UNTERLAGEN ZUR CHARAKTERISIERUNG ENDLICH ERZEUGTER ABELSCHER GRUPPEN ENTWURF

Größe: px
Ab Seite anzeigen:

Download "UNTERLAGEN ZUR CHARAKTERISIERUNG ENDLICH ERZEUGTER ABELSCHER GRUPPEN ENTWURF"

Transkript

1 UNTERLAGEN ZUR CHARAKTERISIERUNG ENDLICH ERZEUGTER ABELSCHER GRUPPEN ENTWURF VORLESUNG ALGEBRA, SOMMERSEMESTER Die Charakterisierung endlich erzeugter abelscher Gruppen Satz 1.1 ([Pilz, 1984, Satz 15.5]). Für jede endlich erzeugte abelsche Gruppe G gibt es natürliche Zahlen k, r N 0, t 1,..., t k N und Primzahlen p 1,..., p k (nicht notwendigerweise verschieden), sodass G = Z p1 t 1 Z pk t k Z r. Lemma 1.2. Sei G eine abelsche Gruppe, sei k N, seien g 1,..., g k G, und seien n 1,..., n k Z. Wir nehmen an, dass ggt(n 1,..., n k ) = 1. Dann gibt es h 1,..., h k G, sodass h 1 = n i g i, und g 1,..., g k = h 1,..., h k. Beweis: Wir zeigen durch Induktion, dass für alle n N die Aussage A(n) gilt, die so definiert ist: Für alle n 1,..., n k Z, sodass ggt(n 1,..., n k ) = 1 und k n i = n, und für alle g 1,..., g k G gibt es h 1,..., h k G sodass h 1 = k n i g i und g 1,..., g k = h 1,..., h k. A(1) ist unmittelbar klar. Wir fixieren nun n 2 und nehmen an, A(i) gilt für alle i N mit i < n. Seien n 1,..., n k Z. Wir nehmen an, dass ggt(n 1,..., n k ) = 1 und k n i = n. Seien g 1,..., g k G. Da ggt(n 1,..., n k ) = 1 und k n i 2, sind zumindest zwei n i 0. Seien a, b {1,..., k} so, dass a b und n a n b > 0. Wir setzen nun h 1 := n i g i. Date: May 26, Erhard Aichinger, Institut für Algebra, Johannes Kepler Universität Linz, Austria, erhard@algebra.uni-linz.ac.at. 1

2 2 VORLESUNG ALGEBRA, SOMMERSEMESTER 2004 Es gilt h 1 = n i (sgn(n i ) g i ). Wir setzen g i := sgn(n i ) g i für i = 1,..., k. Es gilt also h 1 = n a g a + n b g b + n i g i. Somit gilt i {1,...,k}\{a,b} h 1 = ( n a n b ) g a + n b (g a + g b) + i {1,...,k}\{a,b} n i g i. Da n a n b + n b < n a + n b, gibt es nach Induktionsvoraussetzung h 2,..., h k G, sodass Es gilt {g a, g a + g b} {g i i {1,..., k} \ {a, b}} = h 1,..., h k. (1.1) {g a, g a + g b} {g i i {1,..., k} \ {a, b}} {g a, g b} {g i i {1,..., k} \ {a, b}} = g 1, g 2,..., g k = g 1, g 2,..., g k. Somit haben wir die gewünschten h 1,..., h k gefunden. Beweis von Satz 1.1: Wir wählen ein k in N, sodass G durch k Elemente erzeugbar ist, und definieren E := {(g 1,..., g k ) G k g 1,..., g k = G}. Jedem (g 1,..., g k ) G k sei das Tupel (ord g 1,..., ord g k ) (N { }) k zugeordnet. Wir ordnen (N { }) k lexikographisch, und wählen ein (a 1,..., a k ) G k, für das das zugeordnete Tupel minimal ist. Sei l {0,..., k} so, dass a l+1 = = a k = und a 1,..., a l N. Es gilt G = a 1,..., a k = a 1 + a a k. Wir zeigen nun, dass die Gruppe G isomorph zur Gruppe H ist, wobei Dazu betrachten wir die Abbildung H := Z ord a1 Z ord a2 Z ord al Z k l. ϕ : Z k G (z 1,..., z k ) k z i a i.

3 ABELSCHE GRUPPEN 3 Wir sehen leicht, dass ϕ ein Homomorphismus und surjektiv ist. Wir bestimmen nun den Kern von ϕ. Offensichtlich gilt (1.2) (ord a 1 )Z (ord a 2 )Z (ord a l )Z {0} k l Ker ϕ. Wir zeigen nun, dass in (1.2) sogar Gleichheit gilt. Nehmen wir an, es gibt ein Element in Ker ϕ, das nicht in der linken Seite von (1.2) liegt. Dann gibt es auch ein Element (z 1,..., z k ) Z k \ {(0,..., 0)}, sodass 0 z j < ord a j für alle j {1,..., l} und (z 1,..., z k ) Ker ϕ. Es gilt also z i a i = 0. Sei j {1,..., k} minimal, sodass z j 0. Wir definieren z := ggt(z 1,..., z k ). Dann gilt z i z ( z a i) = 0. i=j Da ggt( z 1 z,..., z k z ) = 1, gibt es nach Lemma 1.2 b j,..., b k G, sodass z i b j = z a i i=j und b j,..., b k = a j,..., a k. Daher gilt a 1,..., a j 1, a j,..., a k = a 1,..., a j 1, b j,..., b k. Wegen z b j = 0 gilt ord b j z z j < ord a j ; daher ist das Tupel lexikographisch kleiner als das Tupel (ord a 1,..., ord a j 1, ord b j,..., ord b k ) (ord a 1,..., ord a j 1, ord a j,..., ord a k ); das ist ein Widerspruch zur Wahl von a 1,..., a k. Daher muss in (1.2) Gleichheit gelten. Wegen des Homomorphiesatzes ist G isomorph zu H/Ker ϕ, es gilt also also G = Z k / ( (ord a 1 )Z (ord a 2 )Z (ord a r )Z {0} k l), (1.3) G = Z ord a1 Z ord aj Z k l. Sei ord a 1 = q α 1 1 qs αs, wobei alle q i verschiedene Primzahlen sind. Da für relativ prime a, b Z gilt, dass Z ab isomorph zu Z a Z b ist, ist Z ord aj isomorph zu s Z q α i. Folglich gewinnt man aus (1.3) die gewünschte Zerlegung von G in ein i Produkt zyklischer Gruppen von Primzahlpotenzordnung und Kopien von Z. Korollar 1.3. Sei G endlich erzeugte abelsche Gruppe, und sei T ihr Torsionsteil. Dann gilt G = T (G/T ).

4 4 VORLESUNG ALGEBRA, SOMMERSEMESTER Isomorphieklassen von Untergruppen endlich erzeugter abelscher Gruppen 2.1. Endliche Gruppen. Proposition 2.1. Seien H, G endliche abelsche Gruppen. Dann gilt H G genau dann, wenn H p G p für alle Primzahlen p gilt. Proposition 2.2. Sei p Primzahl, sei G = Z p t 1 Z p t k, und sei H = Z p u 1 Z p u l, wobei t 1 t 2 t k 1 und u 1 u 2 u l 1. Äquivalent sind: (1) H G. (2) Es gilt l k und für alle i l : u i t i Torsionsfreie Gruppen. Proposition 2.3. Seien r, s N 0. Dann gilt Z r Z s genau dann, wenn r s. Beweisskizze: Seien e 1,..., e r die Einheitsvektoren in Z r, und sei ϕ ein Monomorphismus von Z r nach Z s. Wir zeigen, dass ϕ(e 1 ),..., ϕ(e r ) linear unabhängige Vektoren in Q s sind. Seien dazu λ 1,..., λ r Q so, dass r λ i ϕ(e 1 ) = 0. Durch Multiplikation mit allen Nennern der λ i erhält man µ 1,..., µ r, sodass r µ i ϕ(e i ) = 0. Also gilt ϕ( r µ i e i ) = 0, und wegen der Injektivität von ϕ auch r µ i e i = 0. Also gilt µ 1 = = µ r = 0, und somit λ 1 = = λ r = 0. Da es in Q s nur höchstens s linear unabhängige Vektoren geben kann, gilt r s. Lemma 2.4. Sei n N, und sei H eine Untergruppe von Z n. m N 0, sodass H isomorph zu Z m ist. Dann gibt es Wir induzieren nach n. Für n = 1 kennt man alle Untergruppen von Z als b Z mit b Z. Für n 2 definieren wir E := Z n 1 {0}. Nach dem Isomorphiesatz ist H/(H E) isomorph zu (H + E)/E. Die Gruppe (H + E)/E ist eine Untergruppe von Z n /E. Die Gruppe Z n /E ist zyklisch; also ist auch (H +E)/E, und somit auch H/(H E) zyklisch. Es gibt also ein h H, sodass H/(H E) = {z (h + H E) z Z}. Also gilt (2.1) H = h + (H E). Wir behandeln zuerst den Fall, dass h (H E) {0}. Sei a h (H E) mit a 0. Dann gibt es ein z Z, sodass z h = a und z h E. Wegen a 0 gilt auch z 0. Da z h E, muss also auch h E gelten. Aus (2.1) folgt

5 ABELSCHE GRUPPEN 5 daher H E, also H = H E. Also ist (H, +) nach Induktionsvoraussetzung isomorph zu Z m mit m n 1. In dem Fall, dass h (H E) = {0}, ist wegen (2.1) die Gruppe (H, +) direkte Summe von h und (H E). Die Gruppe h ist isomorph zu Z oder {0}, die Gruppe H E nach Induktionsvoraussetzung zu Z m mit m n 1. (H, +) ist also isomorph zu Z m oder Z m Endlich erzeugte abelsche Gruppen. Lemma 2.5. Seien A, B torsionsfreie abelsche Gruppen, und sei T eine abelsche Torsionsgruppe. Wenn A in B T einbettbar ist, dann ist A sogar in B einbettbar. Beweis: Sei ϕ ein Monomorphismus von A in B T. Wir bezeichnen die Projektionsabbildung von B T nach B mit β; es gilt also β(b, t) = b für alle b B, t T. Wir zeigen, dass auch die Hintereinanderausführung β ϕ injektiv ist. Sei dazu x A so, dass β ϕ(x) = 0. Es gibt also t T, sodass ϕ(x) = (0, t). Daher gilt ϕ(ord t x) = (0, 0). Da ϕ injektiv ist, gilt also ord t x = 0. Nun ist A torsionsfrei; also gilt x = 0. Lemma 2.6. Jede Untergruppe einer endlich erzeugten abelschen Gruppe ist endlich erzeugt. Proposition 2.7. Seien T 1, T 2 endliche abelsche Gruppen, und seien A 1, A 2 endlich erzeugte torsionsfreie Gruppen. Dann gilt T 1 A 1 T 2 A 2 genau dann, wenn T 1 T 2 und A 1 A Eindeutigkeit der Zerlegung Satz 3.1. Seien k, l, r, s N 0, t 1,..., t k N, u 1,..., u l N, seien p 1,..., p k (nicht notwendigerweise verschiedene) Primzahlen, und seien q 1,..., q l (nicht notwendigerweise verschiedene Primzahlen). Seien G := Z p1 t 1 Z pk t k Z r H := Z q1 u 1 Z ql u l Z s. Wir nehmen an, dass G = H. Außerdem nehmen wir an, dass die Faktoren in folgender Weise geordnet sind: Für alle i, j {1,..., k} mit i j gilt p i > p j oder (p i = p j und t i t j ), und für alle i, j {1,..., l} mit i j gilt q i > q j oder (q i = q j und s i s j ). Dann gilt r = s, k = l, und für alle i {1,..., k}: p i = q i. References [Pilz, 1984] Pilz, G. F. (1984). Algebra Ein Reiseführer durch die schönsten Gebiete. Universitätsverlag Rudolf Trauner, Linz.

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch 3. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 3.1 Sei I eine Indexmenge und A α für jedes α I eine

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Rangsatz. d.) (2P) Formulieren Sie den

Rangsatz. d.) (2P) Formulieren Sie den Probeklausur Lineare Algebra I am 14.11.09 Die Klausur ist in drei Teile unterteilt, die grob als Definitions-, Rechenund Beweisteil bezeichnet werden können (optisch durch Linien getrennt). In jedem Teil

Mehr

Kommutative Algebra und algebraische Geometrie

Kommutative Algebra und algebraische Geometrie Notizen zu den ersten 7 Kapiteln der Vorlesung Kommutative Algebra und algebraische Geometrie Entwurf Sommersemester 2009 Erhard Aichinger Institut für Algebra Johannes Kepler Universität Linz Alle Rechte

Mehr

Kommutative Algebra und algebraische Geometrie

Kommutative Algebra und algebraische Geometrie Notizen zu den ersten Kapiteln der Vorlesung Kommutative Algebra und algebraische Geometrie Entwurf Sommersemester 2009 Erhard Aichinger Institut für Algebra Johannes Kepler Universität Linz Alle Rechte

Mehr

2 Gruppen, Ringe, Körper, Algebren

2 Gruppen, Ringe, Körper, Algebren 2 Gruppen, Ringe, Körper, Algebren 2.1 Gruppen Definition 2.1. Sei G eine Menge, 1 G G, sowie : G G G eine Abbildung (statt (g,h) schreiben wir meistens g h und nennen eine binäre Verknüpfung). Wir nennen

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

Kommutative Algebra und algebraische Geometrie

Kommutative Algebra und algebraische Geometrie Notizen zu den ersten 7 Kapiteln der Vorlesung Kommutative Algebra und algebraische Geometrie Entwurf Sommersemester 2014 Erhard Aichinger Institut für Algebra Johannes Kepler Universität Linz Mithilfe

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

Unterlagen zu Polynomringen. Erhard Aichinger

Unterlagen zu Polynomringen. Erhard Aichinger Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Algebra I - Wintersemester 05/06 - Zusammenfassung

Algebra I - Wintersemester 05/06 - Zusammenfassung Algebra I - Wintersemester 05/06 - Zusammenfassung Die Autoren 28. September 2017 1 Gruppen 1.1 Grundlagen 1.2 Homomorphie- und Isomorphiesätze Sind G und G Gruppen und ϕ : G G ein Gruppenhomomorphismus.

Mehr

1 Gruppen. 1.1 Grundlagen. 1.2 Homomorphie- und Isomorphiesätze

1 Gruppen. 1.1 Grundlagen. 1.2 Homomorphie- und Isomorphiesätze 1 Gruppen 1.1 Grundlagen 1.2 Homomorphie- und Isomorphiesätze Sind G und G Gruppen und ϕ : G G ein Gruppenhomomorphismus. Dann gilt: G/Kern(ϕ) = Bild(ϕ) Beispiele 1.1 (a) G/Z(G) = Aut i (G) Satz 1 Sei

Mehr

KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r

KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r KAPITEL 13 Polynome 1. Primfaktorzerlegung in den ganzen Zahlen DEFINITION 13.1 (Primzahl). Eine Zahl p ist genau dann eine Primzahl, wenn folgende beiden Bedingungen gelten: (1) Es gilt p > 1. (2) Für

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

2.3 Endliche abelsche Gruppen

2.3 Endliche abelsche Gruppen Algebra und Zahlentheorie c Rudolf Scharlau, 2002 2013 131 2.3 Endliche abelsche Gruppen In diesem Abschnitt wollen wir die Struktur von endlichen abelschen Gruppen behandeln. Die Grundidee ist, die Gruppe

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Serie 3: Gruppen, Ringe und Körper

Serie 3: Gruppen, Ringe und Körper D-MATH Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 3: Gruppen, Ringe und Körper 1. Im Folgenden sei n N und Z/nZ bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra 1 Der Satz von Poincaré-Birkhoff-Witt Darstellungen von assoziativen Algebren sind oft einfacher zu handhaben als Darstellungen von Lie- Algebren. Die universell einhüllende Algebra einer Lie-Algebra hat

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Mengenlehre: Mächtigkeit (Ordnung) einer Menge

Mengenlehre: Mächtigkeit (Ordnung) einer Menge Mengenlehre: Mächtigkeit (Ordnung) einer Menge Def. Seien A, B Mengen. Wir sagen, dass A höchstens gleichmächtig zu B ist, falls es eine injektive Abbildung f : A B gibt. Schreibweise: A B. Wir sagen,

Mehr

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 213/214 Markus Schweighofer Lineare Algebra I 6.2 Basen Definition 6.2.1. Seien V ein K-Vektorraum, n N und v 1,..., v n V. (a)

Mehr

4 Elementare Vektorraumtheorie

4 Elementare Vektorraumtheorie 4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt

Mehr

Probeklausur - eine Lösung

Probeklausur - eine Lösung Probeklausur - eine Lösung Aufgabe 1 Sei p eine Primzahl, n N, q = p n und F q der Körper mit q Elementen. Sei G = GL 2 (F q ). a) Bestimmen Sie #G. 1 x b) Zeigen Sie, dass P = { : x F 1 q } eine p-sylowgruppe

Mehr

Definition: Halbgruppe. Definition: Gruppoid. Definition: Gruppe. Definition: Monoid. Definition: Gruppenhomomorphismus. Definition: abelsche Gruppe

Definition: Halbgruppe. Definition: Gruppoid. Definition: Gruppe. Definition: Monoid. Definition: Gruppenhomomorphismus. Definition: abelsche Gruppe 1 Gruppoid 2 Halbgruppe 3 Monoid 4 Gruppe 5 abelsche Gruppe 6 Gruppenhomomorphismus 7 Kern(ϕ) 8 Bild(ϕ) 9 Untergruppe 10 Untergruppenkriterium Es sei (G, ) ein Gruppoid. Ist die Verknüpfung zusätzlich

Mehr

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren 3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

4.2 Quotientenvektorräume

4.2 Quotientenvektorräume 306 LinAlg II Version 1 6. Juni 2006 c Rudolf Scharlau 4.2 Quotientenvektorräume Zum Verständnis der folgenden Konstruktion ist es hilfreich, sich noch einmal den Abschnitt 1.4 über Restklassen vom Beginn

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G.

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G. 5. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 5.1 Sei G eine Gruppe und seien A, B G Untergruppen

Mehr

Lösungen zu Kapitel 8

Lösungen zu Kapitel 8 Lösungen zu Kapitel 8 Lösung zu Aufgabe 1: M offenbar Wir setzen A = M\ A. Für A, B P (M) gilt wegen A, B A B = (A\B) (B\A) = A B + A B, wobei + die disjunkte Vereinigung der beteiligten Mengen bedeutet.

Mehr

6.6 Normal- und Kompositionsreihen

6.6 Normal- und Kompositionsreihen 282 6.6 Normal- und Kompositionsreihen Es geht jetzt um die innere Struktur von Gruppen, soweit diese mit Ketten von ineinandergeschachtelten Normalteilern beschrieben werden kann. Erinnern wir uns deshalb

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g

Mehr

Algebraische Kurven. Vorlesung 10. Noethersche Moduln

Algebraische Kurven. Vorlesung 10. Noethersche Moduln Prof. Dr. H. Brenner Osnabrück SS 202 Algebraische Kurven Vorlesung 0 Noethersche Moduln Wir wollen zeigen, das für einen noetherschen Ring R und einen endlich erzeugten R-Modul jeder R-Untermodul wieder

Mehr

Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017

Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel II. Moduln 1 Moduln Sei R ein Ring (stets kommutativ und mit 1). 1.1 Definition. 1. Ein R-(links-)Modul ist

Mehr

Zusatzkapitel Algebra Anton Deitmar

Zusatzkapitel Algebra Anton Deitmar Zusatzkapitel Algebra 1 Zusatzkapitel Algebra Anton Deitmar 1 Gruppen 1.9 Kommutatoren Definition 1.9.1. Sind a, b Elemente einer Gruppe G, so sei [a, b] = aba 1 b 1 der Kommutator von a und b. Sei [G,

Mehr

Darstellung von Gruppen

Darstellung von Gruppen Darstellung von Gruppen Definition Darstellung von Gruppen Sei G eine endlich erzeugte abelsche Gruppe mit Erzeugern S = (g 1,..., g k ) G k. Elemente des Kerns von ϕ S : Z k G, (m 1,..., m k ) k i=1 m

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Vektoren in der Ebene Zwei Punkten P, Q in der Ebene

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist.

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist. 5.4 Untergruppen Definition 84 Eine Unteralgebra T,, 1 einer Gruppe G = S,, 1 heißt Untergruppe von G, falls T,, 1 eine Gruppe ist. Bemerkung: Nicht jede Unteralgebra einer Gruppe ist eine Untergruppe!

Mehr

Gruppen, Ringe, Körper

Gruppen, Ringe, Körper Gruppen, Ringe, Körper Martin Gubisch Lineare Algebra I WS 2007/2008 Eine Gruppe G ist eine Menge X mit einer Veknüpfung, so dass gelten: (1) x, y, z X : (x y) z = x (y z). (2) e X : x X : e x = x = x

Mehr

Konstruktion und Struktur endlicher Körper

Konstruktion und Struktur endlicher Körper Université du Luxembourg Faculté des Sciences, de la Technologie et de la Communication Bachelorarbeit Konstruktion und Struktur endlicher Körper Hoeltgen Laurent Luxemburg den 28. Mai 2008 Betreuer: Prof.

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Übungsblatt 14. Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09

Übungsblatt 14. Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09 Übungsblatt 14 Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09 Aufgabe 3. (Symmetrisches Produkt. 4 Punkte.) Sei V ein n-dimensionaler K-Vektorraum mit Basis B V n und ϕ: V K[x 1,...,x n ] 1 der Isomorphismus,

Mehr

Ganze algebraische Zahlen

Ganze algebraische Zahlen Seminarvortrag Ganze algebraische Zahlen gehalten von Johannes Hölken an der Universität Duisburg-Essen im Sommersemester 2012 im Rahmen des Seminars über Elementrare Zahlentheorie. Kontakt: johannes.hoelken@stud.uni-due.de

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

Gruppentheorie II. von Nicole Drüke

Gruppentheorie II. von Nicole Drüke Gruppentheorie II von Nicole Drüke Abelsche Gruppen DEFINITION Multiplikative und Additive Gruppe Sei A eine abelsche Gruppe mit x A, dieses wird erzeugt durch a 1,...,a n A x=a 1 1... an n für 1,.., n

Mehr

2.6 Ergänzungen und Beispiele: Semidirekte Produkte

2.6 Ergänzungen und Beispiele: Semidirekte Produkte Algebra I 15. Oktober 2007 c Rudolf Scharlau, 2002 2007 66 2.6 Ergänzungen und Beispiele: Semidirekte Produkte Wir befassen uns mit der Zerlegung von Gruppen in kleinere Gruppen, bzw. der Konstruktion

Mehr

Algebraische Zahlentheorie. Teil II. Die Diskriminante.

Algebraische Zahlentheorie. Teil II. Die Diskriminante. II-1 Algebraische Zahlentheorie Teil II Die Diskriminante Sei K ein Zahlkörper vom Grad n (also [K : Q] = n) Es gibt genau n Körper- Homomorphismen σ i : K C (siehe Merkzettel Separabilität) Stellen wir

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

VII.2. INNERE PRODUKTE 227

VII.2. INNERE PRODUKTE 227 VII.2. INNERE PRODUKTE 227 der Abstand von v zum Teilraum W genannt. Dabei bezeichnet p: V W die Orthogonalprojektion aus Satz VII.2.32 und b 1,...,b k ist eine beliebige Orthonormalbasis von W. Offensichtlich

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

Charaktere. 1 Die Charaktergruppe

Charaktere. 1 Die Charaktergruppe Vortrag zum Seminar zur Funktionentheorie, 28.01.2008 Elisabeth Peternell Zu den wichtigsten Dirichletschen Reihen gehören die L-Reihen, welche insbesondere gewöhnliche Dirichletsche Reihen darstellen,

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016 Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt:

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: 5.6 Satz von Fermat Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: b p b mod p, (falls b 0 mod p : b p 1 1 mod p) (gemeint ist: die Gleichung b p = b gilt modulo p) Diskrete Strukturen 5.6 Satz von

Mehr

Lösungsskizzen zu Übungsblatt 1

Lösungsskizzen zu Übungsblatt 1 Lösungsskizzen zu Übungsblatt 1 26. Oktober 2016 Algebra Wintersemester 2016-17 Prof. Andreas Rosenschon, PhD Anand Sawant, PhD Diese Lösungen erheben nicht den Anspruch darauf vollständig zu sein. Insbesondere

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

Teil 4. Mengen und Relationen

Teil 4. Mengen und Relationen Teil 4 Mengen und Relationen KAPITEL 10 Äquivalenzrelationen und Faktormengen 1. Äquivalenzrelationen Wir nennen eine Relation von A nach A auch eine Relation auf A. DEFINITION 10.1. SeiΡeine Relation

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Algebraische Strukturen

Algebraische Strukturen Peter Hellekalek Algebraische Strukturen Skriptum 28. Jänner 2014 Inhaltsverzeichnis 1 Gruppen.................................................. 5 1.1 Definitionen...........................................

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Übungsblatt 1: Monoide und Gruppen

Übungsblatt 1: Monoide und Gruppen Übungsblatt 1: Monoide und Gruppen Die schriftlichen Übungsaufgaben sind durch ein S gekennzeichnet und sollen in der Übung der nächsten Woche abgegeben werden. Die Votieraufgaben sind mit einem V gekennzeichnet.

Mehr

a g g, mit a g K b g g = g G (a g + b g )g Jede Darstellung einer Gruppe lässt sich eindeutig zu einer Darstellung der Gruppenalgebra

a g g, mit a g K b g g = g G (a g + b g )g Jede Darstellung einer Gruppe lässt sich eindeutig zu einer Darstellung der Gruppenalgebra Gruppenalgebren 1 Darstellung und Moduln 1.1 Definition: Sei G eine endliche Gruppe der Ordnung n und sei K ein Körper. Dann bezeichnet K[G] die Gruppenalgebra von G über K. Die Basis der Algebra besteht

Mehr

Über die Zerlegung eines Quadrats in Dreiecke gleicher Fläche

Über die Zerlegung eines Quadrats in Dreiecke gleicher Fläche Über die Zerlegung eines Quadrats in Dreiecke gleicher Fläche Moritz W. Schmitt Blockseminar Pflasterungen Januar 2010 Gliederung 1 Einführende Bemerkungen 2 Grundlagen der Bewertungstheorie 3 Satz von

Mehr

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Auf Z definieren wir eine Relation durch x, y Z : (x y : x y ist gerade) a) Zeigen Sie, dass

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

a x = y log a : R >0 R,

a x = y log a : R >0 R, 1.2.3 Gruppenhomomorphismen Es sei a > 1 eine reelle Zahl. Der Logarithmus von x R >0 zur Basis a ist bekanntlich diejenige Zahl y R, für die die Gleichung a x = y gilt. Man schreibt auch y = log a (x).

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j.

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 24 1. Zeige: Ist 1 n := min{dim K (V 1 ), dim K (V 2 )} < für Vektorräume V 1 und V 2, so ist jeder Tensor in V 1 K V 2 eine Summe von

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

13. Der diskrete Logarithmus

13. Der diskrete Logarithmus 13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Tobias Zwingmann

Tobias Zwingmann Künneth-Formel und Poincaré -Polynom Tobias Zwingmann 28.05.2012 0 Motivation Angenommen man kennt die Kohomologiegruppen von zwei topologischen Räumen X und Y. Wie lauten dann die von X Y? Die Künneth-Formel

Mehr

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen 20 3. Ringtheorie 3.1 Definition, Ideale, Kongruenzen Definition 1. a) Eine nicht leere Menge R gemeinsam mit zwei Verknüpfungen + und heißt ein Ring (mit Einselement), wenn folgendes gilt: (R1) (R, +)

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) Blatt 7 SoSe 2011 - C. Curilla/ B. Janssens Präsenzaufgaben (P13)

Mehr