Variablen und Skalenniveaus
|
|
|
- Elke Steinmann
- vor 8 Jahren
- Abrufe
Transkript
1 Analytics Grundlagen Variablen und Skalenniveaus : Photo Credit: Unsplash, Roman Mager Statistik
2 Was ist eigentlich eine Variable? Variable In der Datenanalyse wird häufig die Bezeichnung Variable verwendet. Der Begriff Variable bedeutet dasselbe wie Merkmal.
3 Was ist ein Merkmal? Merkmal Merkmale sind bestimmte Informationen (z.b. Alter, Interessen, ) über Personen, die Teil einer Personengruppe (Grundgesamtheit) sind, über die man mehr erfahren möchte. Unter Grundgesamtheit versteht man die Gesamtmenge aller Personen, über die eine Aussage getroffen werden soll (also die gesamte Zielgruppe).
4 Grundgesamtheit Tools zur Bestimmung der Grundgesamtheit Verbraucheranalyse (VA) Facebook Werbeplaner (enthält nur Personen, die bei FB sind) Gruner und Jahr Zählservice guj.zaehlservice.de/perl/index.pl Übersicht über verschiedene Zielgruppenmodelle
5 Was bedeutet Ausprägung? Merkmalsausprägung Photo Credit: Unsplash, Helloquence Bei einer Befragung ist ein Merkmal einfach eine gestellte Frage in einem Fragebogen (z.b. Alter, Geschlecht, Nutzung digitaler Medien, )..
6 Was bedeutet Ausprägung? Merkmalsausprägung Photo Credit: Unsplash, Helloquence Merkmale haben unterschiedliche Ausprägungen. Das Merkmal Haarfarbe kann beispielsweise die Ausprägungen braun, brünett, haben.
7 Variablen haben Skalenniveaus Skalenniveau Welche Berechnungen mit Variablen durchgeführt werden können, hängt von deren Skalenniveau ab. Jede Variable hat ein sogenanntes Skalenniveau. Üblicherweise unterscheidet man zwischen 4 verschiedene Skalenniveaus: 1. Nominal 2. Ordinal 3. Intervall 4. Verhältnis
8 Skalenniveaus: Beispielhafte Fragen Nominal
9 Skalenniveaus Nominal Eine Variable ist nominalskaliert, wenn die möglichen Ausprägungen nur benannt werden können (sie haben eine Identität ). sind die Ausprägungen gleich oder unterschiedlich?
10 Skalenniveaus Nominal Es ist nicht möglich, die Werte in einer Rangfolge zu bringen. D.h. die Ausprägungen können nicht sortiert werden (z.b. von klein nach groß). sind die Ausprägungen gleich oder unterschiedlich?
11 Skalenniveaus Nominal Mit nominalskalierten Daten lassen sich keine Rechenoperationen (Addition, usw.) durchführen, sondern nur Aussagen über Häufigkeiten machen (z.b. wie viele Personen sind weiblich oder männlich?). Beispiele: Geschlecht, Haarfarbe, Augenfarbe, Nationalität, Geburtstort, Telefonnummer,
12 Skalenniveaus: Beispielhafte Fragen Ordinal
13 Skalenniveaus Ordinal Eine Variable ist ordinalskaliert, wenn die möglichen Ausprägungen in eine Rangfolge gebracht werden können. ist eine Ausprägung gleich, kleiner oder größer als eine andere?
14 Skalenniveaus Ordinal Die Abstände zwischen den Werten sind jedoch ohne Aussagekraft. D.h. es kann nicht bestimmt werden, wieviel besser/schlechter eine Ausprägung im Vergleich zu einer anderen ist. ist eine Ausprägung gleich, kleiner oder größer als eine andere?
15 Skalenniveaus Ordinal Werte können sortiert werden. Es können keine Rechenoperationen durchgeführt werden (z.b. Addition und Subtraktion). Beispiele: Schulnoten, Markenpräferenzen, Einstellungen,
16 Skalenniveaus Intervall Eine Intervallskala ist eine sinnvolle Rangordnung von Ausprägungen mit gleichen Abständen zwischen den Werten. wie groß ist die Differenz zwischen Ausprägungen?
17 Skalenniveaus Intervall Es gibt jedoch keinen natürlichen" Nullpunkt. D.h. der Nullpunkt ist willkürlich gesetzt (oftmals gibt es auch negative Werte). wie groß ist die Differenz zwischen Ausprägungen?
18 Skalenniveaus Intervall Es können zwar Angaben zur Größe von Unterschieden gemacht werden (zwischen 10 und 20 Grad Celsius beträgt der Unterschied 10 Grad), nicht jedoch zu Verhältnissen: 20 Grad Celsius ist nicht (physikalisch) doppelt so warm wie 10 Grad. Beispiele: Geburtsjahr, Raumtemperatur in Celsius
19 Skalenniveaus Verhältnis Eine Verhältnisskala ist eine sinnvolle Ordnung von Messwerten mit gleichen Abständen. wie ist das Verhältnis zwischen Ausprägungen?
20 Skalenniveaus Verhältnis Der Nullpunkt ist natürlich. Eine Ausprägung von 0 bedeutet daher, dass der Messwert nicht vorhanden ist. Es existieren keine negativen Werte. wie ist das Verhältnis zwischen Ausprägungen?
21 Skalenniveaus Verhältnis Es können Aussagen über Verhältnisse getroffen werden. Beispielsweise ist eine 20 Jahre alte Person doppelt so alt wie eine 10 jährige Person. Beispiele: Alter, Körpergröße, Mediennutzung in Minuten.
22
23 Übersicht über die Skalenniveaus Skalenniveau Skalenniveau Operationen Interpretation Beispiele Nominalskala =/ gleich oder ungleich Geschlecht (Mann/Frau) Ordinalskala =/ ; </> kleiner, gleich oder größer Schulnoten (sehr gut, gut, ) Intervallskala =/ ; </>; +/ Bildung von Differenzen Temperatur (Celsius) Verhältnisskala =/ ; </>; +/ ; / Aussagen zu Verhältnissen Alter (Jahre), Körpergröße (cm)
24 Informationsgehalt Nicht metrische Daten Metrische Daten Messniveau Nominalniveau Ordinalniveau Intervallniveau Verhältnis-/ Relationsniveau Beschreibung der Messwerteigenschaften Bestimmung von Gleichheit und Ungleichheit (z.b: A B) Zusätzlich: Bestimmung einer Rangfolge (z.b. A<B) Zusätzlich: Gleiche Intervalle zwischen den Messwerten und willkürlicher Nullpunkt (z.b. (10-5) (15-10)) Zusätzlich: Bestimmung von Verhältnissen und natürlicher Nullpunkt (z.b. (A B) (A=2B) Identität Rang Abstand Verhältnis x x x x x x x x x x Beispiele für Variablen Geschlecht, Wochentag, Schulnoten, Präferenzen, Temperatur, Kalenderzeit, Gewicht, Alter, Umsatz,
25 Beispiel Skalenniveaus In einer Umfrage wurden 15 Personen nach ihrem Familienstand befragt Photo Credit: Unsplash, Helloquence Variable bzw. Merkmal = Familienstand Ausprägung = ledig, verheiratet, geschieden, verwitwet.
26 Frage: Skalenniveau Welches Skalenniveau hat die Variable Familienstand? Photo Credit: Unsplash, Roman Mager Folgende Informationen haben wir durch die Befragung erhalten: Ausprägung = 8 ledig, 4 verheiratet, 2 geschieden, 1 verwitwet.
27 Frage: Skalenniveau Antwort: Skalenniveau = Nominal. Merkmalsausprägung Häufigkeit Verheiratet 4 Ledig 8 Geschieden 2 Verwitwet 1
28 Wiederholungsfragen l In einem Fragebogen wurden die unten aufgeführten Merkmale erhoben. Bitte geben Sie jeweils das entsprechende Skalenniveau pro Merkmal an: 1. Körpergröße : _ 2. Alter: _ 3. Geschlecht: _ 4. Note in dem Fach Sport: _ 5. Punkte (0-100) in der letzten Deutsch-Prüfung: _ 6. Nationalität: _ 7. Telefonnummer: _ 8. Studiengang: _ 9. monatliche Miete in Euro: _ 10. Entfernung zwischen Wohnung und Arbeitsstätte (in Meter): _ 28
Datenerhebung, Skalenniveaus und Systemdatei
Datenerhebung, Skalenniveaus und Systemdatei Institut für Geographie 1 Beispiele für verschiedene Typen von Fragen in einer standardisierten Befragung (3 Grundtypen) Geschlossene Fragen Glauben Sie, dass
fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik
fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse
Einige Grundbegriffe der Statistik
Einige Grundbegriffe der Statistik 1 Überblick Das Gesamtbild (Ineichen & Stocker, 1996) 1. Ziehen einer Stichprobe Grundgesamtheit 2. Aufbereiten der Stichprobe (deskriptive Statistik) 3. Rückschluss
STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)
WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von
Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8
Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik
Die deskriptive (beschreibende) Statistik hat als Aufgabe, große Datenmengen durch wenige Kennzahlen. oder Grafiken zu beschreiben.
Die deskriptive (beschreibende) Statistik hat als Aufgabe, große Datenmengen durch wenige Kennzahlen wie Lage- und Streuungsmaße oder Grafiken zu beschreiben. Solche Datenmengen entstehen bei der Untersuchung
3. Merkmale und Daten
3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition
Statistik II: Grundlagen und Definitionen der Statistik
Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen
Angewandte Statistik 3. Semester
Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen
Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik
Modul 04: Messbarkeit von Merkmalen, Skalen und 1 Modul 04: Informationsbedarf empirische (statistische) Untersuchung Bei einer empirischen Untersuchung messen wir Merkmale bei ausgewählten Untersuchungseinheiten
Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.
1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau
Phasen des Forschungsprozesses (hypothesenprüfende Studie)
Phasen des Forschungsprozesses (hypothesenprüfende Studie) Konzeptspezifikation/ Operationalisierung/Messung rot: Planungsphase Auswahl des Forschungsproblems Theoriebildung Auswahl der Untersuchungseinheiten
Teil I: Deskriptive Statistik
Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten
Forschungsmethoden in der Sozialen Arbeit
Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences
Kapitel III - Merkmalsarten
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Statistik 1 - Deskriptive Statistik Kapitel III - Merkmalsarten Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie
Daten, Datentypen, Skalen
Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben
Skalenniveaus =,!=, >, <, +, -
ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,
Grundlagen sportwissenschaftlicher Forschung Untersuchungsplanung 2 und Grundlagen des Messens
Grundlagen sportwissenschaftlicher Forschung Untersuchungsplanung 2 und Grundlagen des Messens Dr. Jan-Peter Brückner [email protected] R.216 Tel. 880 4717 AUFGABE 1. Beschreibe einen experimentellen
Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse
Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung
Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Messtheoretische Vorüberlegungen
Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I Messtheoretische Vorüberlegungen Am Anfang jeder statistischen Auswertung steht das 'Messen' bestimmter Phänomene bzw. Merkmale.
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein
Deskriptive Statistik Kapitel III - Merkmalsarten
Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol [email protected] [email protected] April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.
Statistik. Jan Müller
Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen
Kapitel 1 Beschreibende Statistik
Beispiel 1.5: Histogramm (klassierte erreichte Punkte, Fortsetzung Bsp. 1.1) 0.25 0.2 Höhe 0.15 0.1 0.05 0 0 6 7 8,5 10 11 erreichte Punkte Dr. Karsten Webel 24 Beispiel 1.5: Histogramm (Fortsetzung) Klasse
DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN
DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN Was ist Messen? Messen - im weitesten Sinne - ist die Zuordnung von Zahlen zu Objekten und Ereignissen entsprechend einer Regel (Def. nach Stevensen
Statistik I (17) 79. Untersuchen Sie die Daten aus Tabelle 1.
Schüler Nr. Statistik I (7) Schuljahr /7 Mathematik FOS (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben, wenden Sie sich bitte an die betreuenden Lehrkräfte!) Tabelle : Die Tabelle wurde im Rahmen
Statistische Grundlagen I
Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.
Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1
Dr. Barbara Lindemann Fragebogen Kolloquium zur Externen Praxisphase Dr. Barbara Lindemann 1 Überblick 1. Gütekriterien quantitativer Forschungen 2. Fragebogenkonstruktion 3. Statistische Datenanalyse
Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Meßtheoretische Vorüberlegungen
Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I Meßtheoretische Vorüberlegungen Am Anfang jeder statistischen Auswertung steht das 'Messen' bestimmter Phänomene bzw. Merkmale.
Grundbegriffe (1) Grundbegriffe (2)
Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.
1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n
3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:
Statistik. Herzlich willkommen zur Vorlesung. Grundlagen Häufigkeiten Lagemaße Streuung Inferenzstatistik Kreuztabellen Gruppenunterschiede
FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 2 Vorlesung Statistik für wen? BA Social Science/BA Sozialwissenschaften (Pflicht)
Gliederung. Ursachen von Ergebnisverfälschung. Antworttendenzen/Urteilsfehler. Empirische Forschungsmethoden
SoSe 2017 6. Sitzung 23. Mai 2017 Gliederung Datenerhebung quantitative Forschung (Planungs- und Erhebungsphase): Urteilsverfälschung/Messfehler Maße der zentralen Tendenz 1 2 6) Quantitative empirische
Skalenniveau Grundlegende Konzepte
Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q
1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung. Statistik und Wahrscheinlichkeitsrechnung
1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 2 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung Stochastik Wahrscheinlichkeitsrechnung
Forschungsmethoden in der Sozialen Arbeit
Forschungsmethoden in der Sozialen Arbeit Erhebungsinstrument Lehrveranstaltung an der Fachhochschule für Sozialarbeit und Sozialpädagogik "Alice Salomon" Hochschule für Soziale Arbeit, Gesundheit, Erziehung
Statistik Grundbegriffe
Kapitel 2 Statistik Grundbegriffe 2.1 Überblick Im Abschnitt Statistik Grundbegriffe werden Sie die Bedeutung von statistischen Grundbegriffen wie Stichprobe oder Merkmal kennenlernen und verschiedene
Allgemeine Grundlagen Seite Termin: Eindimensionale Häufigkeitsverteilung
Statistik für alle Gliederung insgesamt Allgemeine Grundlagen Seite 1 1. Termin: Allgemeine Grundlagen 2. Termin: Eindimensionale Häufigkeitsverteilung 3. Termin: Lageparameter 4. Termin: Streuungsparameter
Bitte am PC mit Windows anmelden!
Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung
Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung
20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation
Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es
Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle
Biometrieübung 11 Kontingenztafeln
Biometrieübung 11 (Kontingenztafeln) - Aufgabe Biometrieübung 11 Kontingenztafeln Aufgabe 1 2x2-Kontingenztafeln 100 weibliche Patienten sind mit einer konventionellen Therapie behandelt worden 85 Patientinnen
Deskriptive Statistik Erläuterungen
Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung
1. Tutorial. Online-Tutorium-Statistik von T.B.
Online-Tutorium-Statistik von T.B. 1 Grundbegriffe I Gegenstand einer statistischen Untersuchung sind bestimmte Objekte (z.b. Personen, Unternehmen) bei denen man sich für gewisse Eigenschaften (z.b. Geschlecht,
Grundlagen der Datenanalyse am Beispiel von SPSS
Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein [email protected] Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe
2 Merkmalsausprägungen, Skalen, Häufigkeiten, Klassierung
2 2.1 Merkmalsausprägungen und Skalen Bei statistischen Analysen wird eine bestimmte Anzahl von Elementen untersucht und mit den Methoden der Statistik quantifiziert. Je nach Untersuchung kann es sich
Klausur zu Methoden der Statistik I mit Lösung Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I mit Lösung Sommersemester 2009 Aufgabe 1 Es wurden 410 Studierende
Forschungsmethoden in der Sozialen Arbeit (XI)
Forschungsmethoden in der Sozialen Arbeit (XI) Fachhochschule für Sozialarbeit und Sozialpädagogik Alice-Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences
Einführung in die Statistik
Einführung in die Statistik 1. Deskriptive Statistik 2. Induktive Statistik 1. Deskriptive Statistik 1.0 Grundbegriffe 1.1 Skalenniveaus 1.2 Empirische Verteilungen 1.3 Mittelwerte 1.4 Streuungsmaße 1.0
Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016
Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 1. Daten erfassen 1. Aufgabe: Würfeln Sie 30-mal mit einem regelmäßigen Oktaeder und dokumentieren
0 Einführung: Was ist Statistik
0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,
Einführung in die Statistik mit R
Einführung in die Statistik mit R Bernd Weiler syntegris information solutions GmbH Neu Isenburg Schlüsselworte Statistik, R Einleitung Es ist seit längerer Zeit möglich statistische Berechnungen mit der
Florian Frötscher und Demet Özçetin
Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin [email protected] SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60
Teil I: Deskriptive Statistik
Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten
I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010
I.3. Computergestützte Methoden 1. Deskriptive Statistik Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 1 Seminarübersicht Nr. Thema 1 Deskriptive Statistik 1.1 Organisation und Darstellung von
Statistik I für Humanund Sozialwissenschaften
Statistik I für Humanund Sozialwissenschaften 1 Übung Lösungsvorschlag Gruppenübung G 1 Auf einer Touristeninsel in der Karibik wurden in den letzten beiden Juliwochen morgens zur gleichen Zeit die folgenden
Parametrische vs. Non-Parametrische Testverfahren
Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Methoden der Klassifikation und ihre mathematischen Grundlagen
Methoden der Klassifikation und ihre mathematischen Grundlagen Mengenlehre und Logik A B "Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung
2. Deskriptive Statistik
Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten
Grundlagen Statistik Angewandte Statistik 3. Semester
Angewandte Statistik 3. Semester Zur Person Constantin von Craushaar Consultant / Partner Innstat e.u. (www.innstat.com) [email protected] Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS
Fachrechnen für Tierpfleger
Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:
VS PLUS
VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik I Deskriptive und Explorative Datenanalyse 2010 Übungsaufgaben und Lösungen Erkenntn nisgewinnung und Datenerhebung in der Psychologie [Übungsaufgaben
Einführung in die Statistik. Dr. Michael Kuttner Mag. Dietmar Knitel
Einführung in die Statistik Dr. Michael Kuttner Mag. Dietmar Knitel Statistik ein Gedicht Ein Mensch, der von Statistik hört, denkt dabei nur an Mittelwert. Er glaubt nicht dran und ist dagegen, ein Beispiel
Grundlagen der Statistik
Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:
1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das
Grundlagen empirischer Forschung. Korpuslinguistik Heike Zinsmeister WS 2009/10
Grundlagen empirischer Forschung Korpuslinguistik Heike Zinsmeister WS 2009/0 Grundlagen Vorbereitung einer empirischen Studie Allgemeine Beschreibung des zu untersuchenden Phänomens Literaturstudien Erkundigungen
Graphische Darstellung einer univariaten Verteilung:
Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit
Einführung in die Statistik Einführung
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Einführung Professur E-Learning und Neue Medien www.tu-chemnitz.de/phil/imf/elearning
Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn
Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten
Einführendes zur Deskriptivstatistik
Motto (amerikanischer) Sozialforschung, in Stein gemeisselt über dem Bogenfenster des sozialwissenschaftlichen Fakultätsgebäudes der Universität von Chicago: If you cannot measure, your knowledge is meagre
Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09
Gundlagen empirischer Forschung & deskriptive Statistik Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Grundlagen Vorbereitung einer empirischen Studie Allgemeine Beschreibung
Methoden der empirischen Kommunikationsforschung
Studienbücher zur Kommunikations- und Medienwissenschaft Methoden der empirischen Kommunikationsforschung Eine Einführung Bearbeitet von Hans-Bernd Brosius, Alexander Haas, Friederike Koschel 7., überareitete
Deskriptive Statistik Winfried Zinn
Deskriptive Statistik Winfried Zinn Inhalte Statistik 1 1. Themenblock: Grundlagen der beschreibenden Statistik: Skalenniveaus Häufigkeitsverteilungen Mittelwerte (Lagemaße) Standardabweichung und Varianzen
2.1 Messen in der empirischen Kommunikationsforschung
Messen und Zählen I.1 Messen in der empirischen Kommunikationsforschung Das folgende Kapitel beschreibt die Vorgehensweise, wie Ausschnitte der sozialen Realität für die Forschung wahrnehmbar, erfahrbar,
1. STICHPROBE FRAGEBOGEN DATENMATRIX
Übung Statistik I 1. Übungseinheit 1 1. STICHPROBE FRAGEBOGEN DATENMATRIX 1.1 Grundgesamtheit und Stichprobe Grundgesamtheit exakte Definition Vollerhebung Stichprobe Alle Elemente der Grundgesamtheit
Wiederholung SPSS und Einführung in die SPSS Syntax
TU Dresden - Institut für Soziologie 28.11.06 FS: Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne Referent: Matthias Ritter Wiederholung SPSS und Einführung in die SPSS Syntax
Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004)
Universität Siegen, FB 1 Prof. W. Ludwig-Mayerhofer/ Dipl.Soz. Uta Liebeskind Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004) 1. Bitte vermerken Sie hinter dem jeweiligen Merkmal das Skalenniveau.
Kathrin Wetzel. Grundlagen der Statistik
Kathrin Wetzel Grundlagen der Statistik Carl von Ossietzky Universität Oldenburg, 2016 Impressum Autorin: Kathrin Wetzel auf der Basis der Studienmaterialien Quantitativ-analytische Forschungsmethoden
Deskriptive Statistik
Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen
1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:
. Einführung und statistische Grundbegriffe Beispiele aus dem täglichen Leben Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische
Data Mining (ehem. Entscheidungsunterstützungssysteme)
Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE
3. Lektion: Deskriptive Statistik
Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive
Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS
Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von
Was sind Zusammenhangsmaße?
Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten
Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn
Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2017 Organisatorisches Anmeldung in Basis: 19. 23.06.2017 Skript und Übungsaufgaben unter: http://www.iam.uni-bonn.de/users/rezny/statistikpraktikum
Gewichtung und Validierung der Nettostichprobe (Welle 1 des Projekts Lebensziele und Lebensverläufe in Ostdeutschland )
Gewichtung und Validierung der Nettostichprobe (Welle 1 des Projekts Lebensziele und Lebensverläufe in Ostdeutschland ) Gewichtung Da es sich bei dieser Studie um eine Einwohnermeldeamtsstudie handelt,
fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik
fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen
Grundlagen der empirischen Sozialforschung
Grundlagen der empirischen Sozialforschung Sitzung 11 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 5. Januar 2009 1 / 22 Online-Materialien Die Materialien
