Erwartungswert einer Zufallsvariablen / mean value of a random variable

Größe: px
Ab Seite anzeigen:

Download "Erwartungswert einer Zufallsvariablen / mean value of a random variable"

Transkript

1 Erwartungswert / mean value / moyen E[X] Aademische isziplin der Statisti/academic field of statistics/ la discipline statistique/estadística/disciplina academica della statistica Erwartungswert einer Zufallsvariablen / mean value of a random variable efinition (Erwartungswert einer disreten Zufallsvariablen X) Sei X eine disrete Zufallsvariable mit Zähldichte p = P(X= ), K. K ist die Indemenge, mit der die Elemente des Ereignisraums Ω bezeichnet werden: Ω = {ω K }. ann heißt die Zahl E(X) := p X K Erwartungswert von X. K enthält endlich viele oder abzählbar viele Werte i ; i = 1,,, n oder i = 1,,,. 1 efinition (Erwartungswert einer stetigen Zufallsvariablen X) Sei X eine stetige Zufallsvariable mit der ichtefuntion f: R. ann heißt die Zahl E(X) := Erwartungswert von X. f()d Zu beiden efinitionen werden einige Illustrationen gegeben.

2 Illustration 1 (er faire, ideale, ungezinte Würfel) Ω = { K K={1,,3,4,5,6}} = {1,, 3, 4, 5, 6} sowie p = 1 6 (=1,,3,4,5,6) E(X) = 6 p = 1 6 =1 6 =1 = 3.5. Illustration (Eine disrete reiecsdichte) Sei X eine Zufallsvariable X : Ω R mit Ω = { K K={1,,...,K}} = { 1,, 3,..., K} sowie p = a (=1,,...,K). ann folgt für a (wegen der Eigenschaften der Wahrscheinlicheit) 1 = K p = a K = ak(k+1) =1 =1 a = E(X) = K p = a K = K+1. =1 =1 3 K(K+1) und Illustration 3 (Symmetrie, Formulierung als Aufgabe) Gegeben sei die Zufallsvariable X mit folgenden Werten und zugehöriger Zähldichte p Berechnen Sie den Erwartungswert von X. Lösung: E(X)= aus Symmetrie; dies gilt allgemein für symmetrische Zufallsvariable. Sei X eine Zufallsvariable, deren ichtefuntion f die Eigenschaft f() = f(-) für alle R besitzt. ann gilt, daß der Erwartungswert von X ist, wenn überhaupt ein Erwartungswert eistiert. M.a.W. es gilt der folgend Satz. Satz (Mittelwert einer symmetrischen Zufallsgröße) Eine um den Punt S symmetrisch verteilte Zufallsvariable X hat den Mittelwert S. Beweis: Sei X disret. ann gibt es zu jeder Realisierung S + =: y mit p = P[X = y ] ein anderes y i =S- mit gleichem p = p i = P[X = y i ]; damit ist der Beweis für den disreten Fall abgeschlossen. Sei X stetig. ann gilt für die ichte f(s+) = f(s-). Illustration 4 Sei p 1 = P[X = -], p = P[X = -1], p 3 = P[X = 1], p 4 = P[X = ] und p 1 = p 4 und p = p 3, dann ist S=.

3 Illustration 5 (rei Zähldichten mit identischem Mittelwert nach Prof. Schwarze) j ichte ichte ichte E(X) = 1 Schwarze-1 3,6,5 ichte 1,4,3, ichte 1 ichte ichte 3, M.a.W. er Mittelwert reicht nicht aus, um eine disrete Zufallsvariable zu charaterisieren. ie graphischen Abbildungen der drei ichten folgen auf der nächsten Seite.

4 ie Zähldichten der Illustration 4 4

5 ie Verteilungen der Illustration 5 5

6 ie Verteilungen der drei Zufallsvariablen in einem Bild: 6 M.a.W. der Mittelwert reicht nicht aus, um eine Verteilung zu charaterisieren. Illustration 6 (Eine stetige reiecsverteilung) Sei X gemäß der reiecsverteilung 1. mit Parametern a=b=, c= und h=1 verteilt. ann hat X die ichte f() = 1 -.5, und das Aussehen: f() 1 Es ist E(X) = f()d = 1 (1-.5)d = = 3. Illustration 7 (Eine stetige Zufallsvariable) Sei X eine Zufallsvariable mit der ichtefuntion f() = a b, <<b, d.h. = (,b). Aus der Bedingung f()d = 1 erhält man: b 1 = f()d = abb+1 b+1 a = b+1 und E(X) = b b+1 b b+1 f()d = ( b b+1)b+1 d = b(b+1) b+.

7 Bemerung 1 (Lineare Transformation von Zufallsvariablen) Sei g: R R eine integrierbare Funtion. ann gilt: 7 E(g(X)) = g( )p, falls X disret ist und E(g(X)) = g()f()d, falls X stetig ist. Insbesondere gilt mit Y:= a + bx (a,b R): E(Y) = a + be(x). Beweis: Ist X disret, dann ist auch Y disret und es gilt: E(Y) = p y = p (a + b ) = a Ist X stetig, dann ist auch Y stetig und es gilt: p + b p =a + be(x). E(Y) = yf(y)dy = (a+b)f()d = a f()d + b f()d = a + be(x) Bemerung (Ungleichung von Marov) Sei X eine Zufallsvariable mit nichtnegativen Werten, dann gilt die folgende Marovsche Ungleichung: P[ X c] E(X) c, c >. Beweis: Hier wird nur der disrete Fall vorgeführt. Falls X stetig ist, verläuft der Beweis analog. E(X) = p = : <c p + : c p : c p = c : c p = c P(X c). Beispiel 1 (Eine stetige parametrische Verteilung mit Mittelwert 1 und variabler Varianz) Beispiel (Eine disrete Zufallsvariable für die der Mittelwert nicht eistiert) Beispiel 3 (Eine stetige Zufallsvariable für die der Mittelwert nicht eistiert) Beispiel 4 (ie fragwürdige Rolle des urchschnitts) Beispiel 5 (as arithmetische Mittel einer identisch und unabhängig verteilten Zufallsstichprobe, Formulierung als Aufgabe) Beispiel 6 (Formulierung als Aufgabe zu einer disreten reiecsverteilung) (RELIABILITY, STATISTICS, BIAS, CHEBYSHEV, VARIANCE, EFFICIENCY, VARIATION)

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Musterlösung zur ersten Klausur Stochastik für Lehramtskandidaten SS2012

Musterlösung zur ersten Klausur Stochastik für Lehramtskandidaten SS2012 Musterlösung zur ersten Klausur Stochasti für Lehramtsandidaten SS2012 Aufgabe 1 In einer Urne befinden sich 2n Kugeln, n N, die von 1 bis 2n durchnummeriert sind. Die Kugeln mit den Nummern 1 bis n sind

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT Wahrscheinlichkeitsverteilungen

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT Wahrscheinlichkeitsverteilungen ARBEITSBLATT 7- Wahrscheinlicheitsverteilungen Lernziele: Wahrscheinlicheitsfuntion und Verteilungsfuntion disreter Verteilungen berechnen und zeichnen önnen. Dichtefuntion und Verteilungsfuntion stetiger

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Kapitel 1: Elemente der Statistik

Kapitel 1: Elemente der Statistik 1 Kapitel 1: Elemente der Statistik 1.1 Beispiel Ein Elektromarkt erhält eine Lieferung von N = 10000 Glühbirnen. Darunter ist eine unbekannte Anzahl h defekt, wobei h 0 1 = {0, 1,..., N}. Um Kenntnisse

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe Übungsmaterial 9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe 9. Erwartungswert Fragt man nach dem mittleren Wert einer Zufallsgröÿe X pro Versuch, so berechnet man den Erwartungswert

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Aufgabe 3 Was ist der Erwartungswert der größten gezogenen Zahl M beim Zahlenlotto 6 aus 49 (ohne Zusatzzahl)?

Aufgabe 3 Was ist der Erwartungswert der größten gezogenen Zahl M beim Zahlenlotto 6 aus 49 (ohne Zusatzzahl)? Erwartungswert Aufgaben Aufgabe Bei der Flugplatz Party haben Sie die Wahl ob Sie 3 Euro Eintritt bezahlen, oder Sie würfeln den Eintrittspreis mit einem normalen Würfel. Die Frage die sich dabei stellt

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Gesetze der großen Zahlen

Gesetze der großen Zahlen Kapitel 0 Gesetze der großen Zahlen 0. Einführung Im ersten Kapitel wurde auf eine Erfahrungstatsache im Umgang mit zufälligen Erscheinungen aufmerksam gemacht, die man gewöhnlich als empirisches Gesetz

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

5 Optimale erwartungstreue Schätzer

5 Optimale erwartungstreue Schätzer 33 5 Optimale erwartungstreue Schätzer 5.1 Definition Seien X 1,..., X n reelle Zufallsvariablen, T T (X 1,..., X n ) reellwertige Statistik. T heißt linear : c 1,..., c n R mit T n c j X j 5.2 Satz Seien

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Aufgaben zu Kapitel 38

Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Verständnisfragen Aufgabe 38. Welche der folgenden vier Aussagen sind richtig:. Kennt man die Verteilung von X und die Verteilung von Y, dann kann man daraus

Mehr

Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I

Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I Wählen Sie aus den folgenden sechs Aufgaben fünf Aufgaben aus. Die maximal erreichbare Punktezahl finden Sie neben jeder Aufgabe.

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Graphische Verfahren in der Statistik: Q-Q- und P-P-Plots

Graphische Verfahren in der Statistik: Q-Q- und P-P-Plots Prof. Dr. Dietmar Pfeifer Institut für Mathemati Graphische Verfahren in der Statisti: Q-Q- und P-P-Plots Bei den üblichen parametrischen Testverfahren in der Statisti wird in der Regel eine Annahme über

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Allgemeine Wahrscheinlichkeitsräume

Allgemeine Wahrscheinlichkeitsräume Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Klausur zur Vorlesung,,Algorithmische Mathematik II

Klausur zur Vorlesung,,Algorithmische Mathematik II Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-2015

Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-2015 Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-05!"!## x 8 0 8 0 8 0 0, 0, 3 0 0, 05 $ $ % 3, 75 $ Geben Sie für das vorige Beispiel. (Bsp. ) die Anteile der jeweiligen

Mehr

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Jung Kyu Canci Universität Basel HS2015 1 / 15 Literatur Kapitel 6 Statistik in Cartoons : Kapitel 8 Krengel : 6 und 14 Storrer

Mehr

Zum Begriff des Erwartungswertes

Zum Begriff des Erwartungswertes Zum Begriff des Erwartungswertes Wie man den Erwartungswert in der Schule einführt! Christopher Hirsch Institut für Mathematik Humboldt-Universität zu Berlin 13. Juli 2010 Das Wissensquiz 1. Die Aufgabe

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2010 1 Tests für Erwartungswerte Teststatistik Gauß-Test Zusammenhang zu Konfidenzintervallen t-test

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen Zufallszahlen Zufallszahlengeneratoren Transformation von Zufallszahlen Test von Zufallszahlengeneratoren Otto-von-Guericke-Universität Magdeburg Thomas Schulze Zufallszahlengeneratoren - Zufallszahlen

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx

Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx Analysis Seite Ableitungsregeln: (f±g) = f ± g (f g) = f g + fg ' f f'g fg' = 2 g g ' f' = 2 f f ' ( ) = g f () g'(f()) f '() ' ' f (y) = mit y = f() bzw. f () = f'() f' f( ) Integrationsregeln: b a c

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr