Beispiel einer Drehkristallaufnahme

Größe: px
Ab Seite anzeigen:

Download "Beispiel einer Drehkristallaufnahme"

Transkript

1 Hierbei dreht sich das reziproke Gitter um den Ursprung. Trifft ein Gitterpunkt bei seiner Bewegung auf den Kreisen die Ewald-Kugel, ergibt sich ein Reflex. Der Aufbau beim Drehkristall-Verfahren Das Bild stellt den bei der Drehkristall-Methode eingesetzten Aufbau dar. Es ist die drehbar gelagerte Halterung fu r den Kristall zu sehen. Das Innere der Zylindermantelfla che des zylindrischen Geha uses ist vollsta ndig mit einem Film zur Detektion ausgelegt. Es ist wichtig die Gradation, den Zusammenhang zwischen Schwa rzung des Films und der Lichtintensita t zu kennen, um dann aus der Schwa rzung die Intensita t eines Reflexes bestimmen zu ko nnen. Erzeugung von monochromatischer Ro ntgenstrahlung Ro ntgenstrahlung weist neben der Ro ntgenbremsstrahlung, die durch das Abbremsen der Elektronen im Kathodenmaterial der Ro ntgenro hre entsteht und eine breite Energieverteilung besitzt, auch charakteristische Linien auf (Molybda n), die durch das Anregen und anschließende Relaxieren von Elektronen der inneren Schalen entstehen. Diese Strahlung kann ungefiltert oder gefiltert zur Strukturanalyse genutzt werden. 55

2 Durch Filterung mit Hilfe von BraggReflexion la sst sich ein monochromer Strahl erzeugen. Hier wird ein bekannter Kristall verwendet, sowie Ein- und Ausfallswinkel so gewa hlt, dass man einen Bragg-Reflex fu r die gewu nschte Wellenla nge erha lt. Beispiel einer Drehkristallaufnahme Der dargestellte Film stammt aus einer Rundkamera und ist aufgeschnitten, so dass am linken und rechten Bildrand gerade noch der direkte Ru ckreflex zu sehen ist. Es ergeben sich diskrete Punkte. Es gibt genau dann einen Reflex, wenn die Reflexe auf den Kreisen unter einem ganz bestimmten Winkel die Ewald-Kugel treffen. 56

3 Einkristall-Diffraktometer zur Strukturanalyse Schematische Darstellung eines Einkristall- Diffraktometer: Hier wird der Kristall um drei Winkel (ϕ, ω und χ) drehbar gelagert; so ist es möglich jede mögliche Ausrichtung des Kristalls bezüglich der Beugungsebene zu drehen. Der Detektor wird um den doppelten Winkel von ω gedreht, somit trifft jeder auftretende Reflex in den Detektor (Einfallswinkel gleich Ausfallswinkel). Photo eines Einkristall-Diffraktometer: Es sind Röntgenquelle (links), Detektor (rechts) und die Aufnahme für den Kristall mit den verschiedenen Dreheinrichtungen (Mitte) zu sehen Die Pulver-Methode oder Debye-Scherrer Methode Bei dieser Methode werden die Versuchsparameter wie folgt gewählt: 1. eine monochrome Strahlquelle 2. ein feines Kristallpulver Durch das verwendete Pulver ergeben sich alle möglichen Orientierungen der Kristalle zufällig und gleichzeitig. Dadurch ergibt sich eine Kugel um den Ursprung, um den alle möglichen Vektoren K liegen.diese Kugel wird sich mit der Ewald-Kugel in einem Kreis schneiden, vorausgesetzt K < 2 k 0. 57

4 Damit ergibt sich, dass jeder reziproke Gittervektor, der dieser Bedingung genügt, einen Streukegel um die Vorwärtsrichtung erzeugt. Dabei wird der Strahl unter einem Winkel ϕ bezüglich der Vorwärtsrichtung gestreut. Es gilt folgende Bedingung: ( ϕ ) K = 2k sin 2 (2.58) 58

5 Die Verwendung der Pulver-Methode zur Strukturanalyse Schematische Darstellung der Verha ltnisse bei der Pulver-Methode. Hier treten die typischen Reflexkegel auf, die von der unterschiedlichen Orientierung der Kristalle verursacht werden. Es wird eine Rundkamera verwendet, welche Kegelschnitte in Form von Kreisen aufnimmt. Diese Photo zeigt eine bei der PulverMethode eingesetzte Rundkamera. Deutlich sind die Ein- und Austrittso ffnung mit den konisch geformten Blenden zu sehen. Typische Aufnahme bei der Pulver-Methode mit den Lo chern fu r die Ein- und Austrittso ffnung. Durch die Spiegelsymmetrie bezu glich der Ein- und Austrittso ffnung ist es nur notwendig, die Linien auf einer Seite dazwischen auszuwerten. 59

6 Beispiel eines Diagramms aufgenommen mit einem Pulverdiffraktometer einer Erzprobe (oben) und der vom Computer vorgeschlagenen Vergleichslinien (unten). 2.9 Einige Beispiele für Partikelstrahlen Niedrigenergie Elektronen Beugung LEED (Low Energy Electron Diffraction) Das Bild zeigt ein Schema des Aufbaus. Elektronen treffen von einer Glühkathode (links) kommend auf die Probenoberfläche und werden rückgestreut. Zwischen Probe und Fluoreszenzschirm sind Gitter eingefügten, an die zum einen eine Gegenspannung, um die Elektronen zu filtern, und eine Beschleunigungsspannung angelegt sind, um die Elektronen schließlich auf den Leuchtschirm zu beschleunigen. Messungen müssen im Ultrahoch-Vakuum durchgeführt werden. Da die Elektronen nicht tief in den Kristall eindringen können, ist LEED eine oberflächensensitive Analysemethode. 60

7 Links ist das Beugungsbild einer Nickeloberfla che (Ee = 205eV entspricht λe = 0, 86A ) dargestellt. Rechts ist das Beugungsbild der Oberfla che nach Adsorption von Wasserstoff zu sehen Heliumstrahlen Streuung eines Heliumstrahls an einer gestuften Platinoberfla che mit den Millerschen-Indizes (997) Neutronenstreuung Einsatzbereiche: 61

8 Lokalisierung von Wasserstoff im Festkörper Untersuchung von magnetischen Strukturen Ordnungs-Unordnungsphasenübergänge Die Spektren sind an einer Legierung aus Eisen (Fe) und Cobalt (Co) (50%/50%) aufgenommen, welche im kubisch raumzentrierten Gitter kristallisiert. Bei hohen Temperaturen oder abgeschreckten Proben werden die Gitterplätze von beiden Atomen statistisch besetzt (linke Darstellung). Wird die Legierung hingegen langsam abgekühlt ordnet sich der Kristall und es liegt die Situation vor, wie sie in der rechten Darstellung zu sehen ist. Es sind die Reflexe mit ungerader Summe der Miller-Indizes nur im ungeordneten Zustand zusehen, da die Atomfaktoren der einzelnen Atome sich unterscheiden. Bei einer statistischen Verteilung wird jede Position in der Elementarzelle gleich wahrscheinlich besetzt verschwinden der Reflexe mit ungerader Summe Kristallfehler Es lassen sich zwei Arten von Defekten in Festkörpern definieren: Fehlstellen und Zwischengitterplätze Diese Punktdefekte bestehen aus dem Fehlen eines Ions oder Vorhandenseins eines zusätzlichen. Diese defekte beeinflussen wesentlich die Leitfähigkeit von Ionenkristallen und könne auch die optischen Eigenschaften drastisch ändern (im Speziellen ihre Farben). Ihr Auftreten ist ein weit verbreitetes Phänomen im thermodynamischen Gleichgewicht und sind somit ein wesentliche Eigenschaft des realen Kristalls. Versetzungen Dabei handelt es sich um Liniendefekte, die obwohl sie energetisch sehr ungünstig sind, dennoch in den meisten realen Kristallen häufig auftreten. Sie be- 62

9 einflussen die mechanischen Eigenschaften der Kristalle wesentlich hinsichtlich Zugund Scherfestigkeit Fehlstellen im Gitter Man unterscheidet im wesentlichen zwei Typen von Gitterfehlstellen: Schottky-Defekt Hierbei entfernt sich das Atom von seinem Gitterplatz im Inneren des Kristalls um einen Gitterplatz an der Kristalloberfläche einzunehmen. Frenkel-Defekt Bei dieser Art von Defekt verlässt ein Atom/Ion seinen Gitterplatz, um in den Raum zwischen die Gitterplätze zu wandern Frenkel Schottky Die Defekte treten auch bei endlichen Temperaturen mit einer gewissen Wahrscheinlichkeit auf obwohl die Energie, die benötigt wird um sie von ihrem Gitterplatz zu entfernen, größer ist als die Energie, die durch die Anlagerung an der Oberfläche (Schottky-Defekt) oder durch die bindenden Wechselwirkungen auf einem Zwischengitterplatz (Frenkel-Defekt) frei wird. So ergibt sich konkret im Falle von Schottky-Defekten, wobei die Energie, die benötigt wird, um ein Atom vom Gitterplatz an die Oberfläche zu bringen, mit E s = E i E o > 0 63

10 bezeichnet werden soll (E o ist die Oberflächenbindungsenergie und E i die Bindungsenergie im Inneren des Kristalls): ( ) n N n = exp Es für n N n ( ) k B T N exp Es (2.59) k B T gilt. Bei Ionenkristallen werden sich positive und negative Ionenfehlstellen benachbart zueinander aufhalten, da sich so auch lokal die Ladungsneutralität waren lässt. Die Anzahl der Paare ergibt sich aus Betrachtungen zu freien Energie zu: n = exp ( Ep 2k B T ), (2.60) wobei E p die Bindungsenergie für ein Ionenpaar ist. Minimieren der freien Energie liefert auch im Falle der Frenkel-Defekte mit E f = E i E z (E z ist die Bindungsenergie auf einem Zwischengitterplatz): n NN exp ( Ef 2k B T ), (2.61) wobei N die Anzahl der Gitterplätze und N die Anzahl der Zwischengitterplätze bezeichnet Diffusion Grundlegende Mechanismen bei Diffusionsprozessen: Bewegung über Zwischengitterplätze Platzwechsel eines Atoms mit einer Fehlstelle Atomaustausch durch Rotation um einem Mittelpunkt, dabei können auch mehrere Atome beteiligt sein Besteht ein Gradient in der Konzentration von Fehlstellen oder einer Spezies von Atomen im Kristall, so wird sich ein Strom der Fehlstellen bzw. der Spezies einstellen, bis sich dieser Gradient vollständig abgebaut hat, indem sich eine homogene Verteilung eingestellt hat. Die zugehörige Stromdichte j N von Atomen lässt sich wie folgt beschreiben: j N = D grad N. (2.62) Dies wird als Ficksches Gesetz bezeichnet. Die Diffusionskonstante D besitzt die Einheit cm 2 /s. Die treibende Kraft für die Diffusion ist eigentlich der Gradient im chemischen Potential. Da die elementaren Prozesse der Diffusion als thermisch aktivierte Prozesse betrachtet werden können, ergibt sich für die Temperaturabhängigkeit der Diffusionskonstante: ( ) Ea D = D 0 exp (2.63) k B T Ein Beispiel für die Temperaturabhängigkeit der Diffusionskonstante gemessen an der Diffusion von Kohlenstoff in Eisen: 64

11 Es ist deutlich der exponentielle Anstieg der Diffusionskonstanten mit der inversen Temperatur 1/T zu sehen Farbzentren Alkalihalogenid-Kristalle sind im gesamten sichtbaren Spektralbereich durchsichtig. Eine Färbung kann dennoch durch folgende Effekte auftreten: 1. durch Einführen von chemischen Verunreinigungen 2. durch Einfügen von überschüssigen Metallionen (z.b. durch schnelles Abkühlen im Metalldampf) 3. durch Bestrahlung mit Röntgen-, Gamma-, Neutronen- und Elektronenstrahlen 4. durch Elektrolyse Die einfachste Form eines Farbzentrums ist das so genannte F-Zentrum, bei dem in einem ionischen Kristall ein fehlendes Anion durch die erhöhte Anwesenheit eines Elektrons aus dem Kristall teilweise kompensiert wird. Dieses Elektron ist schwächer an ein einziges Atom gebunden als die anderen Elektronen im Gitter und lässt sich somit durch recht niederenergetische Photonen anregen. 65

12 Na + Cl Na + Cl Na + Cl Na + Cl Cl Na + Cl Na + Cl Ca 2+ Cl Na + Na + Cl Na + Cl Na + Cl Na + Cl Cl Cl Na + Cl Na + Cl Na + Na + Cl Na + Cl Na + Cl Na + Cl Cl Na + Cl Ca 2+ Cl Na + Cl Na + Cl Na + Cl Na + Cl Na + Cl Cl Na + Cl Na + Cl Na + Cl Na + Wird in einem NaCl-Kristall ein Teil der Na-Ionen ersetzt durch Ca 2+ indem man CaCl 2 zu gibt, so besetzen die Ca 2+ -Ionen normale Gitterplätze der Na + Ionen aus Gründen der Ladungsneutralität bleiben in der Umgebung der Ca 2+ -Ionen zwei Gitterplätze unbesetzt, auf denen sich normal Cl befinden würden. (a) Zeigt ein so genanntes M-Zentrum, bei dem an zwei Fehlstellen von Anionen zwei Elektronen in einer (100)-Ebene gebunden sind. 66

13 (b) Hier ist einr-zentrum zu sehen. Bei diesem werden an drei Fehlstellen, welche in der (111)-Ebene benachbart sind, drei Elektronen gebunden. Erst durch die Annahme der Existenz diese komplexeren Farbzentren war es möglich, die beobachteten spektralen Eigenschaften zu erklären Versetzungen Wird ein Kristall ausreichend großen Scherkräften ausgesetzt, beginnen sich Anteile der Bindungen zwischen Ebenen aufzubrechen und Teile der Ebenen verschieben sich gegeneinander. Dabei ergeben sich zwei unterschiedlichen Versetzungen: Stufenversetzung Bei der Stufenversetzung führt eine Scherkraft dazu, dass ein Teil des Kristalls unter der Scherung nachgibt und einen Gitterplatz weiter rutscht. Dabei teilen sich die beiden Gebiete vollständig senkrecht zu den Scherkräften. Man bezeichnet die Grenze zwischen gerutschtem und haftendem Gebiet als Dislokationslinie. Schraubenversetzung Hier wird der Kristall wieder einer Scherkraft ausgesetzt allerdings rutscht hier nun ein Teil des Kristalls, so dass der gerutschte und der haftende Teil durch eine Linie parallel zu der Richtung der Scherkräfte getrennt werden. 67

14 Kleinwinkel-Korngrenze Bei dieser Form von Kristallfehlern kann man sich zwei Kristalle unter einem kleinen Winkel zusammengefügt denken. Es entsteht dadurch eine Line von Kanten Versetzungen zwischen den beiden Teilen des Kristalls. Sind die beiden Kristalle auch noch um einen kleinen Winkel bezüglich einer Drehachse gedreht, die senkrecht auf der Korngrenze steht, ergibt sich zusätzlich auch noch eine Schraubenversetzung entlang der Grenze. Problem: Durch die kleine Variation im reziproken Gittervektor ergeben sich nur geringe Unterschiede zu den Reflexen eines Einkristalls. Es gibt nahezu keine Veränderung der Position der Reflexe, sondern nur eine Veränderung in der Intensität der Reflexe Versetzungen und Kristallwachstum Werden weitere Atome auf einer Kristalloberfläche angelagert gibt, es verschiedene Positionen an denen das Atom letztendlich zu liegen kommt. Ein einzelnes Atom auf einer ebenen Kristalloberfläche ist energetisch nicht sehr ausgezeichnet. Das hat zur Folge, dass das Atom schon bei recht geringen Temperaturen auf dieser Oberfläche umherwandern wird. 68

15 Kann sich eine Atom an eine Stufe anlagern, sieht die Situation anders aus. Hier ist das Atom in zwei Richtungen gebunden und es wird wenn überhaupt noch entlang der Stufe wandern. Fast perfekt ist die Situation, wenn sich das Atom in die Ecke zweier Stufen anlagern kann. In diesem Fall ist es in drei Richtungen gebunden und müsste um wandern zu können eine der Bindungen aufgeben. In der oben aufgeführten Aufzählung nimmt von oben nach unten die Wahrscheinlichkeit zu, dass ein Atom, dass sich einmal in der entsprechenden Situation befindet, diese wieder verlässt. Dies ist aber wichtig für den Fortgang des Wachstumsprozesses. In Teil (d) der Abbildung oben werden sich die Atome mit größter Wahrscheinlichkeit in der jeweils entstehenden Ecke anlagern und somit wird die begonnene Schraubenversetzung bevorzugt weiter wachsen. Dieser Prozess kann zu sehr langen (großes Aspektverhältnis) dünnen Kristallen führen. Diese werden als Whisker bezeichnet. Die Photographie zeigt einen Nickel-Whisker mit einem Durchmesser von 1000Å, der zu einer Schleife gebogen wurde. Ein weiteres Beispiel für eine Struktur, die durch Kristallfehler während des Kristallwachstums auftreten ist hier zu sehen: 69

16 Dies ist eine Aufnahme mit Hilfe eines Phasenkontrastmikroskops aufgenommen: Es handelt sich um eine hexagonale Wachstumsspirale auf einem SiC-Kristall (Stufenhöhe 165Å). 70

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15 5. Oberflächen-und Dünnschichtanalytik 1 5.1 Übersicht Schichtanalytik - Schichtmorphologie: - Oberflächeneigenschaften - Lichtmikroskop - Rasterelektronenmikroskop - Transmissionselektronenmikroskop -(STM,

Mehr

3.5 Experimentelle Bestimmung der Kristallstruktur Beugungsverfahren

3.5 Experimentelle Bestimmung der Kristallstruktur Beugungsverfahren 3.5 Experimentelle Bestimmung der Kristallstruktur Beugungsverfahren Röntgenbeugungsverfahren - - - Laue-Verfahren Drehkristall-Verfahren Debye-Scherrer-Verfahren (Pulververfahren) Elektronenbeugung Neutronenbeugung

Mehr

Achim Kittel. Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A Tel.:

Achim Kittel. Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A Tel.: Festkörperphysik Achim Kittel Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A 1-102 Tel.: 0441-798 3539 email: kittel@uni-oldenburg.de Sommersemester 2005 Inhaltsverzeichnis

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

Struktur von Einkristallen

Struktur von Einkristallen Struktur von Einkristallen Beschreibung des einkristallinen Festkörpers Am einfachsten zu beschreiben sind atomare Kristalle bei denen an jedem Punkt des Raumgitters sich genau ein Atom befindet. Man wählt

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 21 30.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 21 Prof. Thorsten Kröll 30.06.2011 1 H 2

Mehr

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 /

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 / ISP-Methodenkurs Pulverdiffraktometrie Prof. Dr. Michael Fröba, AC Raum 4, Tel: 4 / 4838-337 www.chemie.uni-hamburg.de/ac/froeba/ Röntgenstrahlung (I) Wilhelm Conrad Röntgen (845-93) 879-888 Professor

Mehr

Beugung niederenergetischer Elektronen an Oberächen (LEED)

Beugung niederenergetischer Elektronen an Oberächen (LEED) Freie Universität Berlin Sommersemester 2007 Arnimallee 4 495 Berlin Fortgeschrittenenpraktikum Vorbereitung Beugung niederenergetischer Elektronen an Oberächen (LEED) Erik Streb 20. Juni 2007 Betreuer:

Mehr

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen Strukturbestimmung von NaCl-Einkristallen TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Reziproke Gitter, Millersche- Indizes, Atomfaktor, Strukturfaktor,

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Röntgenbeugung an Pulvern

Mehr

Hier: Beschränkung auf die elektrische Eigenschaften

Hier: Beschränkung auf die elektrische Eigenschaften IV. Festkörperphysik Hier: Beschränkung auf die elektrische Eigenschaften 3 Aggregatzustände: fest, flüssig, gasförmig: Wechselspiel Anziehungskräfte der Teilchen gegen die thermische Energie kt. Zustand

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

254 15. ORDNUNG UND UNORDNUNG

254 15. ORDNUNG UND UNORDNUNG 54 15. ORDNUNG UND UNORDNUNG 15.4 Ordnungsdomänen Da die verschiedenen Untergitter im llgemeinen gleichwertig sind, können die - oder B-tome bei einer an verschiedenen Stellen beginnenden Keimbildung das

Mehr

Typisch metallische Eigenschaften:

Typisch metallische Eigenschaften: Typisch metallische Eigenschaften: hohe elektrische Leitfähigkeit hohe thermische Leitfähigkeit bei Energiezufuhr (Wärme, elektromagnetische Strahlung) können Elektronen emittiert werden metallischer Glanz

Mehr

Strukturen im Realen und Reziproken Raum. Perfektes Kristallgitter

Strukturen im Realen und Reziproken Raum. Perfektes Kristallgitter Strukturen im Realen und Reziproken Raum 1 Perfektes Kristallgitter reziproken Gittervektoren: Strukturen im Realen und Reziproken Raum 2 Schichten mit ungleichen Gitterkonstanten 1 Strukturen im Reelen

Mehr

Bauchemie 1. 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle?

Bauchemie 1. 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle? Bauchemie 1 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle? a) Der Atomkern besteht aus Neutronen und Protonen, die zusammen auch Nukleonen genannt werden. Er befindet sich

Mehr

Grundlagen der Chemie Metalle

Grundlagen der Chemie Metalle Metalle Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Metalle 75% aller chemischen Elemente sind Metalle. Typische

Mehr

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2)

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2) Blatt 1 (von 2) 1. Elektronenausbeute beim Photoeekt Eine als punktförmig aufzufassende Spektrallampe L strahlt eine Gesamt-Lichtleistung von P ges = 40 W der Wellenlänge λ = 490 nm aus. Im Abstand r =

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Röntgendiffraktometrie Name: Matthias Jasch Matrikelnummer: 077 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 9. Mai 009 Betreuer: Verena Schendel 1 Einleitung Bei der Röntgendiffraktometrie

Mehr

Untersuchung von Siliziumkarbidkristallen mit Hilfe der Positronen-Annihilations-Spektroskopie. Dissertation

Untersuchung von Siliziumkarbidkristallen mit Hilfe der Positronen-Annihilations-Spektroskopie. Dissertation Untersuchung von Siliziumkarbidkristallen mit Hilfe der Positronen-Annihilations-Spektroskopie Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr.rer.nat) vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen

Mehr

Welleneigenschaften von Elektronen

Welleneigenschaften von Elektronen Seite 1 von 7 Welleneigenschaften von Elektronen Nachdem Robert Millikan 1911 die Ladung des Elektrons bestimmte, konnte bald auch seine Ruhemasse gemessen werden. Zahlreiche Experimente mit Elektronenstrahlen

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

4. Fehleranordnung und Diffusion

4. Fehleranordnung und Diffusion 4. Fehleranordnung und Diffusion 33 4. Fehleranordnung und Diffusion Annahme: dichtes, porenfreies Oxid Materialtransport nur durch Festkörperdiffusion möglich Schematisch: Mögliche Teilreaktionen:. Übergang

Mehr

1. Systematik der Werkstoffe 10 Punkte

1. Systematik der Werkstoffe 10 Punkte 1. Systematik der Werkstoffe 10 Punkte 1.1 Werkstoffe werden in verschiedene Klassen und die dazugehörigen Untergruppen eingeteilt. Ordnen Sie folgende Werkstoffe in ihre spezifischen Gruppen: Stahl Holz

Mehr

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Grundlagen-Vertiefung PW3 Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Kristalle besitzen einen geordneten und periodischen Gitteraufbau. Die überwiegende Mehrzahl der anorganischen Festkörper

Mehr

Mehrphasendiffusion in Metallen

Mehrphasendiffusion in Metallen Prozesstechnik-Übung, Wintersemester 2008-2009 Mehrphasendiffusion in Metallen 1 Versuchsziel Das Diffusionsverhalten fester metallischer Stoffe soll am Beispiel Cu-Zn untersucht werden. 2 Theoretische

Mehr

Kristallographie und Röntgenbeugung

Kristallographie und Röntgenbeugung 16.04.2009 Gliederung 1 Grundlagen der Kristallographie 2 Röntgenstrahlung Laue-Bedingung Bragg-Bedingung Ewaldsche Konstruktion Röntgenverfahren zur Strukturanalyse von Kristallen 3 4 Festkörper kristalliner

Mehr

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

Clusterphysik. Moderne Molekülphysik SS 2013

Clusterphysik. Moderne Molekülphysik SS 2013 Clusterphysik Moderne Molekülphysik SS 2013 Michael Martins michael.martins@desy.de Folien werden im WWW bereitgestellt Vorlesung im Diplom und Masterstudiengang Insgesamt 5 LP 2 SWS Vorlesung, Mittwoch

Mehr

Magnetische Domänen bilden die Grundlage für das Verständnis vieler magnetischer

Magnetische Domänen bilden die Grundlage für das Verständnis vieler magnetischer Dreidimensionale Abbildung magnetischer Domänen Magnetische Domänen bilden die Grundlage für das Verständnis vieler magnetischer Phänomene und der Eigenschaften magnetischer Materialien. Ihre Existenz

Mehr

Herstellung der Proben

Herstellung der Proben Kapitel 4 Herstellung der Proben In dieser Arbeit wird die Photodesorption von NO an zwei verschiedenen Systemen untersucht. Dabei handelt es sich zum einen um eine NiO(100)-Oberfläche und zum anderen

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Grundlagen der Chemie Ionenradien

Grundlagen der Chemie Ionenradien Ionenradien Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Ionenradien In einem Ionenkristall halten benachbarte

Mehr

Übungen zur Physik des Lichts

Übungen zur Physik des Lichts ) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 4 Molekülstruktur Ausnahmen von der Oktettregel Hypervalente Verbindungen VSEPR Hybridisierung Molekülorbitale

Mehr

19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter

19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter 19.Juni 2005 Strukturbestimmung Gruppe 36 Simon Honc shonc@web.de Christian Hütter christian.huetter@gmx.de 1 I. Theoretische Grundlagen 1. Struktur idealer Kristalle Generell kann man bei Kristallen vom

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

Einführung in die Kristallographie

Einführung in die Kristallographie WILL KLEBER Einführung in die Kristallographie 18., stark bearbeitete Auflage von Hans-Joachim Bautsch und Joachim Böhm Verlag Technik Berlin Inhaltsverzeichnis Einleitung 11 1. Kristallstrukturlehre und

Mehr

Festkörperchemie SYNTHESE. Shake and bake Methode: Sol-Gel-Methode. Am Beispiel :

Festkörperchemie SYNTHESE. Shake and bake Methode: Sol-Gel-Methode. Am Beispiel : Festkörperchemie SYNTHESE Shake and bake Methode: Am Beispiel : Man zerkleinert die Salze mechanisch, damit eine möglichst große Grenzfläche zwischen den beiden Komponenten entsteht und vermischt das ganze.

Mehr

Wiederholung der letzten Vorlesungsstunde

Wiederholung der letzten Vorlesungsstunde Wiederholung der letzten Vorlesungsstunde Festkörper, ausgewählte Beispiele spezieller Eigenschaften von Feststoffen, Kohlenstoffmodifikationen, Nichtstöchiometrie, Unterscheidung kristalliner und amorpher

Mehr

Wiederholung der letzten Vorlesungsstunde

Wiederholung der letzten Vorlesungsstunde Wiederholung der letzten Vorlesungsstunde Gitterpunkte, Gittergeraden, Gitterebenen, Weiß'sche Koeffizienten, Miller Indizes Symmetrie in Festkörpern, Symmetrieelemente, Symmetrieoperationen, Punktgruppenymmetrie,

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphysik I Prof. Peter Böni, E1 Lösung zum 9. Übungsblatt (Besprechung: 18. - 0. Dezember 006) P. Niklowitz, E1 Aufgabe 9.1: Neutronenstreuung an Phononen (a) Geben Sie die Dispersionsrelation

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Gliederung der Vorlesung im SS

Gliederung der Vorlesung im SS Gliederung der Vorlesung im SS A. Struktureller Aufbau von Werkstoffen. Atomare Struktur.. Atomaufbau und Periodensystem der Elemente.2. Interatomare Bindungen.3. Aggregatzustände 2. Struktur des Festkörpers

Mehr

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II David Enseling und Thomas Jüstel Seminar zur Vorlesung Anorganische Chemie I und II Folie 1 Entdeckung + erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's

Mehr

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik - Festkörper - Prof. Dr. Ulrich Hahn WS 2008/2009 Grundtypen Gläser, amorphe Festkörper Nahordnung der Teilchen 5 10 Atom- unterkühlte Flüssigkeiten

Mehr

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie DIE CHEMISCHE BINDUNG Ionische Bindung, Beispiel Natriumchlorid Trifft

Mehr

Bachelorprüfung. "Werkstofftechnik der Metalle" am

Bachelorprüfung. Werkstofftechnik der Metalle am Institut für Eisenhüttenkunde Department of Ferrous Metallurgy Bachelorprüfung "Werkstofftechnik der Metalle" am 24.07.2013 Name: Matrikelnummer: Aufgabe Maximale Punkte 1 6 2 4 3 5 4 6 5 4 6 3 7 4 8 4

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

Gefügeumwandlung in Fe-C-Legierungen

Gefügeumwandlung in Fe-C-Legierungen Werkstoffwissenschaftliches Grundpraktikum Versuch vom 18. Mai 2009 Betreuer: Thomas Wöhrle Gefügeumwandlung in Fe-C-Legierungen Gruppe 3 Protokoll: Simon Kumm, uni@simon-kumm.de Mitarbeiter: Philipp Kaller,

Mehr

Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie

Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie Allgemeine Chemie 1 Skript Allgemeine und Anorganische Chemie Inhaltsverzeichnis: 1. Atome...3 A Elektronen...3 B Protonen...4 C Neutronen...5 D Aufbau von Atomen...5 E Isotope...6 F Radioaktivität...6

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Zellulose-Synthese. künstlich: enzymatische Polymerisation von Zellobiose-Fluorid

Zellulose-Synthese. künstlich: enzymatische Polymerisation von Zellobiose-Fluorid 18 Zellulose-Synthese künstlich: enzymatische Polymerisation von Zellobiose-Fluorid biologisch: Enzymkomplexe in der Zellmembran (terminal complexes, TCs) sphärulitische Kristalle außen S. Kobayashi et

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

2. Struktur von Festkörpern

2. Struktur von Festkörpern . Struktur von Festkörpern Energie-Minimum wird erreicht, wenn jedes Atom möglichst dieselbe Umgebung hat Periodische Anordnung von Atomen. Periodische Anordnung erleichtert theoretische Beschreibung erheblich.

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Die chemische Bindung

Die chemische Bindung Die chemische Bindung Die Valenz-Bond Theorie Molekülorbitale Die Bänder Theorie der Festkörper bei einer ionischen Bindung bildet bildet sich ein Dipol aus ('Übertragung von Elektronen') Eine kovalente

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Auswirkungen der Symmetrien auf physikalische Effekte

Auswirkungen der Symmetrien auf physikalische Effekte Auswirkungen der Symmetrien auf physikalische Effekte Teil 1 Elektrische Polarisation 1. Elektrische Polarisation In einem elektrisch nicht leitenden Körper also in einem Dielektrikum verschieben sich

Mehr

C. Nanotechnologie 9. Chem. Analyse 9.1 Übersicht. Prinzip. Prof. Dr. H. Baumgärtner C9-1

C. Nanotechnologie 9. Chem. Analyse 9.1 Übersicht. Prinzip. Prof. Dr. H. Baumgärtner C9-1 Prinzip 9.1 Übersicht Prof. Dr. H. Baumgärtner C9-1 Um eine Probe analysieren zu können muss sie mit Licht oder Teilchen bestrahlt werden. Die Reaktion der Probe auf diese Anregung führt zur Abstrahlung

Mehr

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2)

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2) Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Übersicht 2 Beugung von Röntgenstrahlen an Kristallen 2.1 Erzeugung von Röntgenstrahlen 2.2 Streuung an Elektronen 2.3 Streuung an

Mehr

Tabelle: Kristalle - Übesicht und Klassifikation

Tabelle: Kristalle - Übesicht und Klassifikation Tabelle: Kristalle - Übesicht und Klassifikation Kristall- / Bindungstypen A-A Beispiele A-B Wechselwirkung (attraktive Terme) attraktives Potential E bin (ev) R 0 (Å) T schm (K) 1) Edelgaskristall, Molekülkristall

Mehr

Kristallstruktur und Mikrostruktur Teil III Vorlesung 1

Kristallstruktur und Mikrostruktur Teil III Vorlesung 1 Kristallstruktur und Mikrostruktur Teil III Vorlesung 1 Teil III (Übersicht) 1 Erholung/Rekristallisation/Kornvergrößerung Phänomenologie und Begriffe 2 Erholung/ Rekristallisation 3 Kornvegrößerung /

Mehr

6. Temperaturbehandlung Ag/Na-ionenausgetauschter Gläser

6. Temperaturbehandlung Ag/Na-ionenausgetauschter Gläser Temperaturbehandlung Ag/Na-ionenausgetauschter Gläser 35 6. Temperaturbehandlung Ag/Na-ionenausgetauschter Gläser 6.1. Natriumsilikatglas Nach dem Ionenaustausch folgten Temperaturbehandlungen zwischen

Mehr

3 Wahr oder Falsch? = 6.67 % Werkstoffe und Fertigung I, HS 2016 Prof. Dr. K. Wegener. Seminarübung 6 Musterlösung Diffusion, Erstarrung

3 Wahr oder Falsch? = 6.67 % Werkstoffe und Fertigung I, HS 2016 Prof. Dr. K. Wegener. Seminarübung 6 Musterlösung Diffusion, Erstarrung 3 Wahr oder Falsch? a) Diamant, Graphit und Fullerene sind allotrope Modifikationen des Kohlenstoffatoms. Sie unterscheiden jedoch nur in ihrem strukturellem Aufbau. Falsch: Sie unterschieden sich auch

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Vorlesung: Hörsaal 10.01 Daran anschließend Physikalische Chemie 2 (Prof. Falcaro, TU): Materie im elektr./magn. Feld, Wechselwirkungen,

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 10 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 10 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 10 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Die Röntgenstrukturverfeinerung

Mehr

Medizinische Biophysik

Medizinische Biophysik 2. Gasförmiger Aggregatzustand Medizinische Biophysik c) Kinetische Deutung der Temperatur: d) Maxwell-Boltzmann-Verteilung e) Barometrische Höhenformel (Gas im Gravitationsfeld) f) Boltzmann-Verteilung

Mehr

Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...!

Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...! Kristalle und deren Fehler Was sollen Sie mitnehmen? Definition und Aufbau eines Kristalls Elementarzellen Typische Gitter nach Verbindungsklassen Navigation im Kristall: Richtung, Ebenen Allotropie Fehlertypen

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Röntgenkristallstrukturanalyse : Debye-Scherrer

Röntgenkristallstrukturanalyse : Debye-Scherrer 16.04.2009 Gliederung Bragg-Bedingung Bragg-Bedingung Bragg-Bedingung: 2d m m m h k l sin(ϑ) = nλ für kubisches Gitter: 2sin(ϑ) = λ h 2 + k 2 + l 2 a d m m m h k l...netzebenenabstand ϑ...braggwinkel n...

Mehr

Konzepte der anorganischen und analytischen Chemie II II

Konzepte der anorganischen und analytischen Chemie II II Konzepte der anorganischen und analytischen Chemie II II Marc H. Prosenc Inst. für Anorganische und Angewandte Chemie Tel: 42838-3102 prosenc@chemie.uni-hamburg.de Outline Einführung in die Chemie fester

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A10 - AVOGADRO-Konstante» Martin Wolf Betreuer: Herr Decker Mitarbeiter: Martin Helfrich Datum:

Mehr

Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet werden können.

Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet werden können. phys4.02 Page 1 1.5 Methoden zur Abbildung einzelner Atome Optische Abbildung: Kann man einzelne Atome 'sehen'? Auflösungsvermögen: Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet

Mehr

Festkörperphysik. Zusammenstellung zur Klausurvorbereitung SS 2008 bei Prof. Paul Seidel von Simon Stützer

Festkörperphysik. Zusammenstellung zur Klausurvorbereitung SS 2008 bei Prof. Paul Seidel von Simon Stützer Festkörperphysik Zusammenstellung zur Klausurvorbereitung SS 2008 bei Prof. Paul Seidel von Simon Stützer Stand: 28. Mai 2009 Inhaltsverzeichnis 1 Struktur idealer Kristalle 2 1.1 Grundbegriffe......................................................

Mehr

Präparation. 1) Spaltung: Materialien: Alkalihalogenide (NaCl, KBr) Erdalkali (CaF 2. ) Oxide (MgO) Halbleiter (GaAs) Brechen Glas Bruchflächen amorph

Präparation. 1) Spaltung: Materialien: Alkalihalogenide (NaCl, KBr) Erdalkali (CaF 2. ) Oxide (MgO) Halbleiter (GaAs) Brechen Glas Bruchflächen amorph Oberflächenphysik 19.2. Vacuum technique [vapour pressure, Langmuir, pumps] 26.2. Structure, relaxations and reconstructions 4. 3. Diffractionsmethods: LEED, He atom scattering, grazing X-ray, ions 11.

Mehr

Einführung in die Kristallographie

Einführung in die Kristallographie Einführung in die Kristallographie Gerhard Heide Institut für Mineralogie Professur für Allgemeine und Angewandte Mineralogie Brennhausgasse 14 03731-39-2665 oder -2628 gerhard.heide@mineral.tu-freiberg.de

Mehr

KRISTALLBAUFEHLER

KRISTALLBAUFEHLER 196 11. KRISTALLBAUFEHLER 11.3.3 Hexagonal dichtest gepackte Struktur Gleitrichtung: b = a 3 < 1 1 2 0 > Gleitebene: {0 0 0 1} Wobei aber auch die in der Abbildung rechts dargestellten Gleitebenen über

Mehr

ELEKTRONEN IN FESTKÖRPERN

ELEKTRONEN IN FESTKÖRPERN 118 6. ELEKTRONEN IN FESTKÖRPERN 6.11 Feriflächen I bisher betrachteten eindiensionalen Fall wird der Grundzustand von der Ferienergie und de Feri-Niveau bestit. Das Feri-Niveau stellt den Zustand it der

Mehr

Kristallographie I. Inhalt von Kapitel 5

Kristallographie I. Inhalt von Kapitel 5 88 Inhalt von Kapitel 5 5 Untersuchung von Kristallen... 89 5.1 Lichtoptik... 89 5.2 Röntgenographische Untersuchung von Kristallen... 93 5.2.1 Beugung von Röntgenstrahlung am Kristallgitter... 94 5.2.2

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch

Mehr

Zusammenfassung 118 tet, konnte den Verlauf der experimentellen Daten wiedergeben. Das Wachstum der festen Phase aus der unterkühlten Schmelze wurde m

Zusammenfassung 118 tet, konnte den Verlauf der experimentellen Daten wiedergeben. Das Wachstum der festen Phase aus der unterkühlten Schmelze wurde m Zusammenfassung In dieser Arbeit wurde die elektrostatische Levitation aufbauend auf der Arbeit von Meister [93] und Lohöfer weiterentwickelt und erfolgreich zum Einsatz gebracht. Die elektrostatische

Mehr

Opto-elektronische. Materialeigenschaften VL # 4

Opto-elektronische. Materialeigenschaften VL # 4 Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

11.2.4 Der Burgers Vektor

11.2.4 Der Burgers Vektor 174 11. KRISTALLBAUFEHLER Abbildung 11.7: Detailansicht auf atomarer Ebene einer Stufenversetzung. 11.2.4 Der Burgers Vektor Der Burgers Vektor charakterisiert eine Versetzungslinie. Hierzu wird das gestörte

Mehr

Werkstoffwissenschaftliches Grundpraktikum

Werkstoffwissenschaftliches Grundpraktikum Marco Conte Matrikelnummer 2409793 Werkstoffwissenschaftliches Grundpraktikum 24.05.2009 Versuch: Versuchsdatum: 19.05.2009 Gruppe: 6 Betreuerin: 1.Einleitung Gefügeumwandlung in Fe-C-Legierungen (FE)

Mehr

Massenspektrometrie (MS)

Massenspektrometrie (MS) Massenspektrometrie (MS) Die Massenspektrometrie ist unter den heute routinemäßig verwendeten Methoden die jüngste, denn ihre Anwendung begann erst um 1960. Seit den Arbeiten von BIEMANN über Fragmentierungsmuster

Mehr

2 Titan, Rhenium und Ruthenium

2 Titan, Rhenium und Ruthenium 2 Titan, Rhenium und Ruthenium Die Substrate für das Titanoxidwachstum sollten neben den metallischen folgende Eigenschaften aufweisen: geringe Mischbarkeit mit Titan und gute Gitteranpassung für bestimmte

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit.

Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit. PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Probeklausur Probeklausur Name: Matrikelnummer: Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr