7 Der Gaußsche Integralsatz

Größe: px
Ab Seite anzeigen:

Download "7 Der Gaußsche Integralsatz"

Transkript

1 7 Der Gaußsche Integralsatz Im Folgenden sei eine k-dimensionale Untermannigfaltigkeit des R n und a. 7.1 Tangentialvektoren. Ein Vektor v R n heißt Tangentialvektor an in a, falls es eine stetig differenzierbare Kurve γ : ] ε,ε[ gibt (ε > 0 geeignet) mit der Eigenschaft, dass γ(0) = a und γ (0) = v. Die Gesamtheit aller Tangentialvektoren in a wird als der Tangentialraum in a bezeichnet. Wir schreiben T a. 7.2 Satz. (a) T a ist k-dimensionaler Unterraum des R n. (b) Ist ϕ : T V (T offen in R k ) eine lokale Karte in einer Umgebung von a, und ist t T mit ϕ(t) = a, so bilden die Vektoren (c) (t),..., (t) t 1 t n eine Basis von T a. Ist U eine offene Umgebung von a in R n und sind f 1,...,f n k : R stetig differenzierbare Funktionen mit ( ) fi (a) U = {x U : f 1 (x) =... = f n k (x) = 0} und rang = n k, x j so gilt T a = {v R n : v gradf j (a),j = 1,...,n k}. i=1,...,n k;j=1,...,n Beweis. Es sei T 1 der Vektorraum aus (b) und T 2 der aus (c). Wir zeigen, dass T 1 T a T 2. Wegen dimt 1 = dimt 2 = k folgt dann Gleichheit. T 1 T a : Es sei v = λ 1 t 1 (t) λ k t k (t). Definiere γ : ] ε,ε[ durch γ(τ) = ϕ(t 1 + λ 1 τ,...,t k + λ k τ). Dann ist γ(τ) für hinreichend kleine τ, und γ(0) = ϕ(t) = a. Ferner ist γ (0) = ϕ (t)λ = v. T a T 2 : Nun sei v T a und γ : ] ε,ε[ stetig differenzierbar mit γ(0) = a und γ (0) = v. Da γ in verläuft, gilt f j (γ(τ)) = 0. Differenzieren liefert 0 = gradf j (γ(0))v = gradf j (a),v, somit v T Normalenvektoren. Ein Vektor w R n heißt Normalenvektor an in a, falls w T a. us 7.2 sehen wir sofort: Die Normalenvektoren bilden einen (n k)-dimensionalen Unterraum des R n, der mit N a bezeichnet wird und der von den Vektoren aufgespannt wird. gradf 1 (a),...,gradf n k (a) 46

2 7.4 Definition. Es sei R n kompakt. Wir sagen, habe glatten Rand, falls es zu jedem Randpunkt a von eine offene Umgebung U und eine stetig differenzierbare Funktion ψ : U R mit folgenden Eigenschaften gibt: (i) U = {x U : ψ(x) 0} (ii) grad ψ(x) 0 für alle x U. 7.5 Satz. it den Bezeichnungen von 7.3 ist U = {x U : ψ(x) = 0}. an nennt ψ daher eine randdefinierende Funktion. Insbesondere folgt, dass eine (n 1)-dimensionale Untermannigfaltigkeit des R n ist. Beweis. Ist x U mit ψ(x) < 0, so ist auch ψ(y) < 0 für alle y in einer Umgebung von x. Wegen (i) liegt diese Umgebung in, somit ist x kein Randpunkt. Ist x U mit ψ(x) = 0, und ist v = grad ψ(x) 0, so betrachte τ ψ(t + τv) = ψ(t) + gradψ(a),τv + o( τv ) = 0 + τ v 2 + o( τv ). Diese Funktion wechselt in 0 das Vorzeichen. Damit enthält jede Umgebung von x Punkte y mit ψ(y) > 0; diese liegen nicht in. Daher ist x Randpunkt. 7.6 Satz. Es sei R n ein Kompaktum mit glattem Rand und a. Dann existiert ein eindeutig bestimmter Vektor ν R n mit folgenden Eigenschaften: (i) ν T a (ii) ν = 1. (iii) ε > 0: a + τv / für 0 < τ < ε. an nennt ν = ν(a) den äußeren Normalenvektor an in a. Beweis. Existenz: Ist ψ eine randdefinierende Funktion nahe a, so hat ν(a) = die gewünschten Eigenschaften (vgl. Beweis 7.5). grad ψ(a) grad ψ(a) Eindeutigkeit. Es ist dimn a ( ) = n dim = 1. lso ist v = λgrad ψ(a) für ein λ 0. Wegen (ii) ist λ = ± grad ψ(a) 1. us (iii) folgt, dass λ > Folgerung. Die äußeren Normalenvektoren an eine kompakte enge mit glattem Rand bilden ein stetig differenzierbares Vektorfeld ν : R n \ {0}. 7.8 Beispiel. Es sei = {x R n : x r} die Vollkugel vom Radius r. ls randdefinierende Funktion kann man ψ(x) = x 2 r 2 wählen. Hier ist = {x : x = r}; der Normalenvektor an a ist ν(a) = a r. 47

3 7.9 Gaußscher Integralsatz. R n sei kompakt mit glattem Rand und ν : R n die äußere Normale. Ferner sei U offen und F : U R n ein stetig differenzierbares Vektorfeld. Dann ist divf(x)dx = F(x),ν(x) ds(x). (1) 7.10 Erweiterung. Es sei R n kompakt. an nennt einen Randpunkt a von regulär, wenn es eine Umgebung U von a gibt, so dass U eine glatte n-dimensionale annigfaltigkeit ist. nsonsten heißt a singulär. Der Satz von Gauß gilt auch noch, wenn die enge der singulären Randpunkte den (n 1)-dimensionalen inkowski-inhalt Null hat, die Funktion F auf stetig ist und divf auf dem Inneren von stetig ist. (ohne Beweis) Für den Beweis einige Vorbereitungen: 7.11 Graphdarstellung. Ist kompakt mit glattem Rand und a, so kann nahe a als enge unterhalb des Graphen einer Funktion von n 1 Variablen (obd der ersten n 1) dargestellt werden: Es sei ψ : U R eine randdefinierende Funktion auf einer Umgebung U von a. Dann ist grad ψ(x) 0 auf U. OBd sei xn ψ(x) > 0. Nach dem Satz von der impliziten Funktion finden wir R n 1 offen und I = ],β[ mit I U sowie eine stetig differenzierbare Funktion g : I, so dass für (x,x n ) I gilt: Dann ist ψ(x,x n ) = 0 x n = g(x ). ( I) = {(x,x n ) I : ψ(x,x n ) 0} = {(x,x n ) I : x n g(x )}. it ψ(x) = x n g(x ) haben wir dann eine weitere randdefinierende Funktion. Das zugehörige äußere Normalenfeld ist also ν = grad ψ(x) grad ψ(x) = ( grad g,1). 1 + grad g Definition. Es sei f : R n C m eine Funktion. Der Träger von f ist die enge suppf = {x : f(x) 0} (bschluss in R n ) Lemma. Ist U R n offen und hat die stetig differenzierbare Funktion g kompakten Träger in U, so ist xj g(x)dx = 0, j = 1,...,n. U Beweis. OBd j = n. Wir setzen durch Null fort und fassen g als stetig differenzierbare Funktion auf R n auf. Dann ist xn g(x)dx = xn g(x)dx = xn g(x)dx n dx = 0dx = 0. U R n R n 1 R n 1 48

4 7.14 Lemma. (Zentraler Spezialfall des Satzes von Gauß) Es sei R n 1 offen, I = ],β[ ein Intervall und g : I stetig differenzierbar. Wir setzen = {(x,x n ) I : x n g(x )} = {(x,x n ) I : x n = g(x )}. Dann gilt für jede stetig differenzierbare Funktion f : I R mit kompaktem Träger in I und alle j = 1,...,n xj f(x)dx = f(t)ν j (t)ds(t), wobei ν j die j-te Komponente des Normalenvektors ν ist. Beweis. Wir unterscheiden zwei Fälle. Fall 1: 1 j n 1. Wir beobachten zunächst, dass nach der Kettenregel g(x ) xj f(x)dx n = Dann folgt: xj f(x)dx Fubini = da nach 7.11 und 6.13 Fall 2: j = n. Hier ist ν n (x) = Somit ist (1) = 7.13 = 0 + g(x ) xj f(x)dx n + f(x,g(x )) xj g(x ). (1) ( ) g(x ) xj f(x)dx n dx xj ( ) g(x ) f(x)dx n f(x)ν j (x)ds(x), dx f(x,g(x )) xj g(x )dx xj g(x ) ν j (x) = und ds(x) = 1 + grad g(x ) 2 dx. 1 + grad g(x ) grad g(x ) 2 und, wie bisher, ds(x) = 1 + grad g(x ) 2 dx. xn f(x)dx = f(x,g(x )) f(x,) dx = }{{} =0 f(x)ν n (x)ds(x) C -Zerlegung der Eins. Es sei K kompakt und {U j : j = 1,...,N} eine Überdeckung durch offene engen. Wir setzen U ε j = {x U j : dist(x, U j ) > ε}. Da {U ε j : j = 1,...,N;ε > 0} ebenfalls eine offene Überdeckung von K ist, und da Uε j Uδ j für ε > δ, finden wir ein ε > 0 mit der Eigenschaft, dass K N j=1 Uε j. Indem wir die eine zu {Uj ε } gehörige grobe Zerlegung der Eins nach 6.6 mit einer geeigneten glatten Funktion falten (Übung), erhalten wir eine der Überdeckung {U j } untergeordnete Zerlegung der Eins. Unter Kartenwechseln bleiben diese glatten Funktionen -mal differenzierbar. 49

5 Beweis des Satzes von Gauß. Wir überdecken mit endlich vielen offenen engen U j so, dass entweder (i) U j \ (U j schneidet den Rand nicht) oder (ii) nach evtl. Umnummerierung der Koordinaten ist U j = I mit offen in R n 1 und I = ],β[ und U j = {(x,x n ) I : x n g(x ).} it Hilfe einer untergeordneten Zerlegung der Eins können wir annehmen, dass F seinen Träger in einer dieser engen hat. Im Fall (i) gilt (1), weil nach Lemma 7.13 die linke Seite Null ist und die rechte ohnehin Null ist (F = 0 auf ). Im Fall (ii) folgt die ussage durch Summation über j = 1,...,n aus Lemma Beispiel. Wir betrachten auf R n das Vektorfeld F(x) = x mit div F(x) = n j=1 1 = n für alle x. Für jede kompakte enge mit glattem Rand ist dann nach Gauß vol = 1 div F(x)dx = 1 x, ν ds(x). n n 7.17 Greensche Formel in der Ebene. Es sei ϕ : [a,b] R 2 eine stetig differenzierbare, überschneidungsfreie geschlossene Kurve, die den Rand der kompakten enge G R 2 im positiven Sinn durchläuft, d.h. es sei G = ϕ([a,b]), ϕ (t) 0 für alle t und für x = ϕ(t) sei die äußere Normale ν(x) = (ϕ 2 (t), ϕ 1 (t)) ϕ. (t) Das Oberflächenmaß auf ϕ ist ds(t) = ϕ (t) dt. lso folgt nach 7.16 vol G = 1 2 G x,ν ds(x) = 1 2 b a ϕ 1 (t)ϕ 2(t) ϕ 2 (t)ϕ 1(t)dt. Dies ist aber gerade ein Kurvenintegral. it der üblichen Schreibweise (x, y) für die Variablen in R 2 und für Kurvenintegrale ( γ f,dx = b a f j(γ(t))γ j (t)dt) erhalten wir also vol G = 1 xdy y dx. 2 Bemerkung. Es langt hier, dass ϕ stückweise stetig differenzierbar ist. ϕ 50

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Gaußsche Prozesse - ein funktionalanalytischer Zugang

Gaußsche Prozesse - ein funktionalanalytischer Zugang Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Gaußsche Prozesse - ein funktionalanalytischer Zugang Bachelorarbeit in Wirtschaftsmathematik vorgelegt von Clemens Kraus am 31. Mai

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle

Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle Technische Universität Dresden Dr. rer. nat. Frank Morherr Was

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Armin Hoffmann Bernd Marx Werner Vogt Mathematik für Ingenieure 2 Vektoranalysis, Integraltransformationen, Differenzialgleichungen, Stochastik Theorie und Numerik ein Imprint von Pearson Education München

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Abschlussbericht Mathematik-Online

Abschlussbericht Mathematik-Online Abschlussbericht Mathematik-Online 1 Zusammenfassung. Im November 2001 riefen die Universitäten Stuttgart und Ulm das von dem Ministerium für Wissenschaft, Forschung und Kunst geförderte Projekt Mathematik-

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt.

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt. PARAMETERFUNKTIONEN Zwei Beispiele: gsave currentpoint translate 21 4 div setlin 1 1 x = 2t 2 1 y = t < t

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Höhere Mathematik für Ingenieure IV. Volker John

Höhere Mathematik für Ingenieure IV. Volker John Höhere Mathematik für Ingenieure IV Volker John Sommersemester 2007 Inhaltsverzeichnis I Weiterführende Integralrechung 2 1 Kurvenintegrale 3 11 Kurven 3 12 Skalares Kurvenintegral 4 13 Vektorielles Kurvenintegral

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Grundlagen der Variationsrechnung

Grundlagen der Variationsrechnung Universität des Saarlandes Fachrichtung 6.1 Mathematik /home/lehrstuhl/ag-fuchs/olli/work/texstyles/eule-eps-conv Grundlagen der Variationsrechnung Eine anwendungsorientierte Einführung in die lineare

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

VORBEREITUNG AUF DAS ABITUR

VORBEREITUNG AUF DAS ABITUR VORBEREITUNG AUF DAS ABITUR 9.5 Sinus- und Kosinusfuntionen 9.5. Bleib fit in Sinus- und Kosinusfuntionen. a) Die. Koordinate eines Puntes P ann diret in den Graphen übertragen werden. r = b) Die. Koordinate

Mehr

Mathematik für Physiker III/Analysis III

Mathematik für Physiker III/Analysis III Mathematik für Physiker III/Analysis III Ausarbeitung einer Vorlesung vom Wintersemester 26/7 Joachim Weidmann Fachbereich Informatik und Mathematik der Universität Frankfurt Stand 9. Februar 27 2 Teil

Mehr

Topologie. Prof. Dr. Dirk Ferus. Wintersemester 2004/5

Topologie. Prof. Dr. Dirk Ferus. Wintersemester 2004/5 Topologie Prof. Dr. Dirk Ferus Wintersemester 2004/5 Version vom 04.02.2005 Inhaltsverzeichnis 1 Topologische Räume und stetige Abbildungen 7 1.1 Metrische und topologische Räume.................................

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Bemerkungen zur Tensorrechnung

Bemerkungen zur Tensorrechnung Prof.Dr.W.Timmermann Institut für Analysis 0. Einführung Bemerkungen zur Tensorrechnung Tensorrechnung wird meist als schwierig empfunden. Das hat mindestens zwei Gründe: 1. Etliche Lehrbücher enthalten

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Taylorentwicklung der k ten Dimension

Taylorentwicklung der k ten Dimension Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5

Mehr

Höhere Mathematik III für Wirtschaftsinformatiker

Höhere Mathematik III für Wirtschaftsinformatiker TU Ilmenau Institut für Mathematik Prof. Dr. S. Vogel Höhere Mathematik III für Wirtschaftsinformatiker Funktionen von mehreren Variablen. Grenzwerte und Stetigkeit Betrachtet werden Funktionen f : D f

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Vergleich verschiedener Finite-Elemente-Approximationen zur numerischen Lösung der Plattengleichung

Vergleich verschiedener Finite-Elemente-Approximationen zur numerischen Lösung der Plattengleichung Fakultät für Mathematik und Informatik Ruprecht-Karls-Universität Heidelberg Diplomarbeit Vergleich verschiedener Finite-Elemente-Approximationen zur numerischen Lösung der Plattengleichung Bärbel Janssen

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr