Tabellen und Abbildungen
|
|
|
- Marielies Franke
- vor 8 Jahren
- Abrufe
Transkript
1 Professur Psychologie digitaler Lernmedien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Tabellen und Abbildungen
2 Überblick Tabellen Abbildungen Histogramm und Polygonzug Box-Plot und Violin-Plot Balken- und Säulendiagramm Streudiagramm Kreisdiagramm Exkurs: Standardabweichung vs. Standardfehler 2
3 Einführung Statistik als Suche nach Mustern in Zahlen Wie stellt man das Ergebnis dieser Suche adäquat dar? Mehrere Möglichkeiten der Ergebnisdarstellung Fließtext: Statistische Kennwerte im Fließtext einfügen Tabellen: Statistische Kennwerte in Tabellen aufbereiten Abbildungen: Statistische Kennwerte in Abbildungen visualisieren 3
4 Empfehlungen zur Gestaltung von Tabellen Weniger ist (oftmals) mehr Tabellen sparsam verwenden Keine oder nur wenige Farben einsetzen Konventionen zur Gestaltung Formatierung nach APA-Richtlinien Nur horizontale Linien verwenden Zu Maßen der zentralen Tendenz immer auch Streuungsmaße (z. B. Standardabweichungen) hinzufügen 4
5 Beispiele für Tabellen in Fachzeitschriften I Quelle: Florax und Plötzner (2010) Quelle: Rey und Steib (2013) 5
6 Beispiele für Tabellen in Fachzeitschriften II Quelle: Bokosmaty, Sweller und Kalyuga (2015) 6
7 Tabellen Was kann man an der unten dargestellten Tabelle kritisieren? A: Unnötiger Einsatz von Farben B: Tabelle enthält keine Streuungsmaße C: Tabelle enthält vertikale Linien D: Tabelle insgesamt überflüssig Rey.participoll.com Gruppengröße Lernleistung Mit Personalisierungen Ohne Personalisierungen A B C D 0 7
8 Abbildungen (z. B. Leonhart, 2013) Formen von Abbildungen Histogramm Polygonzug Box-Plot Balkendiagramm Säulendiagramm Streudiagramm Kreisdiagramm Empfehlungen zur Gestaltung von Abbildungen 8
9 Histogramm Histogramm: Abbildung einer Häufigkeitsverteilung in Säulenform Beispiel: Kognitive Belastung auf einer 100-stufigen Ratingskala Häufigkeit Kognitive Belastung 9
10 Polygonzug Polygonzug: Abbildung einer Häufigkeitsverteilung in Linienform Beispiel: Altersverteilung einer Stichprobe Häufigkeit Alter 10
11 Box-Plot (z. B. Leonhart, 2013) Box-Plot (auch Box-Whisker-Plot genannt): Abbildung, die Maße der zentralen Tendenz (meist der Median) und Streuungsmaße (meist Quartile der Gruppen) darstellt Beispiel: Vergleich der Lernleistungen zwischen den Gruppen mit und ohne Signalisierungen Lernleistung 100 Median: Linie in der Box Interquartilbereich: Box 70 Q 1 : Unteres Ende der Box Q 3 : Oberes Ende der Box 40 Whiskers: Enthalten alle weiteren Werte, aber ohne 10 0 Ausreißer oder Extremwerte Mit Signalisierungen Ohne Signalisierungen 11
12 Box-Plot (z. B. Leonhart, 2013) Beispiel: Box-Plot mit Ausreißern und Extremwerten Ausreißer (als Kreise dargestellt): Werte zwischen dem 1.5- und 3-fachen Abstand des Interquartilbereichs zu Q 1 bzw. Q 3 Extremwerte (als Kreuze oder Sterne dargestellt): Werte größer als der 3-fache Abstand des Interquartilbereichs zu Q 1 bzw. Q 3 Quelle: Leonhart (2013) 12
13 Violin-Plot (Hintze & Nelson, 1998) Violin-Plot: Weiterentwicklung des Box-Plot mit Darstellung der Wahrscheinlichkeitsdichte der Daten Violin-Plots enthalten mehr Informationen als Box-Plots Beispiel: Quelle: Quelle: 13
14 Balken- und Säulendiagramm (z. B. Leonhart, 2013) Balken- und Säulendiagramm: Abbildung von Daten in Balken- oder Säulenform Häufig werden die Mittelwerte verschiedener Gruppen und die dazugehörigen Streuungen (z. B. Standardabweichungen in Form von Fehlerbalken) dargestellt Beispiel: Experiment zum Split-Attention Effekt von Florax und Plötzner (2010) 14
15 Säulendiagramm Was kann man an dem unten dargestellten Säulendiagramm kritisieren? A: Unklar, was die y-achse inhaltlich repräsentiert B: Fehlende Streuungsmaße C: Fehlende Farben in der Abbildung Rey.participoll.com Quelle: Homer, Plass und Blake (2008, Exp. 2) A B C 0 15
16 Transfer Streudiagramm (z. B. Leonhart, 2013) Streudiagramm (engl. scatter plot oder scattergraph): Abbildung, die den Zusammenhang zwischen zwei stetigen Variablen verdeutlicht Form der Punktwolke liefert Hinweise über den Zusammenhang der beiden Variablen Beispiel: Fiktiver Zusammenhang zwischen Behaltens- und Transferlernleistungen Behalten 16
17 IQ-Test 2 Streudiagramm Was kann man an dem unten dargestellten Streudiagramm kritisieren? A: Achsen beginnen nicht bei Null B: Unnötige farbige Markierungen C: Kreise statt Kreuze als Markierungen D: Unnötige Hilfsgitterlinien Rey.participoll.com IQ-Test 1 A B C D 0 17
18 Kreisdiagramm Kreisdiagramm (auch als Kuchen- oder Tortendiagramm bezeichnet): Abbildung, die Teile eines Ganzen in Kreissektoren anordnet Prozentwerte werden z. T. als Kreisdiagramme visualisiert Beispiel: Prozentuale Aufschlüsselung der Studierenden nach Studienfächern 8% 5% Medienkommunikation 13% 18% 56% Psychologie Pädagogik Soziologie Germanistik 18
19 Empfehlungen zur Gestaltung von Abbildungen (Rey, 2012) Weniger ist (oftmals) mehr Abbildungen äußerst sparsam verwenden Gestaltungsempfehlungen aus der CLT und CTML beachten Keine oder nur wenige Farben einsetzen Wahrheit und Klarheit Zusammenhänge in den Daten nicht vortäuschen Daten in den Vordergrund stellen Verständliche und vollständige Abbildungsbeschriftung (Legende) hinzufügen Abbildungen sollten neben Maßen der zentralen Tendenz auch Streuungsmaße (z. B. Standardabweichungen) enthalten 19
20 Beispiele für Abbildungen (Rey, 2012) Einfarbige vs. mehrfarbige Abbildungen Abbildungen mit vs. ohne Streuungsmaß (hier: Standardabweichung) Zweidimensionale vs. dreidimensionale Abbildungen Abbildungen ohne vs. mit Hilfslinien Lernleistung Lernleistung Trainingsbedingung Kontrollbedingung Trainingsbedingung Kontrollbedingung Quelle: Rey (2012) 20
21 Beispiele für Abbildungen (Rey, 2012) Abbildungen mit vs. ohne Streuungsmaß (hier: Standardabweichung) Abbildungen mit großem vs. kleinem Wertebereich der y-achse Lernleistung 16 Lernleistung 12, , , ,3 8 10,9 6 10,6 4 10,2 2 9,9 0 Trainingsbedingung Kontrollbedingung 9,5 Trainingsbedingung Kontrollbedingung Quelle: Rey (2012) 21
22 Exkurs: Standardabweichung vs. Standardfehler (z. B. Koschack, 2008) Standardabweichung und Standardfehler unterscheiden sich Standardabweichung (engl. standard deviation, SD): Grob gesagt die durchschnittliche Abweichung der Messwerte von ihrem Mittelwert Formel: Standardfehler (engl. standard error of the mean, SEM bzw. SE): Theoretische Streubreite der Gruppenmittelwerte, die sich aus unendlich vielen, aus der Population gezogenen Stichproben ergeben würde Formel: SD n i 1 SD SEM n x i x n 1 2 (Wichtig: SEM über SD und nicht SD² berechnen) 22
23 Exkurs: Standardabweichung vs. Standardfehler (Koschack, 2008) Vergleich zwischen Standardabweichung und Standardfehler: Standardabweichung (SD) Aussage über die Streuung der erhobenen Werte in einer Stichprobe Abhängig von der Variabilität des zu messenden Konstruktes Deskriptivstatistisches Maß Sehr geringer Einfluss der Stichprobengröße auf dieses Maß Standardfehler (SE bzw. SEM) Aussage über die Genauigkeit des Mittelwerts in einer Stichprobe Abhängig von der Messgenauigkeit Inferenzstatistisches Maß Sehr großer Einfluss der Stichprobengröße auf dieses Maß Empfehlung von Koschack (2008, S. 259): Die Angabe der Standardabweichung ist also auf jeden Fall der des Standardfehlers vorzuziehen. 23
24 Exkurs: Standardabweichung vs. Standardfehler Beispiel für den Unterschied zwischen Standardabweichung und Standardfehler (für ein Experiment mit zwei Gruppen und N = 113): Säulendiagramm mit Standardabweichungen Säulendiagramm mit Standardfehlern Links-Rechts Rechts-Links 0 Links-Rechts Rechts-Links 24
25 Zusammenfassung Fließtext, Tabellen und Abbildungen: Unterschiedliche Möglichkeiten der Ergebnisdarstellung Tabellen sparsam einsetzen und nach gängigen Konventionen gestalten Histogramm, Polygonzug, Box- und Violin-Plot, Balken- und Säulendiagramm, Streudiagramm und Kreisdiagramm: Ausgewählte Formen von Abbildungen Für Tabellen und Abbildungen gilt: Weniger ist (oftmals) mehr; Wahrheit und Klarheit herstellen Da sich Standardabweichung und Standardfehler unterscheiden, immer angeben, welches Streuungsmaß visualisiert wird 25
26 Lernspiel zur Wiederholung der letzten Sitzungen Kahoot.it 26
27 Prüfungsliteratur Leonhart, R. (2013). Lehrbuch Statistik. Einstieg und Vertiefung (3. Aufl.). Bern: Huber. Grafische Darstellungen (S ) Rasch, B., Friese, M., Hofmann, W., & Naumann, E. (2014). Quantitative Methoden 1: Einführung in die Statistik für Psychologen und Sozialwissenschaftler (4. Aufl.). Heidelberg: Springer. Darstellung von Daten (S. 4-6) Rey, G. D. (2012). Methoden der Entwicklungspsychologie. Datenerhebung und Datenauswertung. Norderstedt bei Hamburg: BoD. Datenvisualisierung (S ) Koschack, J. (2008). Standardabweichung und Standardfehler: der kleine, aber feine Unterschied. Z Allg Med, 84,
28 Weiterführende Literatur Bortz, J., & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler (7. Aufl.). Berlin: Springer. Grafische Darstellungen von Merkmalsverteilungen (S ) Eid, M., Gollwitzer, M., & Schmitt, M. (2015). Statistik und Forschungsmethoden (4. Aufl.). Weinheim: Beltz. Univariate Deskriptivstatistik (S ) Tufte, E. R. (2001). The visual display of quantitative information (2. Aufl.). Cheshire, Connecticut: Graphics Press. Hintze, J. L., & Nelson, R. D. (1998). Violin plots: a box plot-density trace synergism. The American Statistician, 52,
Tabellen und Abbildungen
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Tabellen und Abbildungen Überblick Tabellen Abbildungen Polygonzug Histogramm Box-Plot
Mittelwert und Standardabweichung
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße
Mehrfaktorielle Varianzanalyse
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mehrfaktorielle Varianzanalyse Überblick Einführung Empirische F-Werte zu einer zweifaktoriellen
Einfaktorielle Varianzanalyse
Professur Psychologie digitaler Lernmedien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Einfaktorielle Varianzanalyse Überblick Einführung Alphafehler-Kumulierung Grundprinzip
Stichprobenumfangsplanung
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Stichprobenumfangsplanung Überblick Einführung Signifikanzniveau Teststärke Effektgröße
Zusammenfassung. Einführung in die Statistik. Professur E-Learning und Neue Medien. Institut für Medienforschung Philosophische Fakultät
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Zusammenfassung Überblick 2 Überblick Zentrale Tendenz, Streuung und Verteilung Tabellen
Gestaltungsempfehlungen
Professur Psychologie digitaler Lernmedien Institut für Medienforschung Philosophische Fakultät Lehren und Lernen mit Medien I Gestaltungsempfehlungen Überblick Auswahl der Empfehlungen Gestaltungseffekte
Einführung in die Statistik Einführung
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Einführung Professur E-Learning und Neue Medien www.tu-chemnitz.de/phil/imf/elearning
Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft
Einführung. Lehren und Lernen mit Medien II. Professur E-Learning und Neue Medien. Institut für Medienforschung Philosophische Fakultät
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Lehren und Lernen mit Medien II Einführung Professur E-Learning und Neue Medien www.tu-chemnitz.de/phil/imf/elearning
10. Medizinische Statistik
10. Medizinische Statistik Projektplanung Deskriptive Statistik Inferenz-Statistik Literatur: Hüsler, J. und Zimmermann, H.: Statistische Prinzipien für medizinische Projekte, Verlag Hans Huber, 1993.
Weitere Varianzanalysen
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Weitere Varianzanalysen Überblick Varianzanalyse mit Messwiederholung Kovarianzanalyse
Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft
Kreisdiagramm, Tortendiagramm
Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
Einführung in die Statistik Testgütekriterien
Professur Psychologie digitaler Lernmedien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Testgütekriterien Überblick Einleitung Objektivität Reliabilität Validität Nebengütekriterien
Statistik K urs SS 2004
Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten
Marold Wosnitza & Reinhold S. Jäger (Hrsg.) Daten erfassen, auswerten und präsentieren - aber wie?
Marold Wosnitza & Reinhold S. Jäger (Hrsg.) Daten erfassen, auswerten und präsentieren - aber wie? 1l 14839135 Inhaltsverzeichnis Einführung 1 1 Forschungsmethoden - Ein Überblick (Urban Lissmann) 5 1.1
Deskriptive Statistik & grafische Darstellung
Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive
Grundlagen der empirischen Sozialforschung
Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien
Simulationen. Lehren und Lernen mit Medien I. Professur E-Learning und Neue Medien. Institut für Medienforschung Philosophische Fakultät
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Lehren und Lernen mit Medien I Simulationen Überblick Simulationen Simulationen vs. Lernspiele Probleme beim Lernen
Univ.-Prof. Dr. Georg Wydra
Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen
DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung
Stichwortverzeichnis. Symbole
Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote
Bitte am PC mit Windows anmelden!
Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung
VS PLUS
VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation
Emotional Design. Lehren und Lernen mit Medien II. Professur E-Learning und Neue Medien. Institut für Medienforschung Philosophische Fakultät
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Lehren und Lernen mit Medien II Emotional Design Überblick Einführung CATLM Vermenschlichung und Farbe Klassifikation
Zusammenfassung. Instruktionspsychologie. Professur Psychologie digitaler Lernmedien. Institut für Medienforschung Philosophische Fakultät
Professur Psychologie digitaler Lernmedien Institut für Medienforschung Philosophische Fakultät Instruktionspsychologie Zusammenfassung Überblick Theorien Gestaltungsempfehlungen Moderierende Einflüsse
2. Deskriptive Statistik
Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten
Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit
TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative
INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße
DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler
Statistik I. Methodologie der Psychologie
Statistik I Methodologie der Psychologie Thomas Schmidt & Lena Frank Wintersemester 2003/2004 Georg-Elias-Müller-Institut für Psychologie Uni Göttingen Literatur: Glantz, S.A. (2002). Primer of Biostatistics.
Korrelation und Regression
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Korrelation und Regression Überblick Kovarianz und Korrelation Korrelation und Kausalität
Deskriptive Statistik
Deskriptive Statistik 1 Ziele In der deskriptiven (=beschreibenden) Statistik werden Untersuchungsergebnisse übersichtlich dargestellt, durch Kennzahlen charakterisiert und grafisch veranschaulicht. 2
Nonparametrische Verfahren
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Nonparametrische Verfahren Überblick Einführung Mann-Whitney U-Test Wilcoxon-Test Kruskal-Wallis
Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft
W-Seminar: Versuche mit und am Menschen 2017/2019 Skript
3. Deskriptive Statistik Die deskriptive (auch: beschreibende) Statistik hat zum Ziel, [ ] Daten durch Tabellen, Kennzahlen [ ] und Grafiken übersichtlich darzustellen und zu ordnen. Dies ist vor allem
Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.
Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt
Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS
Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Verena Hofmann Dr. phil. des. Departement für Sonderpädagogik Universität Freiburg Petrus-Kanisius-Gasse 21
Forschungsmethoden VORLESUNG SS 2017
Forschungsmethoden VORLESUNG SS 2017 SOPHIE LUKES Überblick Letzte Woche: Messen Heute: Hypothesen Warum Hypothesen? Menschliches Erleben und Verhalten? Alltag vs. Wissenschaft Alltagsvermutung Wissenschaftliche
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist
Verfahren für metrische Variable
Verfahren für metrische Variable Grafische Methoden Histogramm Mittelwertsplot Boxplot Lagemaße Mittelwert, Median, Quantile Streuungsmaße Standardabweichung, Interquartilsabstand Lagemaße und Streumaße
Inhaltsverzeichnis. Über die Autoren Einleitung... 21
Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die
Grafische Darstellungen. Box-and-Whiskers-Plot (Boxplot) Grafische Darstellungen. Grafische Darstellungen
Box-and-Whiskers-Plot (Boxplot) der Boxplot vereinigt bekannte deskriptive Kenngrößen zu einer grafischen Darstellung Box x 0.5, Median, x 0.75 vertikale Linien x 0.5 -.5 IQR x 0.75 +.5 IQR Extremwerte
Korrelation, Regression und Signifikanz
Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik
Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten
DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG
Kapitel 1: Deskriptive Statistik
Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.
1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent
Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte
Grafische Darstellung von Häufigkeitsverteilungen (1)
Grafische Darstellung von Häufigkeitsverteilungen () Grafische Darstellungen dienen... - Einführung - der Unterstützung des Lesens und Interpretierens von Daten. der Veranschaulichung mathematischer Begriffe
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey
Forschungsmethoden VORLESUNG WS 2017/2018
Forschungsmethoden VORLESUNG WS 2017/2018 SOPHIE LUKES Überblick Letzte Woche: Messen Heute: Hypothesen Warum Hypothesen? Menschliches Erleben und Verhalten? Alltag vs. Wissenschaft Alltagsvermutung Wissenschaftliche
Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum
1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind
Deskriptive Statistik
Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt
Rainer Diaz-Bone. Statistik für. Soziologen. 3M erweiterte Auflage. UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München
Rainer Diaz-Bone Statistik für Soziologen 3M erweiterte Auflage UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München 5 Inhalt Vorwort zur dritten Auflage 9 Vorwort zur zweiten Auflage 10 1 Einleitung
Zusammenfassung. Instruktionspsychologie. Professur E-Learning und Neue Medien. Institut für Medienforschung Philosophische Fakultät
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Instruktionspsychologie Zusammenfassung Überblick Theorien Gestaltungsempfehlungen Moderierende Einflüsse 2 Theorien
Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 11 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 03.12.13 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie
0 Einführung: Was ist Statistik
0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik Häufigkeitsverteilungen Statistische Kennwerte 3 Multivariate Statistik 4 Regression 5 Ergänzungen Deskriptive
Forschungsmethoden VORLESUNG WS 2016/17
Forschungsmethoden VORLESUNG WS 2016/17 FLORIAN KOBYLKA, SOPHIE LUKES Organisatorisches Termine Raum 231 1 28.10.16 10:15 Sophie Lukes / Florian Einführung Kobylka 2 04.11.16 10:10 Florian Kobylka Psychologie
t-test Einführung in die Statistik Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät
Professr E-Learning nd Nee Medien Institt für Medienforschng Philosophische Fakltät Einführng in die Statistik t-test Überblick Zfallsstichproben generieren Zentrale Verteilng abtragen Kritischen nd empirischen
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein
Lösungen. w58r4p Lösungen. w58r4p. Name: Klasse: Datum:
Testen und Fördern Name: Klasse: Datum: 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 45, 39, 44, 48, 42, 39,
Inhaltsverzeichnis. Vorwort
V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6
Statistik I für Betriebswirte Vorlesung 9
Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte
Weitere Lagemaße: Quantile/Perzentile I
3 Auswertung von eindimensionalen Daten Lagemaße 3.3 Weitere Lagemaße: Quantile/Perzentile I Für jeden Median x med gilt: Mindestens 50% der Merkmalswerte sind kleiner gleich x med und ebenso mindestens
Tutorial: Balken- und Tortendiagramm
Tutorial: Balken- und Tortendiagramm In der Tabelle ist die Notenverteilung von 510 Teilnehmern an Mathematik Proseminaren angegeben (NA bedeutet einen unbekannten Wert). Der Sachverhalt sollte in zwei
Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington
Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Populations-Mittelwert 100 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert
I.V. Methoden 2: Deskriptive Statistik WiSe 02/03
I.V. Methoden 2: Deskriptive Statistik WiSe 02/03 Vorlesung am 04.11.2002 Figures won t lie, but liars will figure. General Charles H.Grosvenor Dr. Wolfgang Langer Institut für Soziologie Martin-Luther-Universität
Univariate explorative Datenanalyse in R
Univariate explorative Datenanalyse in R Achim Zeileis, Regina Tüchler 2006-10-03 1 Ein metrisches Merkmal Wir laden den Datensatz: R> load("statlab.rda") und machen die Variablen direkt verfügbar: R>
Angewandte Marktanalyse und Marktforschung
Angewandte Marktanalyse und Marktforschung #8 Datenaufbereitung und -kontrolle Tobias Berger M.A. Friedrich-Schiller-Universität Jena Fakultät für Sozial- und Verhaltenswissenschaften Institut für Sportwissenschaft
Statistik Prüfung 24. Jänner 2008
Statistik Prüfung 24. Jänner 2008 February 10, 2008 Es ist immer nur EINE Antwort richtig, bei falsch beantworteten Fragen gibt es KEINEN Punktabzug. Werden mehrere Antworten bei einer Frage angekreuzt,
Statistik für Dummies
Bearbeitet von Deborah Rumsey, Reinhard Engel 3. aktualisierte Auflage 2015. Buch. 368 S. Softcover ISBN 978 3 527 71156 7 Format (B x L): 17,6 x 24 cm Wirtschaft > Betriebswirtschaft: Theorie & Allgemeines
5 Exkurs: Deskriptive Statistik
5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe
Grafiken. Tabellen und Diagramme. Daimler Brand & Design Navigator
Daimler Brand & Design Navigator 26. August 2016 Grafiken Die grafischen Elemente wie Tabellen und Diagramme, Infografiken sowie Piktogramme sind geprägt durch eine klare, aufgeräumte Darstellung. Grafiken
Deskriptive Statistik. (basierend auf Slides von Lukas Meier)
Deskriptive Statistik (basierend auf Slides von Lukas Meier) Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung
Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale
1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................
Analyse von Querschnittsdaten. Arten von Variablen und Strategien der Datenanalyse
Analyse von Querschnittsdaten Arten von Variablen und Strategien der Datenanalyse Gliederung 1. Arten von Variablen 2. Analyse einzelner Variablen (univariate Verteilungen) 3. Analyse der Zusammenhänge
Arbeitsbuch zur deskriptiven und induktiven Statistik
Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen
Beschreibende Statistik
Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)
SPSS (20.0) Hilfe Version 1
SPSS (20.0) Hilfe Version 1 Statistik-UE SS 2015 Datenmanagement Informationen zur Syntax: Öffnen der Syntax: Datei Öffnen Syntax Eingabe z. B. COMPUTE bzw. wenn Sie einen Befehl in SPSS ausführen, drücken
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06
Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:
Deskriptive Statistik
Helge Toutenburg Christian Heumann Deskriptive Statistik Eine Einführung in Methoden und Anwendungen mit R und SPSS Siebte, aktualisierte und erweiterte Auflage Mit Beiträgen von Michael Schomaker 4ü Springer
Graphische Darstellung einer univariaten Verteilung:
Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit
a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten.
R. Brinkmann http://brinkmann-du.de Seite 6.0.2009 Lösungen Mittelwert, Median II se: E E2 E3 E4 E5 E6 a) Notendurchschnitt 2,6 b) Säulendiagramm siehe ausführliche Lösung. c) Kreisdiagramm siehe ausführliche
Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten!
Inhaltsverzeichnis Inhaltsverzeichnis VII 1 Erst mal locker bleiben: Es fängt ganz einfach an! 1 1.1 Subjektive Wahrscheinlichkeit - oder warum...?..... 4 1.2 Was Ethik mit Statistik zu tun hat - Pinocchio
