1 Analytische Geometrie und Grundlagen

Größe: px
Ab Seite anzeigen:

Download "1 Analytische Geometrie und Grundlagen"

Transkript

1 $Id: vektor.tex,v /05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit einem gemeinsamen Startpunkt definiert. Wir wollen diesen nun verwenden auch einen nicht orientierten Winkelbegriff einzuführen bei dem die Reihenfolge der betrachteten Strahlen keine Rolle mehr spielt. Während der orientierte Winkelbegriff als Maßzahlen für Winkel Werte zwischen 0 und 360, beziehungsweise zwischen 0 und 2π, verwendet wird der nun einzuführende Winkel Werte zwischen 0 und π haben. Im wesentlichen wollen wir den Winkel zwischen zwei Strahlen mit demselben Startpunkt als den von ihnen eingeschlossenen Sektor definieren, die formale Definition wird zwar aus technischen Gründen etwas anders aussehen, die Sektoren werden wir allerdings trotzdem benötigen. Seien a R 2 ein Punkt und u, v zwei Strahlen mit Startpunkt a. Dann können wir zunächst u = a + R 0 e(φ) mit einem φ R schreiben und da es für jedes ψ R stets ein n Z mit φ ψ + 2πn < φ + 2π gibt können wir weiter auch v = a + R 0 e(ψ) für ein ψ R mit φ ψ < φ + 2π schreiben. Im Fall ψ > φ + π ist dann ψ < φ + 2π < ψ + π, ersetzen wir also φ durch φ + 2π und vertauschen u und v so können wir φ ψ φ + π annehmen. Nehmen wir weiter an das u und v weder gleich noch einander gegenüberliegend sind, so ist sogar φ < ψ < φ + π. Wir definieren den von u, v aufgespannten Sektor als die konvexe Hülle S(u, v) := co(u v). Im folgenden Lemma wollen wir die so definierten Sektoren explizit bestimmen. Lemma 1.30 (Bestimmung des Sektors zwischen zwei Strahlen) Seien a R 2 und φ, ψ R mit φ < ψ < φ + π gegeben und setze u := a + R 0 e(φ) und v := a + R 0 e(ψ). Dann gilt S(u, v) = u + v = {a + te(θ) t 0, θ [φ, ψ]}. Beweis: Zunächst ist die Menge u + v als Schnitt zweier Halbebenen konvex und es gelten (u, v) = ψ φ < π und (v, u) = 2π + φ ψ > π, also sind nach Aufgabe (18) auch v u + und u v und wir haben u v u + v. Dies liefert S(u, v) = co(u v) u + v. Schreibe nun M := {a + te(θ) t 0, θ [φ, ψ]} und sei ein Punkt x u + v gegeben. Im Fall x = a ist sofort x M, wir können also x a annehmen. Dann 9-1

2 gibt es t, θ R mit t > 0, φ θ < φ + 2π und x = a + te(θ). Erneut nach Aufgabe (18) ergibt x u + die Bedingung θ φ = (u, a + R 0 e(θ)) π und dies impliziert π < φ ψ θ ψ < φ ψ + π < π. Wegen x v ist aber nach Aufgabe (18) auch θ ψ = (v, a + R 0 e(θ)) [ π, 0] also ist θ ψ. Dies zeigt θ [φ, ψ] und wir haben x M eingesehen. Folglich besteht auch die Inklusion u + v M. Es bleibt nur noch M S(u, v) zu beweisen. Hierzu müssen wir zeigen, dass für jedes θ [φ, ψ] stets auch w := a + R 0 e(θ) S(u, v) gilt. Wir betrachten zunächst den Fall ψ θ < π/2 und θ φ < π/2. Wir wissen bereits das e(θ), Je(θ) = e(θ + π/2) eine Orthonormalbasis des R 2 ist, also gilt für jedes η R die Gleichung e(η) = e(θ) e(η) e(θ) + e(θ + π/2) e(η) Je(θ) ( = cos(η θ)e(θ) + cos η θ π ) Je(θ) = cos(η θ)e(θ) + sin(η θ)je(θ) 2 und insbesondere haben wir e(ψ) = cos(ψ θ)e(θ) + sin(ψ θ)je(θ), e(φ) = cos(θ φ)e(θ) sin(θ φ)je(θ). Sei t R mit t > 0 gegeben. Nach unserer Annahme sind cos(ψ θ) > 0 und cos(θ φ) > 0 also erhalten wir die beiden Punkte b 1 := a + t cos(θ φ) e(φ) u und b t 2 := a + e(ψ) v. cos(ψ θ) Einsetzen der obigen Entwicklung liefert dabei b 1 = a + te(θ) t tan(θ φ)je(θ) und b 2 = a + te(θ) + t tan(ψ θ)je(θ). Weiter sind λ 1 := tan(ψ θ) tan(θ φ) + tan(ψ θ) 0 und λ 2 := mit λ 1 + λ 2 = 1 und es gilt tan(θ φ) tan(θ φ) + tan(ψ θ) 0 λ 1 b 1 + λ 2 b 2 = (λ 1 + λ 2 ) (a + te(θ)) = a + te(θ). Dies zeigt a + te(θ) co(u v) und wir haben w S(u, v) bewiesen. Kommen wir nun zum allgemeinen Fall. Setze hierzu η := (φ + ψ)/2 und dann gelten φ < η < ψ und η φ = ψ η = (ψ φ)/2 < π/2, nach der bereits bewiesenen Teilaussage ist also r := a + R 0 e(η) S(u, v). Ist nun θ η so haben wir θ φ η φ < π/2 und η θ η φ < π/2, eine erneute Anwendung der bereits bewiesenen Teilaussage liefert also w co(u r) S(u, v). Im verbleibenden Fall θ η ergibt sich analog w S(u, v). 9-2

3 Da θ R durch w := a + R 0 e(θ) bis auf Vielfache von 2π festgelegt ist, können wir das Lemma auch so formulieren das für φ θ < φ + 2π, x w\{a} die Äquivalenz x S(u, v) w S(u, v) θ ψ besteht. Im wesentlichen werden wir die Sektoren zwischen zwei Strahlen als Winkel verwenden. Dies direkt als Definition zu nehmen ist allerdings ungünstig da wir dann keine Winkel von 0 oder von 180 definieren könnten, um auch diese zu erfassen verwenden wir stattdessen die Menge {u, v} zur Definition eines Winkels und betrachten den Sektor als ein zugeordnetes Objekt. Definition 1.21 (Nicht orientierte Winkel) Sei a R 2 ein Punkt. Ein Winkel α mit Scheitelpunkt a ist eine ein- oder zweielementige Menge von Strahlen mit Startpunkt a. Schreiben wir dann α = {u, v} mit (u, v) π so definieren wir den zu α gehörenden Sektor als S(u, v), u v und v ist nicht der u gegenüberliegende Strahl, S(α) := R 2, v ist der u gegenüberliegende Strahl, u, v = u. Weiter heißt (α) := (u, v) := (u, v) [0, π] das Winkelmaß von α. Wie beim orientierten Winkel sprechen wir verkürzend oft vom Winkel α wenn wir eigentlich das zugehörige Winkelmaß meinen und sind b u\{a}, c v\{a} so schreiben wir (bac) := (u, v). Wenn v nicht der u gegenüberliegende Strahl ist, so können wir die beiden Fälle in der Sektordefinition als S(α) = co( α) zusammenfassen. Normieren wir die orientierten Winkel auf Werte zwischen 0 und 2π so wird auch (u, v) = min{ (u, v), (v, u)}. Dieser nicht orientierte Winkel ist zwar etwas vertrauter als seine orientierte Version, seine Grundeigenschaften sind allerdings etwas komplizierter zu formulieren. 1. Sind u, v zwei Strahlen mit einem gemeinsamen Startpunkt a so ist (u, v) = (v, u). Dies ist klar. 2. Sind u, v zwei Strahlen mit Startpunkt a R 2 so ist genau dann (u, v) = 0 wenn u = v ist und genau dann (u, v) = π wenn v der u gegenüberliegende Strahl ist. Auch dies ist klar denn (u, v) = 0 ist äquivalent zu (u, v) = 0 und (u, v) = π zu (u, v) = π. 3. Sind u, v, w drei Strahlen mit gemeinsamen Startpunkt a und gilt v S({u, w}) so ist (u, w) = (u, v) + (v, w). Dies bedarf einer kleinen Begründung. Im Fall u = w ist wegen S({u, u}) = u auch v = u und die Behauptung ist klar. Nun nehmen wir u w an und dann können wir nach eventuellen Vertauschen von u und w auch (u, w) π annehmen. Dann gibt es φ, ψ R mit φ < ψ φ + π 9-3

4 so, dass u = a + R 0 e(φ) und w = a + R 0 e(ψ) gelten. Weiter können wir wegen v S({u, w}) auch annehmen das es ein θ [φ, ψ] mit v = a + R 0 e(θ) gibt, ist nämlich w nicht der u gegenüberliegende Strahl so gilt dies nach Lemma 30, ist dagegen w der u gegenüberliegende Strahl, also (u, w) = π, so können wir dies durch eventuelles Vertauschen von u und w erreichen. Mit diesen Normierungen gelten dann φ θ ψ φ + π und θ ψ φ + π θ + π, wir haben also wie behauptet. (u, v) + (v, w) = (u, v) + (v, w) = (u, w) = (u, w) 4. Winkel lassen sich bei vorgegebener Halbebene eindeutig abtragen. Hiermit ist das folgende gemeint, sind α ein Winkel, w ein Strahl und bezeichnet l die w enthaltende Gerade sowie H eine Halbebene mit affinen Rand l, so existiert genau ein Strahl r H mit demselben Startpunkt wie w so, dass auch (w, r) = (α) gilt. Ist (α) = 0 oder (α) = π so ist dies klar nach (2). Ist dagegen φ := (α) 0, π so gilt für einen Strahl u mit Startpunkt a genau dann (w, u) = φ wenn (w, u) = φ oder (w, u) = 2π φ gilt, da sich orientierte Winkel eindeutig abtragen lassen gibt es also genau zwei Strahlen u mit Startpunkt a für die (w, u) = φ gilt, und nach Aufgabe (18) liegen diese auf verschiedenen Seiten von l, genau einer dieser beiden Strahlen liegt also in H. 5. Sind u, v zwei Strahlen mit demselben Startpunkt a und sind l, g die Geraden mit u l beziehungsweise v g so ist genau dann (u, v) = π/2 wenn l g gilt. Es ist nämlich genau dann (u, v) = π/2 wenn (u, v) = π/2 oder (u, v) = 3π/2 gilt und dies ist äquivalent zu l g. 6. Seien u, v zwei Strahlen mit demselben Startpunkt a und bezeichne u den u gegenüberliegenden Strahl und v den v gegenüberliegenden Strahl. Die beiden Winkel {u, v } und {u, v} nennen wir Nebenwinkel des Winkels {u, v}. Nach (2) und (3) gilt dann π = (u, u ) = (u, v) + (v, u ) und somit haben wir (u, v) = π (u, v). Analog ergibt sich auch für den anderen Nebenwinkel (u, v ) = π (u, v). Der Winkel {u, v } heißt der dem Winkel {u, v} gegenüberliegende Winkel, oder kurz der Gegenwinkel zu {u, v}. Da dieser dieselben Nebenwinkel wie {u, v} hat haben wir (u, v ) = (u, v). Die Formel zur Winkeladdition ist tatsächlich genau dann korrekt wenn v S({u, w}) gilt, man kann den Sektor S({u, w}) also auch ohne Fallunterscheidung als die Vereinigung aller Strahlen v mit Startpunkt a definieren die die Gleichung (u, w) = (u, v) + (v, w) erfüllen. Nachdem wir nun die nicht orientierten Winkel definiert haben können wir auch die geometrische Konstruktion des Skalarprodukts beweisen, diese bezieht sich gerade auf nicht orientierte Winkel. 9-4

5 Satz 1.31 (Geometrische Bedeutung des Skalarprodukts) Seien a, b, c R 2 mit b, c a. Dann gelten b a c a = ab ac cos( (bac)) und (bac) = arccos ( ) b a c a. ab ac Beweis: Die b beziehungsweise c enthaltenden Strahlen mit Startpunkt a sind u := a + R 0 (b a) beziehungsweise v := a + R 0 (c a). Da sich beide Seiten der behaupteten Gleichungen bei Vertauschen von b und c nicht ändern können wir weiter annehmen das es φ, ψ R mit φ ψ φ + π gibt so, dass u = a + R 0 e(φ) und v = a + R 0 e(ψ) gelten. Dann gibt es weiter reelle Zahlen t, s > 0 mit b = a + te(φ) und c = a + se(ψ). Wir erhalten b a c a ab ac = re(φ) se(ψ) te(φ) se(ψ) = e(φ) e(ψ) = cos(ψ φ) und ψ φ = (u, v) = (u, v) = (bac). Damit ist die erste Formel bewiesen und wegen 0 ψ φ π ergibt sich auch die zweite Formel. Die eben bewiesene Formel kann man zu einem Satz über Dreiecke umformulieren, dem sogenannten Cosinussatz der es erlaubt in einem Dreieck bei zwei bekannten Seiten und bekannten Winkel zwischen diesen die dritte Seite zu bestimmen. Satz 1.32 (Der Cosinussatz) Seien a, b, c R 2 drei Punkte mit a, c b. Dann gilt ac 2 = ab 2 + bc 2 2 ab bc cos( (abc)). Beweis: Nach Satz 31 gilt ac 2 = c a 2 = (c b) (a b) 2 = c b 2 + a b 2 2 c b a b = bc 2 + ab 2 2 ab bc cos( (abc)). Damit können wir schließlich auch die geometrischen Definitionen der trigonometrischen Funktionen rekonstruieren. 9-5

6 Satz 1.33 (Geometrische Konstruktion der trigonometrischen Funktionen) Seien a, b, c R 2 drei nicht kollineare Punkte und die Verbindungsgerade von a und c sei senkrecht auf der Verbindungsgerade von b und c. Dann gelten sin( (bac)) = bc ac, cos( (bac)) = ab ab und tan( (bac)) = bc ac. Beweis: Nach dem Satz des Pythagoras Korollar 24 gilt ab 2 = ac 2 + bc 2. Mit dem Cosinussatz Satz 32 erhalten wir weiter bc 2 = ab 2 + ac 2 2 ab ac cos( (bac)) = bc ac 2 2 ab ac cos( (bac)) und dies liefert ac = ab cos( (bac)). Dies beweist die Behauptung über den Cosinus und es ergibt sich weiter sin 2 ( (bac)) = 1 cos 2 ( (bac)) = 1 ac 2 ab = ab 2 ac 2 2 ab 2 = bc 2 ab 2. Damit haben wir auch die Behauptung über den Sinus und die über den Tangens folgt aus denen für Sinus und Cosinus. Wir schließen unsere Überlegungen über den Winkelbegriff mit dem Stufenwinkelsatz und dem mit diesen eng zusammenhängenden euklidischen Parallelenaxiom. Man kann die ebene Geometrie axiomatisch aufbauen, und das Urbeispiel eines solchen Aufbaus sind die Elemente des Euklid. Diese sind im Zeitraum um 300 vor Christus entstanden und eines der dort verwendeten Axiome ist das erwähnte Parallelenaxiom Schneiden zwei Strecken eine Gerade in zwei gegenüberliegenden Winkeln die zusammen kleiner als zwei Rechte sind, so treffen sich diese Strecken bei Verlängerung ins Unendliche in einem Punkt der auf der Seite der Geraden liegt in der die beiden gegenüberliegenden Winkel sind die zusammen kleiner als zwei Rechte sind. Der Name Parallelenaxiom entsteht da diese Aussage unter Voraussetzung der übrigen Axiome dazu äquivalent ist, dass es zu jeder Geraden und zu jedem Punkt außerhalb der Geraden stets genau eine Gerade durch den Punkt gibt welche die vorgegebene Gerade nicht trifft. Satz 1.34 (Stufenwinkelsatz und Parallelenaxiom) Seien l R 2 eine Gerade und H R 2 eine Halbebene mit affinem Rand l. Weiter seien g 1, g 2 R 2 zwei von l verschiedene Geraden die l in zwei verschiedenen Punkten a 1 = l g 1 und a 2 = l g 2 schneiden. Für j = 1, 2 bezeichne u j := H g j den in g j enthaltenen Strahl mit Startpunkt a j der in H enthalten ist. Für {i, j} = {1, 2} bezeichne v ij l den Strahl mit Startpunkt a i und a j v ij und bezeichne v ij den v ij gegenüberliegenden Strahl. 9-6

7 (a) Genau dann gilt g 1 g 2 wenn (u 1, v 12 ) = (u 2, v 21) ist. (b) Ist (u 1, v 12 ) + (u 2, v 21 ) < π so ist g 1 g 2 und ist s der Schnittpunkt von g 1 und g 2 so gilt s H. Beweis: Dies ist Aufgabe (20). v 21 α H g 2 a 2 H g 2 a 2 u 2 β v 12 v 21 v 12 v 21 u 2 u 1 s α α g 1 a 1 u 1 g 1 a 1 l l α+β < π Stufenwinkelsatz Parallelenaxiom Die beiden Winkel α := {u 1, v 12 } und β := {u 2, v 21} in (a) nennt man in diesem Zusammenhang auch Stufenwinkel. Neben den bisher behandelten Winkeln zwischen Strahlen kann man auch Winkel zwischen nicht parallelen Geraden einführen. Hier gibt es dann auch wieder eine orientierte und eine nicht orientierte Version, wir wollen hier aber darauf verzichten auch dies auszuarbeiten. 9-7

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Geometrie für Lehramtskandidaten

Geometrie für Lehramtskandidaten Dr. Florian Berchtold Geometrie für Lehramtskandidaten Vorlesung an der Universität Konstanz Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungsverzeichnis 5 1 Einleitung 7 I Ebene Geometrie 8 2 Axiomatik

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

5. Komplexe Zahlen. 5.1 Was ist eine Zahl?

5. Komplexe Zahlen. 5.1 Was ist eine Zahl? 5. Komplexe Zahlen Komplexe Zahlen sind Zahlen der Form a + bi, wo a und b reelle Zahlen sind und i = 1 ist. Wurzeln aus negativen Zahlen gibt es nicht, wird man da antworten, und in der Tat gibt es keine

Mehr

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff

Mehr

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht. 2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Zwei Aufgaben, die auf windschiefe Regelflächen führen,

Zwei Aufgaben, die auf windschiefe Regelflächen führen, Zwei Aufgaben, die auf windschiefe Regelflächen führen, von À. KIEFER (Zürich). (Als Manuskript eingegangen am 25. Januar 1926.) I. Gesucht im Raum der Ort des Punktes, von dem aus die Zentralprojektionen

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Logo-Aufgaben mit Verbindung zur Mathematik

Logo-Aufgaben mit Verbindung zur Mathematik Logo-Aufgaben mit Verbindung zur Mathematik Student: Dozent: Prof. Juraj Hromkovic Datum: 13.06.007 Logo-Kenntnisse Für die Lösung der Aufgaben werden folge Logo-Befehle benötigt: Arithmetik: +, -, *,

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Y b 2 - a 2 = p 2 - q 2 (*)

Y b 2 - a 2 = p 2 - q 2 (*) Um den Flächeninhalt eines Dreieckes zu bestimmen, das keinen rechten Winkel besitzt, muss man bekanntlich die Längen einer Seite mit der dazugehörigen Höhe kennen Wir setzen voraus, dass uns alle 3 Seitenlängen

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Kill Keyword Density. Weshalb die Keyword Density blanker Unsinn ist.

Kill Keyword Density. Weshalb die Keyword Density blanker Unsinn ist. Kill Keyword Density Weshalb die Keyword Density blanker Unsinn ist. Kill Keyword Density» & Karl Kratz Das ist. Jana ist Diplom- Mathematikerin und Controlling-Leiterin bei der Innovation Group AG. Ihr

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg ufgabe: Spiegelung an den Dreiecksseiten und nti-steinersche Punkte Darij Grinberg Eine durch den Höhenschnittpunkt H eines Dreiecks B gehende Gerade g werde an den Dreiecksseiten B; und B gespiegelt;

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns!

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns! Aufgaben und Lösungen. Runde 04 Über Kommentare und Ergänzungen zu diesen n freuen wir uns!» KORREKTURKOMMISSION KARL FEGERT» BUNDESWETTBEWERB MATHEMATIK Kortrijker Straße, 577 Bonn Postfach 0 0 0, 5 Bonn

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Amina Duganhodzic Proseminar: Mathematisches Problemlösen Unter der Leitung von Privat Dozentin Dr. Natalia Grinberg 26. Juni

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren Vektorgeometrie Version: 28. Dezemer 2007 Bitte nur für den Eigengerauch verwenden) mathenachhilfe.ch. Mathematische Operationen für Vektoren Addition + a + 3 = a + + + 3 + Sutraktion a 3 = a 3 Skalare

Mehr

Fachwissenschaftliches Seminar zur Zahlentheorie

Fachwissenschaftliches Seminar zur Zahlentheorie Fachwissenschaftliches Seminar zur Zahlentheorie Vortragsunterlagen zu: Farey-Brüche und Ford-Kreise Die Theorie der Farey-Brüche liefert eine Methode, die rationalen Zahlen aufzuzählen, und zwar geordnet

Mehr

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag.

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag. 49. Mathematik-Olympiade Regionalrunde Olympiadeklasse 6 c 2013 nausschuss des Mathematik-Olympiaden e.v. Barbara ist Kandidatin in einer mathematischen Quizshow und hat bis jetzt alle n richtig gelöst.

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.

Mehr

Neues Thema: Inversion am Kreis (Kreisspiegelung)

Neues Thema: Inversion am Kreis (Kreisspiegelung) Neues Thema: Inversion am Kreis (Kreisspiegelung) Wir arbeiten in ( R 2,, standard ). Def. Betrachte einen Kreis um O vom Radius r > 0. Inversion (bzgl. des Kreises) ist eine Abbildung I O,r : R 2 \ {O}

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Mathi Das kleine Mathebüchlein Mit Kniffen, Tricks und Eselsbrücken. Ohne Angst in die Prüfung!

Mathi Das kleine Mathebüchlein Mit Kniffen, Tricks und Eselsbrücken. Ohne Angst in die Prüfung! Mathi Das kleine Mathebüchlein Mit Kniffen, Tricks und Eselsbrücken. Ohne Angst in die Prüfung! Seit der Deutschen Einheit verändert sich das sozialpolitische Bild der Bundesrepublik. Immer mehr Familien

Mehr

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft.

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft. Vorlesung 1 Einführung 1.1 Praktisches Zeiten: 10:00-12:00 Uhr Vorlesung 12:00-13:00 Uhr Mittagspause 13:00-14:30 Uhr Präsenzübung 14:30-16:00 Uhr Übungsgruppen Material: Papier und Stift wacher Verstand

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte

Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte Roman Gächter 27. Februar 2008 Inhaltsverzeichnis 1 Vorwort 3 2 Oberfläche 4 2.1 Einführung................................ 4 2.2 Geometrie und

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Horst Steibl TU Braunschweig GDM-Tagung Berlin 2007 1 Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Wie Tim und Tom, die

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr