(x) := min y 0 ( P C ) : g(y) := max x 0 E(x,y) max! x 0 E(x,y) min! y 0 Die Funktion f ergibt sich aus der Lösung einer parametrischen Optimierungsaufgabe. Der zulässige Bereich Σ n = {y R n y 0,1 T y = 1 dieser Aufgabe ist ein nichtleeres Polytop (Simplex) mit den Einheitsecken e 1,...,e n R n. Die Funktion E ist in beiden Argumenten stetig, also existiert das Minimum von E bzgl. y auf dem Simplex Σ n. Insbesondere ist dort eine der Ecken optimal. MitE(x,y) = x T Ay gilt also: min x T Ay = min y 0 j=1,...,n xt Ae j = x T Ae j(x). Analog erhält man für die Maximierung von E bzgl. x auf dem Simplex Σ m R m mit den Einheitseckene 1,...,e m R m die Beziehung max y T A T x = max x 0 i=1,...,m yt A T e i = y T A T e i(y). Damit lassen sich die Optimierungsaufgaben( P R ) bzw. ( P C ) jeweils äquivalent umformen: für ZeilenspielerR: (P R ) : f(x) = min j=1,...,n xt Ae j max! Lösung:x,ν R := f(x ) x 0 für SpaltenspielerR: ( P C ) : g(y) = max i=1,...,m yt A T e i min! Lösung:y,ν C := g(y ) y 0 Man beachte, dass f als Minimum linearer Funktionen konkav und g als Maximum linearer Funktionen konvex ist und beide Funktionen stetig sind. Die jeweiligen Optimalwerte besagen: für ZeilenspielerR: ν R ist die Auszahlung, die sich R bei beliebigem Gegenspiel von C mindestens sichern kann für SpaltenspielerC: ν C ist der Verlust, mit welchem C bei beliebigem Gegenspiel von R höchstens rechnen muss Definition. Die Lösungenx bzw.y der Aufgaben(P R ) bzw.(p C ) heißen Minimaxstrategien fürrbzw. fürc in der Menge der gemischten Strategien. 6

7 Analog zu Lemma 6.1 gilt offensichtlichν R ν C. Frage: Lässt sich der Konflikt des Spiels lösen, d.h. giltν R = ν C? Zur Beantwortung dieser Frage formen wir die Optimierungsaufgaben(P R ) und(p C ) noch einmal äquivalent um und erhalten nach Einführung jeweils einer zusätzlichen Variablen L bzw.k das folgende Paar linearer Optimierungsprobbleme: (LP R ) : L max! m a ij x i L j i=1 m x i = 1 i=1 x 0 (LP C ) : K min! n a ij y j K i j=1 n y j = 1 j=1 y 0 Aus den bisherigen Überlegungen, der Äquivalenz der Aufgaben und aus den in linearen Optimierung bewiesenen Zusammenhängen ergeben sich schließlich folgende Erkenntnisse: a) (LP R ) und (LP C ) besitzen zulässige Lösungen. b) (LP R ) und (LP C ) sind dual. c) (LP R ) und (LP C ) besitzen optimale Lösungen(x,L ) und(y,k ) mit: ν R = min 1 j n x T Ae j = L = x T Ay }{{} = K = max 1 i m et i Ay = ν C. E(x,y ) d) Es gilt:x T Ay x T Ay x T Ay für allex Σ m,y Σ n. Definition. (i) ν = ν R = ν C heißt gemischter Wert des Spiels. (ii) Ein Paar (x,y ) gemischter Strategien für (R,C) heißt Sattelpunkt bzw. Gleichgewichtspunkt des Matrixspiels, falls gilt: x T Ay x T Ay x T Ay x Σ m, y Σ n. Für Matrixspiele lassen sich die gewonnenen Erkenntnisse nun im folgenden Satz zusammenstellen. Satz 6.3. [v. Neumann/Morgenstern und Nash] Die gemischte Erweiterung eines Matrixspiels besitzt stets einen Wert ν und mindestens einen Gleichgewichtspunkt. Fazit: Rkann sich bei optimaler Spielweise im Mittel eine Mindestauszahlungν sichern. C kann sich bei optimaler Spielweise im Mittel eine Mindestauszahlung ν sichern. Ein Spieler kann aus der Erkenntnis, dass der andere Spieler seine optimale Strategie gewählt hat, keinen Nutzen ziehen. Bemerkung: Für jeden Spieler kann es mehrere optimale Strategien geben. Es gilt dann: 1. Jede optimale Strategie liefert denselben Spielwert ν. 2. Eine konvexe Linearkombination optimaler Strategien ist wieder eine optimale Strategie. 7

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant Abstrakte Analyse des Nash-Gleichgewichtes Seminar von Olga Schäfer Fachbereich Mathematik der Universität Siegen Siegen, 29. Juli 2009 Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Einführung in die Theorie der Markov-Ketten. Jens Schomaker

Einführung in die Theorie der Markov-Ketten. Jens Schomaker Einführung in die Theorie der Markov-Ketten Jens Schomaker Markov-Ketten Zur Motivation der Einführung von Markov-Ketten betrachte folgendes Beispiel: 1.1 Beispiel Wir wollen die folgende Situation mathematisch

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

Das sequentielle Gleichgewicht

Das sequentielle Gleichgewicht Das sequentielle Gleichgewicht Seminarvortrag von Florian Lasch Dozent: Prof. Dr. Matthias Löwe Seminar: Anwendungen der Wahrscheinlichkeitstheorie Institut für Mathematische Statistik Fachbereich Mathematik

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Anwendungen der Spieltheorie

Anwendungen der Spieltheorie Mikroökonomie I Einführung in die Spieltheorie Universität Erfurt Wintersemester 08/09 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 1 / 28 Spieltheorie Die Spieltheorie modelliert strategisches

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Aufgaben zu Kapitel 15

Aufgaben zu Kapitel 15 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Sattelpunkt-Interpretation

Sattelpunkt-Interpretation Sattelpunkt-Interpretation Vinzenz Lang 14. Mai 2010 Die Sattelpunkt-Interpretation befasst sich mit der Interpretation der Lagrange- Dualität. Sie wird im weiteren Verlauf des Seminars nicht noch einmal

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Kapitel 15. Aufgaben. Verständnisfragen

Kapitel 15. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation einen K-Vektorraum bildet

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

12. Vorlesung. 19. Dezember 2006 Guido Schäfer

12. Vorlesung. 19. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige

Mehr

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011 Asymmetrische Spiele Eric Barré 13. Dezember 2011 Gliederung 1 Einführung Allgemeines Definition Begründung Nash-Gleichgewicht 2 Kampf der Geschlechter Allgemein Auszahlungsmatrix Nash-Gleichgewicht Beispiel

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

Analysis I. Vorlesung 4. Angeordnete Körper

Analysis I. Vorlesung 4. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Spieltheorie. Daniel Scholz im Winter 2006 / Überarbeitete Version vom 12. September 2007.

Spieltheorie. Daniel Scholz im Winter 2006 / Überarbeitete Version vom 12. September 2007. Spieltheorie Daniel Scholz im Winter 2006 / 2007 Überarbeitete Version vom 12. September 2007. Inhaltsverzeichnis 1 Grundlagen 4 1.1 Einleitung und Beispiele..................... 4 1.2 Spiele in extensiver

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1 Aufgabe (4 Punte) Sei A eine n m-matrix Die Matrix A T ist die m n-matrix, die durch Vertauschen der Zeilen und Spalten aus A hervorgeht (dh: aus Zeilen werden Spalten, und umgeehrt) Die Matrix A T heißt

Mehr

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer LETZTE ÄNDERUNG: 15. NOVEMBER 2006 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 2. Vorlesung 24. Oktober 2006 Guido Schäfer 1.3 Beste-Antwort Funktion Notation: Definiere A i := j N\{i} A j.

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Aufgabensammlung Lineare Optimierung

Aufgabensammlung Lineare Optimierung Dr. Andreas Löhne Institut für Mathematik Martin-Luther-Universität Halle-Wittenberg Aufgabensammlung Lineare Optimierung 1. Eine Gärtnerei kann von einem Nachbargrundstück bis zu 5 ha Land erwerben. Das

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Wir verallgemeinern Bi Matrix Spiele auf beliebig viele Spieler

Wir verallgemeinern Bi Matrix Spiele auf beliebig viele Spieler 1 KAP 3. Spiele mit mehr als zwei Spielern Wir verallgemeinern Bi Matrix Spiele auf beliebig viele Spieler Es gibt nun n Spieler i = 1,..., n Eine typische Strategie für SPi bezeichnen wir mit s i... S

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2007 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus vier Vorfragen und drei Hauptfragen, von denen jeweils zwei zu bearbeiten sind. Sie haben für die Klausur

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch 2. Nash Equilibria Situation: n Spieler 1,..., n spielen ein (einzügiges) Spiel. S i 1 i n ist die Menge der Strategien (= Aktionen) von Spieler i. u i : S 1... S n ist die Nutzenfunktion für Spieler i.

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen .. Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen .. Motivation: Warum

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie 1 Die folgende Vorlesungsaufzeichnung und

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr