6.5. Franck-Hertz-Versuch mit Quecksilber und Neon

Größe: px
Ab Seite anzeigen:

Download "6.5. Franck-Hertz-Versuch mit Quecksilber und Neon"

Transkript

1 6.5 Franck-Hertz-Versuch mit Quecksilber und Neon Franck-Hertz-Versuch mit Quecksilber und Neon SICHERHEITSHINWEIS: Eine der in diesem Versuch verwendeten Röhren enthält Quecksilber. Dieses ist sowohl sehr giftig als auch umweltgefährlich. Sollte die Röhre beschädigt werden und Quecksilber austreten, verständigen Sie sofort Ihren Betreuer! Versuchen Sie austretendes Quecksilber nicht selbst aufzunehmen. Ziel Ziel des Versuchs ist die Bestimmung der kleinsten Anregungsenergie von Neonatomen und Quecksilberatomen durch inelastischen Stoß mit freien Elektronen. Hinweise zur Vorbereitung Die Antworten auf diese Fragen sollten Sie vor der Versuchdurchführung wissen. Sie sind die Grundlage für das Gespräch mit Ihrer Tutorin/Ihrem Tutor vor dem Versuch. Informationen zu diesen Themen erhalten Sie in der unten angegebenen Literatur. Was kann beim Franck-Hertz-Versuch beobachtet werden? Wie erfolgt die Anregung der Atome im Franck-Hertz-Versuch? Was unterscheidet elastische von inelastischen Elektronenstößen? Was ist ein Termschema? Identifizieren Sie die für den Versuch relevanten Übergänge im Termschema von Quecksilber und Neon. Welchen Einfluss hat die freie Weglänge? Bei welcher der beiden Röhren können Sie die Übergänge mit bloßem Auge beobachten? Wieso ist dies bei der anderen Röhre nicht möglich? Zubehör Franck-Hertz-Betriebsgerät der Fa. Leybold Didactic Hg-Franck-Hertz-Röhre mit Rohrofen Ne-Franck-Hertz-Röhre auf Steckbrett Oszilloskop

2 Versuche zur Atom- und Quantenphysik Grundlagen Anregung von Atomen durch Elektronenstöße Beim Zusammenstoß von Elektronen mit Atomen muss zwischen verschiedenen Arten von Stößen unterschieden werden. Bei elastischen Stößen behält das Elektron seine kinetische Energie nahezu völlig und ändert lediglich seine Bewegungsrichtung. Bei inelastischen Stößen gibt das Elektron einen Teil seiner kinetischen Energie oder sogar seine gesamte kinetische Energie an das Atom ab und versetzt dieses in einen angeregten Zustand. Dabei muss die übertragene Energie der Energiedifferenz zweier Energieniveaus entsprechen. Solche inelastischen Stöße werden auch Stöße erster Art genannt und benötigen eine gewisse Mindestenergie seitens des Elektrons. Darüber hinaus gibt es Stöße zweiter Art, bei denen ein angeregtes Atom relaxiert und dabei die freiwerdende Energie in Form kinetischer Energie auf ein Elektron überträgt. Franck-Hertz-Versuch Abbildung : Aufbau einer Franck-Hertz-Röhre mit Kathode K, Anode A und den beiden Gittern G 1 und G 2. Der Aufbau einer Franck-Hertz-Röhre ist schematisch in Abbildung dargestellt. In der Röhre befindet sich ein Gas bei niedrigem Druck, in dem es zu Stößen zwischen Elektronen und Gasatomen kommt. Mit Hilfe einer Glühkathode K werden freie Elektronen erzeugt, die durch eine kleine Spannung, die sog. Steuerspannung U 1 zwischen Kathode K und dem Gitter G 1 auf das Gitter zubeschleunigt werden. Im Bereich zwischen den zwei Gittern G 1 und G 2 finden die Elektronenstöße statt. Dazu liegt zwischen beiden Gittern eine variable Beschleunigungsspannung U 2 an, die zu einem linear steigenden Potential führt und die Elektronen beschleunigt. Abhängig vom Wert dieser Spannung kommt es zu elastischen und/oder inelastischen Stößen zwischen Elektronen und Gasatomen. Zwischen dem Gitter G 2 und der Anode A liegt eine kleine Gegenspannung U 3 an, die die Elektronen abbremst und verhindert, dass niederenergetische Elektronen die Anode erreichen. Bei kleinen Spannungen zwischen den beiden Gittern reicht die im elektrischen Feld aufgenommene Energie der Elektronen nicht aus, um inelastisch mit den Gasatomen zu sto-

3 6.5 Franck-Hertz-Versuch mit Quecksilber und Neon 631 ßen, da die Energie kleiner als die erste Anregungsenergie des Gases ist. Erhöht man die Spannung kontinuierlich, so nimmt auch die Zahl der Elektronen zu, welche die Anode erreichen. Erreicht die Spannung zwischen den Gittern einen Wert, bei dem die Elektronen bereits kurz vor dem zweiten Gitter eine Energie aufweisen, die der ersten Anregungsenergie der Gasatome entspricht, so kommt es zu inelastischen Stößen, bei denen die Elektronen ihre Energie an die Gasatome abgeben. Ihre Energie genügt nun nicht mehr, um die Gegenspannung zu überwinden. Der Anodenstrom zeigt sein erstes Minimum. Erhöht man die Spannung zwischen den Gittern weiter, so verlagert sich der räumliche Bereich, an dem die ersten inelastischen Stöße stattfinden, weiter in Richtung Gitter G 1. Die Elektronen können nun von der Stelle des letzten inelastischen Stoßes im Feld erneut beschleunigt werden und Energie aufnehmen, die es zunehmend vielen Elektronen erlaubt, die Gegenspannung vor der Anode zu überwinden. Bei weiterem Erhöhen der Spannung zwischen den Gittern kommt es zu weiteren Minima im Anodenstrom I(U 2 ), wenn die Gesamtbeschleunigungsspannung einem Vielfachen der kleinsten Anregungsenergie entspricht. Die Elektronen erfahren mehrere inelastische Stöße, wobei die letzte Stoßzone gerade am Gitter G 2 liegt, wo sie alle Energie verlieren und damit die Gegenspannung nicht mehr Durchlaufen können. Da nie alle Elektronen in inelastische Stöße verwickelt werden, fällt der Anodenstrom auch an Stellen der Minima nie ganz auf Null. In diesem einfachen Modell entspricht der Abstand der Minima gerade der kleinsten Anregungsenergie E a. Genauere Messungen mit Quecksilber oder Neon zeigen jedoch, dass der Abstand der Minima für steigende Spannung U 2 zunimmt und über der kleinsten Anregungsenergie liegt. Ein Modell, das diesem Phänomen Rechnung trägt, wurde von G. Rapior et al. im Jahr 2005 vorgestellt [RSB05] und wird im folgenden Abschnitt erklärt. Modell mit Berücksichtigung der freien Weglänge Das Modell von G. Rapior et al. [RSB05] berücksichtigt die freie Weglänge L der Elektronen. Die freie Weglänge der Elektronen ist jene Strecke, die die Elektronen im statistischen Mittel zurücklegen, ohne einen Stoß mit einem Gasatom zu erleiden. Ein inelastischer Stoß eines Elektrons mit einem Gasatom kann nur dann erfolgen, wenn seine Energie mindestens einer diskreten Anregungsenergie E a entspricht. Damit ein Elektron diese Energie besitzt, muss es eine gewisse Strecke im elektrischen Feld zwischen Gitter G 1 zu Gitter G 2 zurücklegen. Diese Strecke wird hier mit l a bezeichnet. Im elektrischen Feld wird es auf die Energie E a beschleunigt. Allerdings stößt das Elektron nicht zwangsweise, sobald es l a durchflogen und somit E a erreicht hat, weil dem Elektron in diesem Moment nicht immer ein Stoßpartner zur Verfügung steht. Wegen des geringen Gasdrucks darf die freie Weglänge L der Elektronen im Gas nicht vernachlässigt werden. Im statistischen Mittel werden die Elektronen so über eine Strecke l a + L beschleunigt, bis sie einen inelastischen Stoß erleiden. Zum Zeitpunkt des Stoßes weisen sie demzufolge im Mittel bereits eine Energie E a + δ 1 auf. Im Rahmen dieses Modells verlieren die Elektronen bei einem inelastischen Stoß mit den Gasatomen ihre gesamte Energie, die durch die zusätzliche Beschleunigungsstrecke L über der minimalen Anregungsenergie liegt. Da eine Anregung durch einen inelastischen Stoß nur bei diskreten Anregungsenergien erfolgen kann ist es notwendig, dass das Füllgas hinreichend viele Energieniveaus über der

4 Versuche zur Atom- und Quantenphysik Abbildung : Energieaufnahme der Elektronen für einen (a) bzw. zwei (b) inelastische Stöße entlang einer Franck-Hertz-Röhre (nach [RSB05]). minimalen Anregungsenergie aufweist. Dies ist im Fall von Quecksilber und Neon gegeben (siehe Termschemata und 6.5.4). In Abb sind die Energieverhältnisse für eine Spannung U 2 dargestellt, bei der ein inelastischer Stoß am Gitter G 2 auftritt. Ein inelastischer Stoß auf Höhe des Gitters G 2 bedeutet, dass der Anodenstrom ein Minimum aufweist. Anhand der zwei Graphen für einen Stoß (a) und zwei Stöße (b) wird klar, dass ohne die Berücksichtigung der freien Weglänge bereits bei geringerer Spannung U 2 ein Minimum des Anodenstroms aufgetreten wäre. Mit zunehmender Anzahl n an inelastischen Stößen wächst also der Einfluss der freie Weglänge L. Für eine beliebige Anzahl an inelastischen Stößen ergibt sich die Gesamtenergieaufnahme des Elektrons zu E n = n (E a + δ n ). (6.5.1) Mit Hilfe des Strahlensatzes und der Näherung E a + δ n E a lässt sich aus Abb herleiten, dass δ n = n L l E a. (6.5.2) Damit folgt für den Abstand zwischen zwei Minima durch Einsetzen eine Energiedifferenz von [ ΔE(n) =E n E n 1 = E a 1+ L ] l (2n 1). (6.5.3) Diese ist proportioal zur Spannungsdifferenz zweier Minima in der I(U 2 )-Kurve und nimmt demnach linear mit der Anzahl n der inelastischen Stöße zu. Durch Extrapolation der

5 6.5 Franck-Hertz-Versuch mit Quecksilber und Neon 633 Geraden ΔE(n) lässt sich die minimale Anregungsenergie E a = ΔE(1/2) (6.5.4) bestimmen. Ebenso lässt sich über die Steigung dieser Geraden die mittlere freie Weglänge L bestimmen: L = l 2E a d ΔE(n). (6.5.5) dn Da bei der Hg-Röhre mit zunehmender Temperatur die Anzahl der Quecksilberatome in der Gasphase steigt und somit mehr Stoßpartner zur Verfügung stehen, nimmt die freie Weglänge mit zunehmender Temperatur ab. (Es verdampft auch bei 200 C nie alles Quecksilber.) Die Neonröhre Die Anregung von Ne-Atomen durch inelastischen Elektronenstoß erfolgt bei einem Gasdruck von etwa 10 hpa mit höchster Wahrscheinlichkeit in Zustände, die etwa 16.7eV und 18.6eV über dem Grundzustand liegen. Die Abregung dieser Zustände kann unter Emission von Photonen erfolgen. Die Wellenlänge der dabei emittierten Photonen liegt im sichtbaren orangeroten Bereich. Das emittierte Licht kann also mit bloßem Auge beobachtet werden. Zwischen den Gittern G 1 und G 2 werden deutlich voneinander getrennte orangerot leuchtende Schichten beobachtet, deren Zahl mit steigender Spannung zunimmt. Es handelt sich um Zonen hoher Anregungsdichte, in denen die angeregten Atome Spektrallicht emittieren. Der Aufbau im Anfängerpraktikum ermöglicht die Beobachtung von maximal drei leuchtenden Schichten. Die Quecksilberröhre In der evakuierten Quecksilberröhre befindet sich ein kleiner Tropfen Quecksilber. Durch Heizen der Röhre auf eine Betriebstemperatur von mind. 150 C muss der Quecksilberdampfdruck erhöht werden, damit inelastische Stöße von Elektronen an Quecksilberatomen häufiger werden. Die Röhre darf nicht über 200 C geheizt werden! Es gibt keine leuchtende Stoßzone, da die Übergänge im UV liegen. Versuchsdurchführung Durchführung mit der Neonröhre 1. Schließen Sie die Neonröhre an das Betriebsgerät unter Verwendung der DIN-Buchse an. Schließen Sie das Oszilloskop an das Betriebsgerät an. 2. Stellen Sie die angeschlossene Beschleunigungsspannung U 2 auf 80 V (Maximalspannung). Schalten Sie den Heizstrom ein und lassen Sie die Kathode ca. 1 Minute warmlaufen. Stellen Sie anschließend die Gegenspannung U 3 auf ca. 7 V und die Beschleunigungsspannung U 2 auf ca. 70 V ein. Erhöhen Sie die Steuerspannung U 1

6 Versuche zur Atom- und Quantenphysik Abbildung : Termschema von Neon [SS04]. Die optisch erlaubten Übergänge (Strahlungsübergänge) sind durch Pfeile gekennzeichnet. langsam und achten Sie dabei auf den Raum zwischen den beiden Gittern. Die richtige Steuerspannung ist erreicht, wenn drei (orangerote) Leuchtschichten zu beobachten sind. Stellen Sie die Beschleunigungsspannung U 2 auf 0 V und erhöhen Sie diese anschließend langsam bis zum ersten Minimum des Anodenstroms (ca. 20 V). Stellen Sie nun die Gegenspannung U 3 so ein, dass der Anodenstrom fast verschwindet. Jetzt ist der Aufbau für die Durchführung voreingestellt. 3. Wählen Sie geeignete Einstellungen für x-achse und y-achse am Oszilloskop. Stellen Sie dabei sicher, dass die Anzeige auch bei hohen Beschleunigungsspannungen nicht

7 6.5 Franck-Hertz-Versuch mit Quecksilber und Neon 635 Abbildung : Termschema von Quecksilber [Sal06]. Die optisch erlaubten Übergänge (Strahlungsübergänge) sind durch Pfeile gekennzeichnet. in die Sättigung läuft. Eventuell müssen Sie Steuer- und Gegenspannung nachregeln, um ein gutes Ergebnis zu erzielen. 4. Zeichnen Sie mit dem Oszilloskop sowohl den Anodenstrom (bzw. die zugehörige Spannung) als auch die Beschleunigungsspannung in einer einzigen Messung als Funktion der Zeit auf. In einem solchen Graphen können Sie auch direkt den Anodenstrom als Funktion der Beschleunigungsspannugn und damit die Lage der Minima ablesen! Zur Aufzeichnung verfahren Sie wie folgt: Am LD-Didactic-Steuergerät zum Franck-Hertz-Versuch kann die Beschleu-

8 Versuche zur Atom- und Quantenphysik nigungsspannung u. a. manuell oder vom Steuergerät automatisch linear von 0 V bis 80 V ansteigend variiert werden. Die besten Ergebnisse erhalten Sie mit der automatischen Spannungssteuerung. Wählen Sie einen Zeit-Messbereich, der die Dauer des linearen Anstieg des LD-Didactic-Steruergeräts abbilden kann. Machen Sie sich mit der Funktion des Oszilloskoptriggers vertraut (vgl. Oszilloskop-Versuch im AP-2 oder auch Beschreibung in der deutschen Wikipedia). Triggern Sie im Normalbetrieb (nicht Single oder Auto), damit genau dann, wenn die Triggerbedingung zutrifft immer wieder ein neues Bild aufgezeichnet wird. Beachten Sie, dass ein Triggersignal nur verarbeitet wird, wenn der Trigger im Zustand WAIT ist (oben rechts im Oszi-Display ablesbar). Wenn am LD-Didactic-Steuergerät zwischen Reset und der Funktion für den linearen Anstieg gewechselt wird, tritt ein Sprung in der Beschleunigungsspannung auf, den Sie als Triggersignal benutzen können. Zeichnen Sie mit geeigneter Triggerbedingung parallel beide Kanäle (Anodenstrom und Beschleunigungsspannung) für mindestens die Zeitdauer des linearen Anstiegs auf. 5. Optimieren Sie die Werte für U 1 und U 3 derart, dass Sie in den Hauptminima eine Unterstruktur auflösen können. (Je nach Zustand der Apparatur kann die Unterstruktur u. U. nicht aufgelöst werden.) Durchführung mit der Quecksilberröhre Hinweise für den Betrieb: In der kalten Hg-Röhre kann metallisches Quecksilber einen Kurzschluss zwischen den Elektroden erzeugen. Legen Sie deshalb die Spannung an die Hg-Röhre erst an, wenn die Betriebstemperatur erreicht ist. Heizen Sie die Hg-Röhre nicht höher als ϑ = 200 C. Beginnen Sie bei niedrigen Spannungen und fahren Sie diese langsam hoch. Dies gilt insbesonders für U 1. Falls die Franck-Hertz-Kurve sprunghaft ansteigt und eine Gasentladung in der Röhre als blaues Leuchten zu beobachten ist, schalten Sie die Spannungen an der Röhre sofort ab! Warten Sie einige Minuten und beginnen Sie erneut. Gegebenenfalls müssen Sie die Betriebstemperatur etwas erhöhen und bis zum neuen thermischen Gleichgewicht warten. Durchführung: 1. Messen Sie den Abstand l der beiden Gitter der Quecksilberröhre. 2. Schließen Sie die Quecksilberröhre an das Betriebsgerät unter Verwendung der DIN- Buchse an.

9 6.5 Franck-Hertz-Versuch mit Quecksilber und Neon Stellen Sie eine Betriebstemperatur von ϑ = 160 C ein und warten Sie, bis die Röhre diese Temperatur erreicht hat. 4. Finden Sie geeignete Einstellungen für die Steuerspannung, die Gegenspannung und das Oszilloskop. Der Maximalwert der Beschleunigungsspannung U 2 beträgt 30 V. 5. Zeichnen Sie den Anodenstrom (bzw. die zugehörige Spannung) und die Beschleunigungsspannung auf, wie bei der Durchführung mit der Neonröhre beschrieben. 6. Verfahren Sie analog mit drei weiteren (höheren) Temperaturen. Beachten Sie auf jeden Fall die Maximaltemperatur von ϑ = 200 Cfür die Hg-Röhre! Auswertung 1. Ermitteln Sie für Neon die in Frage kommenden, verschiedenen Anregungsenergien der Atome. Mitteln Sie über die Abstände, die zu einer bestimmten Anregungsenergie gehören, da nicht genügend Minima vorhanden sind, um die niedrigste Anregungsenergie E a und die mittlere freie Weglänge L nach dem Modell von Rapior et al. [RSB05] sinnvoll zu berechnen. Beachten Sie die Unterstruktur. Woher kommt diese Unterstruktur, d. h. welche Übergänge beobachten Sie? Erklären Sie das orangerote Leuchten in der Röhre und ermitteln Sie aus Ihren Messwerten die erwartete Wellenlänge. Vergleichen Sie Ihre Ergebnisse mit Literaturwerten. 2. Bei Quecksilber können genügend Minima beobachtet werden, um das Modell von Rapior et al. [RSB05] anzuwenden. Ermitteln Sie für Quecksilber separat für jede Temperatur die niedrigste Anregungsenergie E a der Atome gemäß diesem in der Versuchsanleitung vorgestellten Modell. Welchen Wert für E a erhalten Sie, wenn Sie über alle einzelnen Anregungsenergien mitteln. Welchem Übergang entspricht E a? Vergleichen Sie Ihre Ergebnisse mit Literaturwerten. Ermitteln Sie jeweils auch die mittlere freie Weglänge L. Wiegutbestätigen Ihre Ergebnisse die vom Modell erwartete Tendenz für die unterschiedlichen Temperaturen? Fragen und Aufgaben 1. Welche Funktion hat das Gitter G 1? 2. Warum ist bei der gewünschten Funktion der Röhre das Gitter G 2 auf ein positiveres Potential zu legen als die Anode der Röhre? 3. Anregungen durch Elektronenstoß sind im Gegensatz zu Strahlungsübergängen mit Photonen nicht durch Auswahlregeln eingeschränkt. Es gibt also wesentlich mehr erlaubte Anregungen durch Elektronenstoß als erlaubte Strahlungsübergänge. Dennoch finden Sie bei der Aufnahme der Franck-Hertz-Kurven nur wenige Niveauübergänge aus Elektronenstoßanregung, lediglich zwei bei Neon und einen bei Quecksilber. Was ist der Grund dafür, dass Sie nicht mehr Übergänge sehen? Erklären Sie in diesem Zusammenhang auch, wieso Sie die Unterstruktur von Neon nicht auch bei Quecksilber finden.

10 Versuche zur Atom- und Quantenphysik Ergänzende Informationen Auch in den weit verbreiteten Leuchtstoffröhren (oft fälschlicherweise als Neonröhren bezeichnet die echten Neonröhren kennt man aus der knallroten Coca-Cola R -Werbung der 1960er-Jahre) wird der Strom vorwiegend durch Quecksilberdampf geleitet. Dabei werden die Hg-Atome angeregt und senden wie beim Franck-Hertz-Versuch vorwiegend UV-Strahlung der Resonanzlinie mit λ = nm aus. Auf der Innenseite der Röhren ist eine Beschichtung aus mehreren verschiedenen Phosphorverbindungen ( Leuchtstoffen ) angebracht, die das UV durch Fluoreszenz in sichtbares Licht unterschiedlicher Wellenlängen (drei oder mehr) umwandeln. Betrachtet man das Spektrum einer solchen Leuchte, so findet man einzelne Linien im Gegensatz zum kontinuierlichen Spektrum der Sonne oder von Glühlampen. Dies ist der Grund, warum die Farbwiedergabe unter Leuchtstoffröhren-Beleuchtung oft sehr unnatürlich wirkt. Man ist bestrebt, durch geeignete Kombination der Leuchtstoffe das Tageslicht so gut wie möglich nachzubilden (z. B. bei der True-Lite R -Leuchtstoffröhre mit 5 6 Phosphorverbindungen und 3 Edelgasen). Trotzdem vergleicht man z. B. die Farbe von KleidungsstückenambestenamTageslicht. Auch an der Lebensmitteltheke ist die Farbwiedergabe wichtig. So ist z. B. die Farbe von Fleisch und Fleischerzeugnissen für die Verbraucher ein bedeutsames Qualitätskriterium. Mit einer ansprechenden Farbe verbindet der Verbraucher von Fleisch ein hohes Maß an Frische, Zartheit und Schmackhaftigkeit, obwohl zwischen diesen Merkmalen nicht immer enge Beziehungen bestehen. Ähnliches gilt für Obst und Gemüse. Entsprechend kann wie Wahl der Beleuchtungsmittel durchaus kaufentscheidend sein. Literaturhinweise Literaturverzeichnis [RSB05] Rapior, G., K. Sengstock und V. M. Baev: Neue Aspekte des Franck-Hertz Versuchs. DPG-Frühjahrstagung Berlin, Fachverband Didaktik der Physik, [Sal06] [SS04] Saloman, E. B.: Wavelengths, energy level classification, and energy levels for the spectrum of neutral mercury. Journal of Physical and Chemical Reference Data, 35(4): , Saloman, E. B. and Craig J. Sansonetti: Wavelengths, energy level classification, and energy levels for the spectrum of neutral neon. Journal of Physical and Chemical Reference Data, 33(4): , 2004.

6.5. Franck-Hertz-Versuch mit Quecksilber und Neon

6.5. Franck-Hertz-Versuch mit Quecksilber und Neon 6.5 Franck-Hertz-Versuch mit Quecksilber und Neon 629 6.5. Franck-Hertz-Versuch mit Quecksilber und Neon SICHERHEITSHINWEIS: Eine der in diesem Versuch verwendeten Röhren enthält Quecksilber. Dieses ist

Mehr

Protokoll zum Grundversuch Franck-Hertz Versuch

Protokoll zum Grundversuch Franck-Hertz Versuch Protokoll zum Grundversuch Franck-Hertz Versuch Fabian Schmid-Michels fschmid-michels@uni-bielefeld.de Nils Brüdigam nils.bruedigam@googlemail.com Universität Bielefeld Sommersemester 2007 Grundpraktikum

Mehr

HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik. Physik. Der Franck-Hertz-Versuch

HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik. Physik. Der Franck-Hertz-Versuch Gruppe: HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik Physik Versuch-Nr.: Der Franck-Hertz-Versuch Gliederung: 1. Theoretische Grundlagen 2. Versuchsbeschreibung 3. Versuchsaufbau 4. Messungen

Mehr

Frank-Hertz-Versuch. Praktikumsversuch am Gruppe: 18. Thomas Himmelbauer Daniel Weiss

Frank-Hertz-Versuch. Praktikumsversuch am Gruppe: 18. Thomas Himmelbauer Daniel Weiss Frank-Hertz-Versuch Praktikumsversuch am 13.04.2011 Gruppe: 18 Thomas Himmelbauer Daniel Weiss Abgegeben am: 04.04.2011 Inhaltsverzeichnis 1 Einleitung 2 2 Versuchsaufbau 2 3 Vorbemerkungen 2 3.1 Vermutlicher

Mehr

Franck-Hertz-Versuch (FHV)

Franck-Hertz-Versuch (FHV) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Franck-Hertz-Versuch (FHV) Inhaltsverzeichnis 21.11.2006 1. Einleitung... 2 2. Energiequantelung... 2 3. Versuchsdurchführung... 3 3.1. Franck-Hertz-Versuch

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer

Mehr

Franck-Hertz-Röhre mit Neonfüllung

Franck-Hertz-Röhre mit Neonfüllung Franck-Hertz-Röhre mit Neonfüllung J. Franck und G. Hertz unternahmen außer ihrem berühmt gewordenen Elektronenstoßversuch mit Quecksilber auch Versuche mit Neon. Diese Röhren zeigen in Analogie zum Franck-Hertz-Versuch

Mehr

Franck-Hertz-Versuch. Einleitung. Funktionsprinzip

Franck-Hertz-Versuch. Einleitung. Funktionsprinzip Einleitung Bei ihrem bahnbrechenden Versuch von 1913 untersuchten James Franck und Gustav Hertz den Stoß von beschleunigten Elektronen mit Quecksilber-Atomen, das entgegen klassischer Erwartungen Energie

Mehr

Versuchsvorbereitung: Franck-Hertz-Versuch

Versuchsvorbereitung: Franck-Hertz-Versuch Praktikum Klassische Physik II Versuchsvorbereitung: Franck-Hertz-Versuch (P2-53,54,55) Christian Buntin, Jingfan Ye Gruppe Mo-11 Karlsruhe, 19. April 2010 Inhaltsverzeichnis 1 Bestimmung der kleinsten

Mehr

P2-55: Franck-Hertz-Versuch

P2-55: Franck-Hertz-Versuch Physikalisches Anfängerpraktikum (P2) P2-55: Franck-Hertz-Versuch Auswertung Matthias Faulhaber Karlsruhe, den 16.12.2009 Durchführung: 16.12.2009 1 Franck-Hertz-Versuch mit Quecksilber-Röhre 1.1 Aufbau

Mehr

Auswertung P2-55 Franck-Hertz-Versuch

Auswertung P2-55 Franck-Hertz-Versuch Auswertung P2-55 Franck-Hertz-Versuch Michael Prim & Tobias Volkenandt 15. Mai 2006 Vorbemerkung Aufgrund der sehr hohen Ausfallquote an Instrumenten, war es uns nicht möglich den Versuch wie geplant durchzuführen.

Mehr

504 - Franck-Hertz-Versuch

504 - Franck-Hertz-Versuch 504 - Franck-Hertz-Versuch 1. Aufgaben Mit Hilfe einer mit Quecksilber gefüllten Röhrentriode (Franck-Hertz-Röhre) sind elektronische Anregungsenergien des Quecksilbers zu bestimmen. 1.1 Nehmen Sie die

Mehr

1.) Erklären Sie das Zustandekommen von Spektrallinien im Bohrschen Atommodell

1.) Erklären Sie das Zustandekommen von Spektrallinien im Bohrschen Atommodell A20 Name: Franck Hertz Versuch Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

DER FRANCK HERTZ VERSUCH

DER FRANCK HERTZ VERSUCH DER FRANCK HERTZ VERSUCH I. EINLEITUNG... 1 II. DIE WISSENSCHAFTLER... 2 Gustav Ludwig Hertz 2 James Franck 2 III. VERSUCH VON LENARD... 3 Versuchsaufbau 3 IV. VERSUCH VON FRANCK UND HERTZ... 4 Versuchsaufbau:

Mehr

Versuchsauswertung P2-55: Franck-Hertz-Versuch

Versuchsauswertung P2-55: Franck-Hertz-Versuch Versuchsauswertung P2-55: Franck-Hertz-Versuch Michael Walz, Kathrin Ender Gruppe 10 26. Mai 2008 Inhaltsverzeichnis 0 Zur Auswertung 2 1 Quecksilber-Franck-Hertz-Röhre 2 1.2 Bestimmung der niedrigsten

Mehr

Physik III - Anfängerpraktikum- Versuch 601

Physik III - Anfängerpraktikum- Versuch 601 Physik III - Anfängerpraktikum- Versuch 601 Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Theorie 2 1.1 Grundlagen.......................................

Mehr

A10. Franck-Hertz-Versuch

A10. Franck-Hertz-Versuch A10 Franck-Hertz-Versuch Durch ein Elektronenstoß-Experiment nach Franck und Hertz soll die Existenz diskreter Energieniveaus im Quecksilberatom nachgewiesen werden. Aus der Strom- Spannungscharakteristik

Mehr

Inhalt. 1. Physikalischer. Hintergrund. 2. Versuchsaufbau. 3. Aufgabenstellung. 4. Messergebnisse Aufgabe Aufgabe

Inhalt. 1. Physikalischer. Hintergrund. 2. Versuchsaufbau. 3. Aufgabenstellung. 4. Messergebnisse Aufgabe Aufgabe Versuch Nr. 35: Frank-Hertz-Versuch mit Hg-Dampf Versuchsdurchführung: Donnerstag, 04. Juni 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor: Batu Klump Inhalt Hintergrund 1. Physikalischer

Mehr

FRANCK - HERTZ - VERSUCH ZUR ANREGUNG VON QUECKSILBERATOMEN DURCH ELEKTRONENSTOSS

FRANCK - HERTZ - VERSUCH ZUR ANREGUNG VON QUECKSILBERATOMEN DURCH ELEKTRONENSTOSS GLT_Fh-vers20_hp.doc 04.08.00 Fachhochschule Bielefeld Fachbereich Elektrotechnik Praktikum Grundlagen der Lasertechnik Kurzanleitung Internet: FRANCK - HERTZ - VERSUCH ZUR ANREGUNG VON QUECKSILBERATOMEN

Mehr

Bericht zum Franck Hertz Versuch

Bericht zum Franck Hertz Versuch Bericht zum Franck Hertz Versuch Anton Haase, Michael Goerz. Oktober 05 GP II Tutor: K. Lenz 1 Einführung Anfang des. Jahrhunderts führten die beiden deutschen Physiker James Franck und Gustav Hertz einen

Mehr

Praktikumsprotokoll. Versuch Nr. 601 Der Franck-Hertz-Versuch. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 601 Der Franck-Hertz-Versuch. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 601 Der Franck-Hertz-Versuch und Durchgeführt am: 20 Februar 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Aufbau des Franck-Hertz-Experimentes..............

Mehr

Physik-Praktikum: FHV

Physik-Praktikum: FHV Physik-Praktikum: FHV Einleitung: Mit dem Franck-Hertz-Versuch kann man sehr anschaulich das Vorhandensein diskreter Energieniveaus in der Elektronenhülle der Atome nach dem Bohrschen Atommodell zeigen.

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 6 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer Bedeutung.

Mehr

Versuchsanleitung Frank-Hertz-Versuch

Versuchsanleitung Frank-Hertz-Versuch Versuchsanleitung Frank-Hertz-Versuch Physikalisch-Chemisches Praktikum im Bachelor Studiengang Chemie Modul 5.3 WS2015/2016 1. Einleitung Im Jahr 1911 stelle Ernest Rutherford ein neues Atommodell vor,

Mehr

Der Franck-Hertz-Versuch

Der Franck-Hertz-Versuch Der Franck-Hertz-Versuch Der Franck-Hertz-Versuch ist ein Versuch zur Untersuchung der Anregung von Gasatomen durch unelastische Stöße von Elektronen. Für die Durchführung des Franck-Hertz-Versuches verwendete

Mehr

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2) Blatt 1 (von 2) 1. Leuchtelektronen-Modell des Na-Atoms 5 BE Berechne aus dem experimentellen Wert der Ionisierungsenergie von Natrium, 5, 12 ev, die effektive Kernladungszahl für das Leuchtelektron der

Mehr

Versuch 27 Frank-Hertz-Versuch

Versuch 27 Frank-Hertz-Versuch Physikalisches Praktikum Versuch 27 Frank-Hertz-Versuch Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 21.09.2006 Katharina Rabe Assistent: Sebastian Geburt

Mehr

IIA2. Modul Atom-/Kernphysik. Franck-Hertz Versuch

IIA2. Modul Atom-/Kernphysik. Franck-Hertz Versuch IIA2 Modul Atom-/Kernphysik Franck-Hertz Versuch Dieser Versuch von JAMES FRANCK und GUSTAV LUDWIG HERTZ aus dem Jahre 1914 (Nobelpreis 1926) zählt zu den eindrucksvollsten Versuchen der Quantentheorie:

Mehr

Franck-Hertz-Versuch Quecksilber

Franck-Hertz-Versuch Quecksilber Franck-Hertz-Versuch Quecksilber Zu den eindrucksvollsten Versuchen der Quantenlehre zählt zweifellos der Franck-Hertz- Versuch (1913; Nobelpreis 1926), mit den schön ausgeprägten periodischen und äquidistanten

Mehr

Franck-Hertz-Versuch

Franck-Hertz-Versuch Versuch 601 Franck-Hertz-Versuch Thorben Linneweber Marcel C. Strzys 14.04.2009 Technische Universität Dortmund Zusammenfassung Versuch zur Bestimmmung der Energie für den Übergang zum ersten angeregten

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.7 - Photoeffekt Durchgeführt am 29.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer marius.schirmer@gmx.de

Mehr

Lehrbuchaufgaben Strahlung aus der Atomhülle

Lehrbuchaufgaben Strahlung aus der Atomhülle LB S. 89, Aufgabe 1 Die Masse lässt sich mithilfe eines Massenspektrografen bestimmen. Der Radius von Atomen kann z.b. aus einmolekularen Schichten (Ölfleckversuch) oder aus Strukturmodellen (dichtgepackte

Mehr

Institut für Physik und Werkstoffe Labor für Physik

Institut für Physik und Werkstoffe Labor für Physik Name : Fachhochschule Flensburg Institut für Physik und Werkstoffe Labor für Physik Name: Versuch-Nr: E4 Der Franck-Hertz-Versuch Gliederung: Seite 1. Einleitung 1 2. Versuchsbeschreibung 2 3. Handhabung

Mehr

Physikpraktikum für Vorgerückte. Franck-Hertz. Februar Zusammenfassung 2. 2 Versuchsanordnung und Messung 2

Physikpraktikum für Vorgerückte. Franck-Hertz. Februar Zusammenfassung 2. 2 Versuchsanordnung und Messung 2 Physikpraktikum für Vorgerückte Franck-Hertz Christian Walther cwalther@gmx.ch Februar 2003 Inhaltsverzeichnis 1 Zusammenfassung 2 2 Versuchsanordnung und Messung 2 3 Auswertung 6 3.1 Skalen.......................................

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

Auswertung Franck-Hertz-Versuch

Auswertung Franck-Hertz-Versuch Auswertung Franck-Hertz-Versuch Marcel Köpke & Axel Müller (Gruppe 30) 26.04.2012 Inhaltsverzeichnis 1 Aufgabe 1 3 1.1 Aufbau der Schaltung............................. 3 1.2 Erste Anregungsstufe von Quecksilber....................

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

A2 - Franck-Hertz-Versuch & kritische Potentiale

A2 - Franck-Hertz-Versuch & kritische Potentiale Aufgabenstellung: 1. Bestimmen Sie die Anregungsenergie für Neon aus der Franck-Hertz-Kurve. 2. Ermitteln Sie die kritischen Potentiale für Helium. Stichworte zur Vorbereitung: Atommodelle, Austrittsarbeit,

Mehr

Spektroskopie. Einleitung

Spektroskopie. Einleitung Spektroskopie Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen

Mehr

Demonstrations-Planar-Triode

Demonstrations-Planar-Triode Demonstrations-Planar-Triode 1. Anode 2. Gitter 3. Halter mit 4-mm-Steckerstift zum Anschluss des Gitters 4. Heizwendel 5. Katodenplatte 6. Verbindung der Heizfadenzuführung mit der inneren Beschichtung

Mehr

Versuch 17: Kennlinie der Vakuum-Diode

Versuch 17: Kennlinie der Vakuum-Diode Versuch 17: Kennlinie der Vakuum-Diode Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Prinzip der Vakuumdiode.......................... 3 2.2 Anlaufstrom.................................. 3 2.3 Raumladungsgebiet..............................

Mehr

Klausur 2 Kurs 12Ph1e Physik

Klausur 2 Kurs 12Ph1e Physik 2011-12-07 Klausur 2 Kurs 12Ph1e Physik Lösung 1 In nebenstehendem Termschema eines fiktiven Elements My sind einige Übergänge eingezeichnet. Zu 2 Übergängen sind die zugehörigen Wellenlängen notiert.

Mehr

Photoeffekt: Bestimmung von h/e

Photoeffekt: Bestimmung von h/e I. Physikalisches Institut der Universität zu Köln Physikalisches Praktikum B Versuch 1.4 Photoeffekt: Bestimmung von h/e (Stand: 25.07.2008) 1 Versuchsziel: In diesem Versuch soll der äußere photoelektrische

Mehr

8. Reale Gase D1-1. Bereiten Sie folgende Themengebiete vor

8. Reale Gase D1-1. Bereiten Sie folgende Themengebiete vor D1-1 8. Reale Gase Bereiten Sie folgende Themengebiete vor Modell des idealen Gases, ideales Gasgesetz reales Gas, van der Waals-Gleichung, Virialgleichungen pv- und pt-diagramme, kritische Isotherme kinetische

Mehr

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

TE Thermische Emission

TE Thermische Emission TE Thermische Emission Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Kennlinie einer Glühdiode............................. 2 2 Versuch und Auswertung 4

Mehr

Übungen zur Physik des Lichts

Übungen zur Physik des Lichts ) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich

Mehr

Physikalisches Anfängerpraktikum 4 Franck-Hertz-Versuch & VIS/NIR-Spektroskopie

Physikalisches Anfängerpraktikum 4 Franck-Hertz-Versuch & VIS/NIR-Spektroskopie Physikalisches Anfängerpraktikum 4 Franck-Hertz-Versuch & VIS/NIR-Spektroskopie John Schneider & Jörg Herbel Durchgeführt am 10.05.2012 & 24.05.2012 Universität Konstanz SS 2012 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Atomaufbau / Ladung. (Atomkern). In Metallen sind die Elektronen frei beweglich. In Isolatoren dagegen sind alle

Atomaufbau / Ladung. (Atomkern). In Metallen sind die Elektronen frei beweglich. In Isolatoren dagegen sind alle Atomaufbau / Ladung Definition Ladung: Es gibt negative und positive Ladungen. Gleichnamige Ladungen stoßen sich ab. Träger der negativen Ladung sind die Elektronen (Atomhülle). Träger der Positiven Ladung

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.1 - GV Atom- und Molekülspektren Durchgeführt am 22.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer

Mehr

Anfängerpraktikum D11 - Röntgenstrahlung

Anfängerpraktikum D11 - Röntgenstrahlung Anfängerpraktikum D11 - Röntgenstrahlung Vitali Müller, Kais Abdelkhalek Sommersemester 2009 1 Messung des ersten Spektrums 1.1 Versuchsaufbau und Hintergrund Es sollte das Spektrum eines Röntgenapparates

Mehr

Versuchsprotokoll. Bestimmung des Planckschen Wirkungsquantums. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 36

Versuchsprotokoll. Bestimmung des Planckschen Wirkungsquantums. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 36 Montag, 19.1.1998 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 36 Bestimmung des Planckschen Wirkungsquantums 1 Inhaltsverzeichnis 1 Problemstellung

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses. Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.

Mehr

Protokoll zum physikalischen Anfängerpraktikum h-bestimmung mittels Photoeffekt

Protokoll zum physikalischen Anfängerpraktikum h-bestimmung mittels Photoeffekt Protokoll zum physikalischen Anfängerpraktikum h-bestimmung mittels Photoeffekt Jan Korger (561543), Physik Diplom, 2. Fachsemester Thomas Lauermann (547863), Physik Diplom, 2. Fachsemester durchgeführt

Mehr

Klausur 2 Kurs 13Ph3g Physik

Klausur 2 Kurs 13Ph3g Physik 2010-12-02 Klausur 2 Kurs 13Ph3g Physik Lösung 1 Verbrennt in einer an sich farblosen Gasflamme Salz (NaClNatriumchlorid), so wird die Flamme gelb gefärbt. Lässt man Natriumlicht auf diese Flamme fallen,

Mehr

PeP Physik erfahren im Forschungs-Praktikum. Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente

PeP Physik erfahren im Forschungs-Praktikum. Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente Die Entstehung des Lichts Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente Das elektromagnetische Spektrum Zur Veranschaulichung Untersuchung von Spektren

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Die Abbildung zeigt eine handelsübliche Röntgenröhre

Die Abbildung zeigt eine handelsübliche Röntgenröhre Die Röntgenstrahlung Historische Fakten: 1895 entdeckte Röntgen beim Experimentieren mit einer Gasentladungsröhre, dass fluoreszierende Kristalle außerhalb der Röhre zum Leuchten angeregt wurden, obwohl

Mehr

Folgendes Röntgenspektrum wurde an einer Röntgenröhre aufgenommen, die mit der Beschleunigungsspannung

Folgendes Röntgenspektrum wurde an einer Röntgenröhre aufgenommen, die mit der Beschleunigungsspannung Seite Aufgabe : Röntgenspektrum Folgendes Röntgenspektrum wurde an einer Röntgenröhre aufgenommen, die mit der Beschleunigungsspannung U = 30 kv betrieben wurde.. Berechnen Sie aus dem dargestellten Versuchsergebnis

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil III. Franck-Hertz-Versuch

Physikalisches Grundpraktikum für Physiker/innen Teil III. Franck-Hertz-Versuch Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil III Franck-Hertz-Versuch WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/

Mehr

Fluoreszenzlampenl. René Riedel. Bettina Haves

Fluoreszenzlampenl. René Riedel. Bettina Haves Leuchtstoffe in Fluoreszenzlampenl René Riedel Bettina Haves Inhalt 1) Fluoreszenzlampen 2) Fluoreszenz 3) Geschichte der Leuchtstoffe 4) Leuchtstoffe in Fluoreszenzlampen 5) Weitere Anwendungsbereiche

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung Versuch Nr. 02: Bestimmung eines Ohmschen Widerstandes nach der Substitutionsmethode Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor:

Mehr

Versuch A3 / A8 - Franck-Hertz-Versuch und Photoeffekt. Abgabedatum: 28. Februar 2008

Versuch A3 / A8 - Franck-Hertz-Versuch und Photoeffekt. Abgabedatum: 28. Februar 2008 Versuch A3 / A8 - Franck-Hertz-Versuch und Photoeffekt Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Versuchsziel 3 2 Thema des Versuchs 3 3 Physikalischer Zusammenhang 3 3.1 Bohrsches

Mehr

Spezifische Ladung eines Elektrons

Spezifische Ladung eines Elektrons A12 Spezifische Ladung eines Elektrons Die spezifische Elektronenladung e/m e soll aus der Bahnkurve eines Elektronenstrahls im homogenen magnetischen Feld bestimmt werden. 1. Theoretische Grundlagen 1.1

Mehr

Franck-Hertz-Versuch

Franck-Hertz-Versuch Franck-Hertz-Versuch Mit dem Franck-Hertz-Versuch wird die Anregung von Hg-Atomen durch Elektronenstoß untersucht. Deshalb seien zunächst einige grundlegende Vorstellungen über den Aufbau der Atome vorangestellt,

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Franck-Hertz-Versuch (FHV)

Franck-Hertz-Versuch (FHV) Technische Universität München TUM School of Education TUM Science Labs Gefördert durch die Franck-Hertz-Versuch (FHV) Versuch im Physikalischen Anfängerpraktikum Bearbeitet von: Andrea Bugl und Christian

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Optische Eigenschaften fester Stoffe. Licht im neuen Licht Dez 2015

Optische Eigenschaften fester Stoffe. Licht im neuen Licht Dez 2015 Licht und Materie Optische Eigenschaften fester Stoffe Matthias Laukenmann Den Lernenden muss bereits bekannt sein: Zahlreiche Phänomene lassen sich erklären, wenn man annimmt, dass die von Atomen quantisiert

Mehr

Photozelle. Kathode. Spannungsquelle - + U Voltmeter

Photozelle. Kathode. Spannungsquelle - + U Voltmeter 1. Mache dich mit dem Applet vertraut! Lies hierzu den einführenden Text und erkläre die folgenden Begriffe in diesem Zusammenhang in einem kurzen Satz. Photon: Kathode: Anode: Energie eines Photons: Energie

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Bestimmung der Wellenlänge von Schallwellen mit einer Abbildung 1: Experimenteller Aufbau zur Bestimmung der Wellenlänge von Schallwellen mit einer. 1. Versuchsziel Wenn sich

Mehr

Frank-Hertz-Versuch P2-54

Frank-Hertz-Versuch P2-54 Karlsruher Institut für Technologie (KIT) SS 2012 Physikalisches Anfängerpraktikum - P2 Frank-Hertz-Versuch P2-54 Auswertung von Tobias Renz und Raphael Schmager Gruppe: Do-28 Durchgeführt am 10. Mai 2012

Mehr

Franck-Hertz-Versuch

Franck-Hertz-Versuch Physikalisches Anfängerpraktikum 2 Gruppe Mo-16 Sommersemester 2006 Jens Küchenmeister (1253810) Julian Merkert (1229929) Versuch: P2-54 Franck-Hertz-Versuch - Auswertung - Vorbemerkung Bei diesem Versuch

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

Photoeffekt. Einleitung. Zinkplatte

Photoeffekt. Einleitung. Zinkplatte Einleitung Der lichtelektrische Effekt, die Freisetzung von Elektronen aus einer Metalloberfläche beim uftreffen von elektromagnetischer Strahlung, wurde 1839 von lexandre Becquerel erstmals beobachtet

Mehr

Chemie-Labothek zur Photochemie

Chemie-Labothek zur Photochemie Fluoreszenz und Phosphoreszenz, Echtfarbenemissionsspektren (EFES) V1: Fluoreszenz und Phosphoreszenz Arbeitsmaterialien: Waage Mörser mit Pistill Porzellanschale Bunsenbrenner UV-Handlampe 7 Reagenzgläser

Mehr

LD DIDACTIC Leyboldstrasse 1 D Hürth Phone: (02233) Fax: (02233)

LD DIDACTIC Leyboldstrasse 1 D Hürth Phone: (02233) Fax: (02233) Optik Lichtintensität Strahlungsgesetze LD Handblätter Physik P5.5.2.4 Das Wien sche Verschiebungsgesetz spektrale Aufnahme der Schwarzkörperstrahlung Beschreibung aus SpectraLab (467 250) LD DIDACTIC

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Aufgabe: LB S.66/9 Durch eine Natriumdampflampe wird Licht der Wellenlänge 589 nm (gelbe Natriumlinien) mit einer Leistung von 75 mw ausgesendet. a) Berechnen Sie die Energie der betreffenden Photonen!

Mehr

Examensaufgaben QUANTENPHYSIK

Examensaufgaben QUANTENPHYSIK Examensaufgaben QUANTENPHYSIK Aufgabe 1 (Juni 2006) Bei einem Versuch wurden folgende Messwerte ermittelt : Wellenlänge des Lichtes (nm) Gegenspannung (V) 436 0,83 578 0,13 a) Berechne aus diesen Werten

Mehr

Sterne 16 Sternspektroskopie und Spektralanalyse (Teil 4)

Sterne 16 Sternspektroskopie und Spektralanalyse (Teil 4) Sterne 16 Sternspektroskopie und Spektralanalyse (Teil 4) Gesetzmäßigkeiten in der Anordnung der Spektrallinien eines Stoffes? Wasserstoff Johann Jacob Balmer 1825-1898 A=364.4 nm n ganzzahlig > 2 Eine

Mehr

Spektralanalyse. Olaf Merkert (Manuel Sitter) 18. Dezember 2005

Spektralanalyse. Olaf Merkert (Manuel Sitter) 18. Dezember 2005 Spektralanalyse Olaf Merkert (Manuel Sitter) 18. Dezember 2005 Zusammenfassung Dieses Praktikums-Protokoll behandelt die Untersuchung des Spektrums einer Energiesparlampe mit Hilfe eines Gitters. Außerdem

Mehr

Auger Elektronenspektroskopie (AES) Photoemissionspektroskopie (XPS, UPS)

Auger Elektronenspektroskopie (AES) Photoemissionspektroskopie (XPS, UPS) Auger Elektronenspektroskopie (AES) Photoemissionspektroskopie (XPS, UPS) 1 Auger-Elektronen-Spektroskopie ist eine Standardanalysetechnik der Oberflächen und Interface-Physik zur Überprüfung a) Reinheit

Mehr

Club Apollo 13, 14. Wettbewerb Aufgabe 1.

Club Apollo 13, 14. Wettbewerb Aufgabe 1. Club Apollo 13, 14. Wettbewerb Aufgabe 1. (1) a) Grundlagenteil: Basteln und Experimentieren Wir haben den Versuchsaufbau entsprechend der Versuchsanleitung aufgebaut. Den Aufbau sowie die Phase des Bauens

Mehr

A2 FRANCK-HERTZ-VERSUCH

A2 FRANCK-HERTZ-VERSUCH PHYSIKALISCHE GRUNDLAGEN Wichtige Grundbegriffe: Atommodelle von Rutherford und Bohr, Spektrallinien, Elektronenstoßanregung, Stoßquerschnitte, Plancksches Wirkungsquantum, Kontaktpotential, Strom- Spannungs-Kennlinie

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

ERFURT. Franck-Hertz-Versuch mit Thyratron. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht

ERFURT. Franck-Hertz-Versuch mit Thyratron. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht ERFURT Franck-Hertz-Versuch mit Thyratron Robert Brückner Clemens Fischer Marco Poppe Schule: von-bülow-gymnasium Zinzendorfstraße 19 99192

Mehr

Versuch 1.6: Franck-Hertz-Versuch

Versuch 1.6: Franck-Hertz-Versuch Physikalisches Praktikum für Fortgeschrittene TU Darmstadt Abteilung A: Angewandte Physik Versuch 1.6: Franck-Hertz-Versuch Stefan A. Gärtner Durchgeführt mit: Christian Klose Betreut von: Dr. Rainer Spehr

Mehr

Versuch Q1. Äußerer Photoeffekt. Sommersemester Daniel Scholz

Versuch Q1. Äußerer Photoeffekt. Sommersemester Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch Q1 Äußerer Photoeffekt Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

Pflichtaufgaben. Die geradlinige Bewegung eines PKW ist durch folgende Zeit-Geschwindigkeit- Messwertpaare beschrieben.

Pflichtaufgaben. Die geradlinige Bewegung eines PKW ist durch folgende Zeit-Geschwindigkeit- Messwertpaare beschrieben. Abitur 2002 Physik Gk Seite 3 Pflichtaufgaben (24 BE) Aufgabe P1 Mechanik Die geradlinige Bewegung eines PKW ist durch folgende Zeit-Geschwindigkeit- Messwertpaare beschrieben. t in s 0 7 37 40 100 v in

Mehr