Algorithmische Graphentheorie

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Graphentheorie"

Transkript

1 Algorihmiche Graphenheorie Sommeremeer Vorleung Flualgorihmen Prof. Dr. Alexander Wolff 1

2 Erinnerung Oh my God i an LP! Gegeben ein gericheer Graph G = (V, E) mi, V und Kanenkapaziäen c : E R >0. Geben Sie eine Mehode an, die einen maximalen --Flu f konruier., alo eine Funkion f : E R 0, die den Flu erhäl, d.h. für jeden Knoen / {, } icherell: Neozuflu f () = f (u) f (w) = 0, {u V u E} zuläig i, d.h. für jede Kane e garanier: Konane 0 f (e) c(e), {w V w E} maximal i, d.h. uner allen zuläigen --Flüen f = Neozuflu f () maximier. Variable V E lineare Bechränkungen! lineare Zielfunkion! 2

3 Fuure Work Today Kann man maximale Flüe (= Spezialfall eine LP) auch mi maßgechneideren kombinaorichen Algorihmen berechnen? Hoffnung: Da könne chneller gehen und rukurelle Einichen liefern. 3

4 Nich i prakicher al eine gue Theorie Def. Sei G = (V, E) ein gericheer Graph,, V. Eine Pariionierung (S, T = V \ S) on V i ein --Schni, fall S, T. S T S T Rau(S) = {u E u S, T } {u E u T, S} = Rein(S) Zuflu f (S) = f (Rein(S)) } minu =: Neozuflu f (S) Abflu f (S) = f (Rau(S)) 4

5 Neozuflüe on Schnien und Knoen Zur Erinnerung: Neozuflu f (S) := f (Rein(S)) f (Rau(S)) S Rau(S) E T S Rein(S) E T Lem. 1 Bewei. Sei G = (V, E) Graph, S V und f : E R. Dann: Neozuflu f (S) = S Neozuflu f (). S Neozufl f () = S (Zuflu f () Abflu f ()) ( S S e=u f (e) +f = e=w f (e)) u f = f (e) f (e) = Neozufl f (S) +f f e Rein(S) e Rau(S) 5

6 Noch mehr Schnie Lemma 1. Sei G = (V, E) Graph, S V und f : E R. Dann: Neozuflu f (S) = S Neozuflu f (). Lemma 2. G Graph,, V, f --Flu, (S,T ) --Schni. Dann gil f = Neozuflu f (T ) Bewei. f = Def. Neozuflu f () = T Neozuflu f () da Neozuflu f () = 0 für alle, = Neozuflu f (T ) 6

7 Kapaziä on Schnien Lemma 2. G Graph,, V, f --Flu, (S,T ) --Schni. Dann gil f = Neozuflu f (T ) =: Neoabflu f (S). Def. G Graph mi Kap. c : E R >0, (S,T ) --Schni. Dann i c(s) := c(rau(s)) die Kapaziä on (S,T ). Lemma 3. f zulä. --Flu, (S, T ) --Schni f c(s). Bewei. Speziell: max f f min S c(s) f = Neoabflu f (S) = f (Rau(S)) f (Rein(S)) f (Rau(S)) S 8/ 16 5/ 13 4/ / 12 3/ 9 4/ / / 20 3/ 4 T c(rau(s)) = c(s) Korollar. f = c(s) f maximal,! c(s) min.!! 7

8 Reidualnez Beob. Aber: Def. 8/ 16 12/ 13 4/ 4 Fall e einen --Weg gib, bei dem auf keiner Kane die Kapaziä augechöpf i, können wir f ergrößern. Fall e keinen olchen --Weg gib, o i f nich unbeding maximal. Der Reidualgraph G f = (V, E f ) enhäl für jede Kane e = u on G = (V, E) die Kane(n) +e := u fall f (e) < c(e) e := u fall f (e) > / 12 3/ 9 11/ / / 20 4/ 4 G mi c f (+e) := c(e) f (e) mi c f ( e) := f (e) Reidualkapaziäen G f 8

9 Fluergrößernde Wege Def. Ein --Weg W in G f heiß fluergrößernder Weg für f. Die Reidualkapaziä on W i W := min σe W c f (σe), wobei σ {+, }. Saz. (om fluergrößernden Weg). Ein zuläiger --Flu f in G i maximal e gib keinen fluergrößernden Weg in G f. 8/ 16 4/ 4 12/ / 12 3/ 9 11/ / / 20 4/ 4 G G f 9

10 Da Max-Flow-Min-Cu-Theorem Saz. [Ford & Fulkeron, 1956] [Elia, Feinein, Shannon 1956] [Kozig 56] Saz. In einem ger. Graphen G mi Kap. c : E R >0 gil: max f = f zuläiger --Flu min c(s) (S,T ) --Schni d.h. der Wer eine maximalen Flue i gleich der Kapaziä eine minimalen --Schnie. Leer Randolph Ford, Jr. (*1927) Delber R. Fulkeron ( ) Zur Erinnerung: Korollar. f = c(s) f maximal, c(s) min. (om fluergrößernden Weg). Ein zuläiger --Flu f in G i maximal e gib keinen fluergrößernden Weg in G f.!!! 10

11 Saz. Bewei. In einem ger. Graphen G mi Kap. c : E R >0 gil: max f = f zuläiger --Flu min c(s) (S,T ) --Schni Sei f ein maximaler Flu. e gib keinen fluergrößernden Weg { in G f i on au nich erreichbar } S = { on erreichbar} i --Schni T = { on nich erreichbar} Sei e = u Rau(S) f (e) = c(e), on wäre on in G f f (Rau(S)) = c(rau(s)) Nun ei e = u Rein(S) f (e) = 0 f (Rein(S)) = 0 erreichbar Alo: c(s) = c(rau(s)) = f (Rau(S) f (Rein(S)) Def. = Neoabflu f (S) = f c(s) minimal 11 Korr.

12 Der Algorihmu on Ford & Fulkeron FordFulkeron(DirecedGraph G = (V, E; c), Verex, Verex ) foreach u E do f u = 0 while G f enhäl --Weg W do W = min u W c f (u) foreach u W do if u E hen f u = f u + W ele f u = f u W reurn f Korrekhei? Folg au Saz om fluergrößernden Weg. Laufzei? Berechnung on --Wegen } Breienuche O(E) Zei Tiefenuche Anz. Schleifendurchläufe in jedem Durchlauf wird f um 1 ergrößer max. f Durchläufe, wobei f ein max. Flu 1. c : E N: 2. Q >0 : 3. R >0 : O( f E) erweiern... problemaich! 12

13 Beipiel 0/ 0/ 0/1 u 0/G 0/ G f u 1 1/ 0/ 1/1 u 0/ 1/ u / 1/ 0/1 u 1/ 1/... Laufzei Ω( f E) 13

14 Der Algorihmu on Edmond & Karp EdmondKarp FordFulkeron(DirecedGraph G = (V, E; c), Verex, Verex ) foreach u E do f u = 0 while G f enhäl --Weg do W = kürzeer --Weg in G f W = min u W c f (u) foreach u W do if u E hen f u = f u + W ele f u = f u W reurn f Jack R. Edmond *1934 Richard M. Karp *1935 Boon, MA 14

15 Beipiel 0/ 0/ 0 0/1 u u 0 u 0 0/G 0/ 0 G f Aband on = 1 u u Aband = 3 u Aband = 15 FERTIG!

16 Kürzee Wege machen effiziene Algorihmen Def. Sei δ f (u, ) die Länge (= Anz. Kanen) eine kürzeen u--weg in G f. Lemma. Während EdmondKarp(G,, ) gil für jeden Knoen V, da δ f (, ) mi jeder Fluergrößerung monoon zunimm. Bewei. Annahme: e gib einen Knoen derar, da δ(, ) bei einer Fluergrößerung abnimm. Seien f und f die Flüe or bzw. nach der Vergrößerung. kleiner Schurke Ab jez ei ein Knoen mi minimalem Wer on δ f (, ) und δ f (, ) < δ f (, ). 16

17 Forezung Bewei Sei W ein kürzeer --Weg in G f. Sei u der leze Knoen or auf W. u E f und δ f (, ) = δ f (, u) + 1. Nach Wahl on gil: δ f (, u) δ f (, u) Beh. Bewei. u E f u i kein Schurke; Aband nimm nich ab. Eig. kürzeer Wege Angenommen u E f. δ f (, ) δ f (, u) + 1 δ f (, u) + 1 = δ f (, ) Widerpruch zur Annahme, da δ f (, ) < δ f (, ). Aber wa kann u E f und u E f erklären?? 17

18 Forezung II 1. Fall: u E u E f u E f 2. Fall: u E u E f bedeue f (u) = c(u). bedeue f (u) < c(u). Fluergrößerung enlang u E f bedeue f (u) = 0. u E f bedeue f (u) > 0. Fluergrößerung enlang u E f der Flu wird in beiden Fällen enlang u ergrößer Da EdmondKarp enlang kürzeer Wege ergrößer, mu Vorgänger on u auf einem kürzeen -u-weg in G f ein. [u kein Schurke] [u lieg auf W or ] δ f (, ) = δ f (, u) 1 δ f (, u) 1 = δ f (, ) 2 < δ f (, ) Widerpr. zur Ann. δ f (, ) < δ f (, ) 18

19 Anzahl Fluerhöhungen & Laufzei Saz. EdmondKarp(G,, ) führ O(V E) Fluergrößerungen durch. Korollar. Der Edmond-Karp-Algorihmu läuf in O(V E 2 ) Zei. Bewei. Jede der O(V E) Fluergrößerungen benöig O(E) Zei bei Anwendung on Breienuche. 19

20 Bewei (Saz) Saz. EdmondKarp(G,, ) führ O(V E) Fluergrößerungen durch. Bewei. Alg. ergrößere enlang kürzeem --Weg W in G f Kane u auf W heiß kriich in G f, wenn c f (u) = W zeigen: jede Kane kann höchen O(V ) mal kriich ein δ f (, ) = δ f (, u) + 1 da u auf kürzeem Weg W in G f nach Fluergr. enlang W erchwinde u au G f u erchein er wieder im Reidualgraph, nachdem Flu enlang u ergrößer wurde u E f 20

21 Forezung Bewei Saz. EdmondKarp(G,, ) führ O(V E) Fluergrößerungen durch. Bewei. da u auf kürzeem fluergr. Weg in G f δ f (, u) = δ f (, ) + 1 u auf W in G f δ f (, ) + 1 = δ f (, u) + 2 δ f (, u) V 2 olange δ f (, u) < + u kann nur O(V ) mal kriich ein 21

22 Kurze Gechiche der Berechnung max. Flüe Mehode Laufzei O( ) Auoren Allgemeine gerichee Graphen hore reid. - pah V E 2 Edmond & Karp 56 puh relabel V 2 E Goldberg 87 relabel o fron V 3 Goldberg & Tarjan 88 V E log(v 2 /E + 2) blocking flow min(v 2/3, E 1/2 ) E Goldberg & Rao 98 log(v 2 /E + 2) log C, wobei C = e E c(e) new VE Orlin 13 --planare Graphen hore pah in dual V Hain 81 + Henzinger e al. 97 Planare Graphen lefmo reid. - pah V log V Borradaile & Klein 06 + erex capaciie V log V Kaplan & Nubaum 09 22

Netzwerke Beispielnetzwerk N

Netzwerke Beispielnetzwerk N Nezwerke Kapiel Flüe in Nezwerken Sromnez Telefonnez Warenflu zwichen Herellern und Konumenen Verkehr (Sraßen, Züge, Flugzeuge,...) Of wollen wir Güer von einem Punk zu einem anderen chicken Ziel So viel/effizien/illig

Mehr

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten 6. Flüe un Zuornungen Fluß In ieem Kapiel weren Bewerungen von Kanen al maximale Kapaziäen inerpreier, ie üer iee Kane pro Zeieinhei ranporier weren können. Wir können un einen Graphen al Verorgungnezwerk

Mehr

6. Primal-duale Algorithmen

6. Primal-duale Algorithmen 6. Einführung... 6. Der primal-duale Algorihmu... 6 6. Bemerkungen zum primal-dualen Algorihmu... 7 6. Ein primal-dualer Algorihmu für da Kürzee-Wege-Problem... 8... 9 6.6 Ein primal-dualer Algorihmu für

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

Minimal spannende Bäume

Minimal spannende Bäume Minimal pannende Bäume Geuch: : ein minimal pannender Baum u G,, d.h. eine minimale Teilmenge E min E der Kanen, o da G min = (V,E( min,d) uammenhängend ngend und die Summe der Kanengewiche minimal i.

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüe, Schnie, iprie Grphen Michel Eicher 06. Juni 0 Michel Eicher Flüe, Schnie, iprie Grphen 06. Juni 0 / 48 Deniionen Nezwerk Flu Üerich Mximler Flu Ford-Fulkeron Minimler Schni Edmond-Krp 3 Redukionen

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

KAPITEL 4 FLÜSSE IN NETZWERKEN

KAPITEL 4 FLÜSSE IN NETZWERKEN KAPITEL 4 FLÜSSE IN NETZWERKEN F. VALLENTIN, A. GUNDERT 1. Das Max-Flow-Min-Cut Theorem Es sei D = (V, A) ein gerichteter Graph, s, t V zwei Knoten. Wir nennen s Quelle und t Senke. Definition 1.1. Eine

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auzug au dem Lernmaerial Forildunglehrgang Saalich geprüfe Techniker Auzug au dem Lernmaerial Naurwienchaf DAA-Technikum Een / www.daa-echnikum.de, Infoline: 00 83 6 50 Definiion: Die Gechwindigkei eine

Mehr

Kürzere reguläre Ausdrücke aus deterministischen endlichen Automaten

Kürzere reguläre Ausdrücke aus deterministischen endlichen Automaten Kürzere reguläre Audrücke au deerminiichen endlichen Auomaen by Hermann Gruber Iniu für Informaik, Juu-Liebig-Univeriä Gieen, Arndrae 2, D-35392 Gieen. Februar 2009 gemeinam mi Marku Holzer (JLU Gieen).

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Physikalische Größe = Zahlenwert Einheit

Physikalische Größe = Zahlenwert Einheit Phyikaliche Grundlagen - KOMPAKT 1. Phyikaliche Größen, Einheien und Gleichungen 1.1 Phyikaliche Größen Um die Ar ( Qualiä) und da Aumaß ( Quaniä) phyikalicher Eigenchafen und Vorgänge bechreiben und mi

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoreiche Grundlagen Phik Leiungkur Größen Größen Größen 5 m Grundgrößen abgeleiee Größen Zahl Einhei Länge, Mae, Zei, Sromärke, Temperaur, Soffmenge, Lichärke Gechwindigkei, Kraf, Ladung Änderunggrößen:

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Induktionsgesetz. a = 4,0cm. m = 50g

Induktionsgesetz. a = 4,0cm. m = 50g 1. Die neenehende Aildung (Blick von vorn) zeig eine Spule mi 5 Windungen von quadraichem uerchni mi Seienlänge a = 4,cm zum Zeipunk. DieSpuleeweg ich mider Gechwindigkei v vom Berag v = 2, cm nachrech.

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2

Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2 Greenche Funktion Frank Eenberger FU Berlin 30.September 2006 Inhalterzeichni Nomenklatur 2 Greenche Theoreme 3 Anwendung in der Elektrotatik 2 4 Anpaung an Randbedingungen 3 5 Eindeutigkeit der Löung

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Maximaler Fluss = minimaler Schnitt

Maximaler Fluss = minimaler Schnitt Maximaler Flu = minimaler Schnitt Oliver Junge Fakultät für Mathematik Techniche Univerität München Flüe in Netzwerken Mathematiche Abtraktion Kapazität 3 2 Quelle 5 Senke 1 2 Netzwerk gerichteter Graph

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 22. Vorlesung Tiefensuche und Topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Vorlesungsumfrage Nutzen Sie die Vorlesungsbefragung

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2 NIVESITÄT LEIPZIG Iniu für Informaik Prüfungaufgaben Klauur zur Vorleung WS 2/2 und SS 2 b. Techniche Informaik Prof. Dr. do Kebchull Dr. Paul Herrmann Dr. Han-Joachim Lieke Daum:. Juli 2 hrzei: 8-3 Or:

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am 11.12.212 Löung Blatt 8 Übungen zur Vorleung PN1 Löung zum Übungblatt 8 Beprochen am 11.12.212 Aufgabe 1: Moleküle al tarre rotierende Körper Durch Mikrowellen laen ich Rotationen von Molekülen mit einem

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

3. Partielle Differentialgleichungen

3. Partielle Differentialgleichungen 3.. Grundlagen und Klassifikaion Welche Ordnung haben diese Gleichungen?? 3.4.1 Lineare parielle Differenialgleichungen. Ordnung Analogie: Klassifikaion Kegelschnie 1 3.4.3 Korrek geselle Probleme Anfangs-

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Gruppenarbeit: Anwendungen des Integrals Gruppe A: Weg und Geschwindigkeit

Gruppenarbeit: Anwendungen des Integrals Gruppe A: Weg und Geschwindigkeit Gruppenarbei: Anwendungen de Inegral Gruppe A: Weg und Gechwindigkei Die ere Ableiung der Zei-Or-Funkion x() der Bewegung eine Körper ergib bekannlich die Zei- Gechwindigkei-Funkion v(), deren ere Ableiung

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur?

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur? Aufaben zu freien Fall 0. Von der Spize eine Ture lä an einen Sein fallen. Nach 4 Sekunden ieh an ihn auf de Boden aufchlaen. a) Wie hoch i der Tur? b) Mi welcher Gechwindikei riff der Sein auf den Erdboden

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

Versuchsprotokoll. Datum:

Versuchsprotokoll. Datum: Laborveruch Elekroechnik I eruch 2: Ozillokop und Funkiong. Hochchule Bremerhaven Prof. Dr. Oliver Zielinki / Han Sro eruchprookoll Teilnehmer: Name: 1. 2. 3. 4. Tea Daum: Marikelnummer: 2. Ozillokop und

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

2 Formeln richtig und schnell umstellen

2 Formeln richtig und schnell umstellen Formeln ricig und cnell umellen 17 Aufgabe 1 Peer i mi einer Scweer Criina in Konanz unerweg. Er oll ie bei irer Freundin abezen. Die beiden faren gerade in einer engen Einbanraße mi Parkbucen und Bürgereig

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h) Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich 3 940 Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Thema 10: Kapitalwert und Steuern I

Thema 10: Kapitalwert und Steuern I Thema : Kapialwer und Seuern I Augangpunk: Fehlende Encheidungneuraliä mach e erforderlich, euerliche Regelungen in beriebwirchaflichen Encheidungkalkülen zu berückichigen. Definiion Encheidungneuraliä

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Physik-Übungsblatt Nr. 1: Lösungsvorschläge

Physik-Übungsblatt Nr. 1: Lösungsvorschläge Phyik-Übungbla Nr. 1: Löungorchläge ufgabe 1: Zur Zei are Wagen mi der konanen Gechwindigkei 1 km / h, Wagen fähr mi der konanen Gechwindigkei 1 km / h in die gleiche Richung, ha aber zu eginn einen Vorprung

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen Seminar im Sommersemester 2008 Sebastian Bauer, Wei Cheng und David Münch Herausgegeben von Martin Nöllenburg, Ignaz Rutter und Alexander Wolff Institut für Theoretische Informatik

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Physik 1 (GPh1) am

Physik 1 (GPh1) am Nae: Marikelnuer: Sudienfach: Phyik 1 (GPh1) a 4.03.013 Fachbereich Elekrechnik und Infraik, Fachbereich Mecharnik und Machinenbau Zugelaene Hilfiel zu dieer Klauur: Beibläer zur Vrleung Phyik 1 ab WS

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Ausgleichsrechnung - Lineare Regression

Ausgleichsrechnung - Lineare Regression ugleichrechnung - Lineare Regreion Die biher berachee Fehlerrechnung i gu verwendbar wenn ich die beracheen Größen dire een laen. Of ind phialiche Größen für eine diree Meung aber nur chwer zugänglich;

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach B? B A Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach

Mehr

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen: Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die

Mehr

Lineares Programmieren

Lineares Programmieren Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2011 Nachtrag Art Gallery Problem Lässt sich der Triangulierungs-Algorithmus

Mehr

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren Nuzung der inhärenen enorichen Eigenchafen von piezoelekrichen Akoren K. Kuhnen; H. Janocha Lehruhl für Prozeßauomaiierung (LPA), Univeriä de Saarlande Im Sadwald, Gebäude 13, 6641 Saarbrücken Tel: 681

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr