Synchrotronstrahlung. Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum

Größe: px
Ab Seite anzeigen:

Download "Synchrotronstrahlung. Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum"

Transkript

1 Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum

2 Strahlung beschleunigter Teilchen Strahlung eines nichtrelativistischen, beschleunigten Teilchens e 2 ( ) dp 2 P = 6πɛ 0 m0 2c3 dt Winkelverteilung entspricht der eines Hertz schen Dipol dp dω = e 2 ( ) dp 2 16π 2 ɛ 0 m0 2 sin 2 Ψ. c3 dt ψ Elektron Die Energie wird dabei wie beim Herz schen Dipol senkrecht zur Richtung der Beschleunigung abgestrahlt. Röntgenphysik 88

3 Strahlung beschleunigter Teilchen relativistische Teilchen: Transformation der Zeit und des Viererimpulses dt dτ = 1 γ dt, γ = E m 0 c 2 = 1 1 β 2 ( ) 2 ( ) 2 dpµ d p 1 ( ) de 2 dτ dτ c 2 dτ Relativistische abgestrahlte Leistung [ (d p dτ P = e2 c 6πɛ 0 1 (m 0 c 2 ) 2 ) 2 1 c 2 ( ) ] de 2 dτ β = v c Lineare- Kreis- Beschleunigung dv dt v d v v dt Röntgenphysik 89

4 Lineare Beschleunigung relativistischer Energiesatz E 2 = (m 0 c 2 ) 2 + p 2 c 2 E de dτ = c2 p dp dτ mit E = γm 0 c 2 und p = γm 0 v de dτ = v dp dτ Relativistische Strahlungsformel P = e2 c 6πɛ 0 1 (m 0 c 2 ) 2 [ (d ) 2 p 1 dτ c 2 ( ) ] de 2 dτ (1) und einsetzen von (1) liefert (1 β) 2 ( d p dτ ) = ( ) d p = γdτ ( ) d p dt Röntgenphysik 90

5 Lineare Beschleunigung P = e2 c 6πɛ 0 1 (m 0 c 2 ) 2 ( ) 2 ( d p = e2 c 1 dt 6πɛ 0 (m 0 c 2 ) 2 de ) 2 (2) dx Beispiel: Energiegewinn Wirkungsgrad η = de/dx = 25MeV /m P = W P de/dt = P vde/dx = e2 6πɛ 0 Energieverlust kann vernachlässigt werden! 1 (m 0 c 2 ) 2 1 de β dx Röntgenphysik 91

6 Kreisbeschleunigung Auf einer Kreisbahn bleibt die Teilchenenergie konstant de = 0 P = e2 c γ 2 ( ) 2 d p dt 6πɛ 0 (m 0 c 2 ) 2 dt Impulsänderung auf der Kreisbahn dp dt = pω = p v R p c R = E R Wir betrachten nur extrem relativistische Geschwindigkeiten mit v c. Dann ist p c m 0 c 2 und somit E = p c. Weiter ist γ = E/m 0 c 2. P = e2 c 6πɛ 0 (E/m 0 c 2 ) 2 (m 0 c 2 ) 2 ( ) E 2 = e2 c 1 E 4 R 6πɛ 0 (m 0 c 2 ) 4 R 2 Röntgenphysik 92

7 Kreisbeschleunigung Auf einer Kreisbahn bleibt die Teilchenenergie konstant de = 0 P = e2 c γ 2 ( ) 2 d p dt 6πɛ 0 (m 0 c 2 ) 2 dt Impulsänderung auf der Kreisbahn dp dt = pω = p v R p c R = E R Wir betrachten nur extrem relativistische Geschwindigkeiten mit v c. Dann ist p c m 0 c 2 und somit E = p c. Weiter ist γ = E/m 0 c 2. P = e2 c 6πɛ 0 (E/m 0 c 2 ) 2 (m 0 c 2 ) 2 ( ) E 2 = e2 c 1 E 4 R 6πɛ 0 (m 0 c 2 ) 4 R 2 Röntgenphysik 92

8 Kreisbeschleunigung Abgestrahlte Leistung P = e2 c 6πɛ 0 1 (m 0 c 2 ) 4 E 4 R 2 (3) Die abgestrahlte Leistung steigt also mit der 4. Potenz der Teilchenenergie und des Reziprokwertes der Ruhemasse m 0! ( ) mproton = = ! m e Strahlung spielt nur bei Elektronen eine Rolle Röntgenphysik 93

9 Kreisbewegung: Energieverlust Gesamter Energieverlust während eines Umlaufes E = Pdt = PT = P 2πR c E[keV ] = 88.5 E 4 [GeV ] R[m] = e 2 E 4 3ɛ 0 (m 0 c 2 ) 4 R Röntgenphysik 94

10 Kreisbewegung: Energieverlust Verlustleistung einiger Speicherringe L E R B E η (m) (GeV) (m) (T) (kev) (%) BESSY I BESSY II DORIS II ESRF PETRA II LEP II Die Verlustleistung steigt stark mit der Ringenergie an und ist um Größenordnungen höher als bei einem LINAC Synchrotron Speicheringe können effektiv erzeugen Röntgenphysik 95

11 SR Winkelverteilung Wir wollen hier nur den Fall der Kreisbewegung betrachten, da nur dort nennenswert Strahlung emittiert wird. Skizze der Herleitung Im Schwerpunktsystem des Elektrons entspricht die Emission der des Herz schen Dipol Transformation dieser Verteilung in das Laborsystem Einfache Abschätzung Ein Photon möge in y -Richtung senkrecht zur Bewegungrichtung x und zur Beschleunigung in z -Richtung emittiert werden. Röntgenphysik 96

12 SR Winkelverteilung Ein Photon möge in y -Richtung senkrecht zur Bewegungrichtung z und zur Beschleunigung in x -Richtung emittiert werden. Viererimpuls P µ = p y = p 0 = E p t p x p y p z = c E /c 0 p 0 0 y hν e x z Röntgenphysik 97

13 SR Winkelverteilung Lorentztransformation ins Laborsystem P µ = γ 0 0 βγ βγ 0 0 γ β = v c E /c 0 p 0 0 = γe /c 0 p 0 γβe /c γ = (1 β 2) 1/2 = γe /c 0 p 0 γβp 0 Winkel zwischen der y-richtung und der z-richtung (Flugrichtung) tan θ = p y p z = p 0 βγp 0 1 γ Röntgenphysik 98

14 SR Winkelverteilung Emittierte Strahlungsleistung in den Raumwinkel dω ( ) dp(t) dω = e2 β 2 4πc (1 β cos θ) 3 1 sin2 θ cos 2 φ γ 2 (1 β cos θ) 2 (Jackson) Scharfe Bündelung der Strahlung in Vorwärtsrichtung β = 0 β = 0.1 β = 0.2 β = 0.5 β = 0.9 β = 0.99 v R Kreisbewegung (transversale Beschleunigung) Röntgenphysik 99

15 SR Winkelverteilung transversal dp(t) dω = e2 4πc longitudinal dp(t) dω = e2 4πc v ( ) (dβ/dt) 2 (1 β cos θ) 3 1 sin2 θ cos 2 φ γ 2 (1 β cos θ) 2 sin 2 θ (1 β sin θ) 5 ( ) dβ 2 dt β = 0 β = 0.1 β = 0.2 β = 0.5 β = 0.9 β = 0.99 R Röntgenphysik 100

16 SR Zeitstruktur Vorbeiflug eines Elektrons am Beobachter θ 1/γ Elektronen A θ Emittierte θ B Strahlung t = t e t γ = 2Rθ θ θ θ θ = 2R c 2R c 2R sin θ c cβ ( ) θ β θ + θ3 3! θ5 5! +... ( 1 βγ 1 γ + 1 ) 6γ 3 4R 3cγ 3 Typische Frequenz ω typ := 2π t = 3πcγ3 2R Kritische Frequenz ω c := ω typ π = 3cγ3 2R Röntgenphysik 101

17 SR Zeitstruktur Elektronen θ Emittierte A θ B Strahlung E γ R t E c θ θ θ θ (GeV) (m) (10 18 s) (ev ) Röntgenphysik 102

18 SR Spektrum Emittierte Strahlungsleistung in den Raumwinkel dω war ( ) dp(t) dω = e2 β 2 4πc (1 β cos θ) 3 1 sin2 θ cos 2 φ γ 2 (1 β cos θ) 2 Das abgestrahlte Spektrum kann durch eine Fouriertransformation des Zeitspektrum berechnet werden. Elementar, aber doch sehr aufwendig (siehe z.b. Jackson)! Röntgenphysik 103

19 SR Spektrum Emittierte Strahlungsleistung in den Raumwinkel dω war ( ) dp(t) dω = e2 β 2 4πc (1 β cos θ) 3 1 sin2 θ cos 2 φ γ 2 (1 β cos θ) 2 Röntgenphysik 104

20 SR Spektrum Spektrale Photonendichte, mit N Elektronen im Speicherring (Schwinger 1 ) mit dṅ dɛ/ɛ = P ( ) 0 E S s E c E c P 0 = e2 c 1 E 4 6πɛ 0 (m 0 c 2 ) 4 R 2 N = eγ4 3ɛ 0 R I Ring S s (ξ) = 9 3 8π ξ K 5/3 : modifizierte Besselfunktion 1 J. Schwinger, Phys. Rev (1949) ξ K 5/3 (ξ)dξ Röntgenphysik 105

21 SR Spektrum Fluß (Photonen / s mrad 1%BW 100mA) BESSY I ESRF BESSY II DORIS Photonen Energie (ev) E c Strahlungsquelle, die einen sehr weiten Bereich abdeckt. 1 0 S s (ξ)dξ = 1 2 E c teilt das Spektrum der in zwei Bereiche gleicher Strahlungsleistung Spektrum ist exakt berechenbar Primär Normal! Zählen einzelner Elektronen möglich (Anwendung in der Metrologie) Röntgenphysik 106

22 SR einzelner Elektronen Röntgenphysik 107

23 SR Polarisation ist in der Bahnebene linear polarisiert Ausserhalb der Bahnebene ist die Strahlung zirkular polarisiert, mit allerdings stark abnehmender Intensität, durch die starke Bündelung in Vorwärtsrichtung Kann als Projektion der Kreisbahn verstanden werden Eigenschaft hat eine ganze Gruppe von neuen Experimenten zum Magnetismus eröffnet Röntgenphysik 108

Synchrotronstrahlung. Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum

Synchrotronstrahlung. Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum Synchrotronstrahlung Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum Synchrotronstrahlung Strahlung beschleunigter Teilchen Strahlung eines nichtrelativistischen, beschleunigten

Mehr

Erzeugung und Anwendung von brillanter Röntgenstrahlung

Erzeugung und Anwendung von brillanter Röntgenstrahlung Erzeugung und Anwendung von brillanter Röntgenstrahlung Johannes Fachinger 15.Januar 2007 Röntgenstrahlung Röntgenstrahlung ist elektromagnetische Strahlung in einem Wellenlängenbereich von ca. 10 8 m

Mehr

Insertion Devices. Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation

Insertion Devices. Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation Wellenlängenschieber R R In einem Speicherring gilt für die kritische Energie E c 1/R R:

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 8: Relativistische Mechanik Vorlesung für Studenten der Technischen Physik Helmut Nowotny Technische Universität Wien Institut für Theoretische Physik 7.,

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Kreisbeschleuniger IX (Synchrotron)

Kreisbeschleuniger IX (Synchrotron) Kreisbeschleuniger IX (Synchrotron) Höhere Energien wenn B-Feld und ω HF zeitlich variieren 2 qb q c B q cb Energiegewinn/Umlauf: inn/umla ωteilchen = = E = mc Ec ω Extraktion bei B = B max bei höchsten

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester / Anwesenheitsübung -.November Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) ( Punkte) Eine harmonische elektromagnetische

Mehr

Vorstellung einer Methode zur Festkörperuntersuchung

Vorstellung einer Methode zur Festkörperuntersuchung Synchrotron-Strahlung Vorstellung einer Methode zur Festkörperuntersuchung Dennis Aulich & Daniel Schmidt Technische Universität Berlin FAKULTÄT II, Mathematik und Naturwissenschaften Synchrotron-Strahlung

Mehr

Relativistische Kinematik - Formelsammlung

Relativistische Kinematik - Formelsammlung Relativistische Kinematik - Formelsammlung Editor: Patrick Reichart Physik Department E, TU-München Originalassung vom 0. Dezember 996 letzte Überarbeitung :. März 05 Quelle/Autoren: diverse handschritliche

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Kohärente Erzeugung von Röntgenstrahlung

Kohärente Erzeugung von Röntgenstrahlung Kohärente Erzeugung von Röntgenstrahlung Christian Schröder Johannes Gutenberg-Universität Mainz RÖNTGENSTRAHLUNG Röntgenstrahlung ist elektromagnetische Strahlung im Wellenlängenbereich von ca. 1 8 m

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungsblatt Nr. 08 Bearbeitung bis 24.06.2010 Abgabedatum Aufgabe 1: Teilchendetektoren Wenn ein geladenes Teilchen in einem Szintillator Energie

Mehr

Experimentelle Untersuchungen zur Struktur des Nukleons

Experimentelle Untersuchungen zur Struktur des Nukleons Experimentelle Untersuchungen zur Struktur des Nukleons 1. Einleitung 2. Der elektrische Formfaktor des Protons 3. Ergebnisse, die auf eine Abweichung einer sphärischen Ladungsverteilung beim Proton bzw.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Einblicke in die Teilchenphysik

Einblicke in die Teilchenphysik Einblicke in die Teilchenphysik 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton-

Mehr

Kapitel 08. Mikrotron

Kapitel 08. Mikrotron Kapitel 08 Mikrotron 1.1 Das klassische Mikrotron Hochfrequenz-Kreisbeschleuniger für Elektronen Elektronen in einem homogenen, zeitlich konstanten Magnetfeld auf Kreisbahnen Aber: Radien wachsen mit zunehmender

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

8. Relativistische Mechanik

8. Relativistische Mechanik 8. Relativistische Mechanik 8.1 Einleitung Einige experimentelle Tatsachen zeigen, dass die Galileiinvariante Mechanik nur begrenzte Gültigkeit haben kann. Konstanz der Lichtgeschwindigkeit Die Invarianz

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Kinematik des Massenpunktes Kinematik: Beschreibt die Bewegung von Körpern, ohne die zugrunde liegenden Kräfte zu berücksichtigen. Bezugssysteme Trajektorien Zeit Raum Bezugssysteme Koordinatensystem,

Mehr

verwenden. Ausdrücke für v

verwenden. Ausdrücke für v UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Georg Maret (Experimentalphysik) Raum P 1009, Tel. (07531)88-4151 E-mail: Georg.Maret@uni-konstanz.de Prof. Dr. Matthias Fuchs (Theoretische Physik) Raum

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Grundlagen der Lichttechnik I

Grundlagen der Lichttechnik I Grundlagen der Lichttechnik I S. Aydınlı Raum: E 203 Tel.: 314 23489 Technische Universität Berlin Fachgebiet Lichttechnik, Sekr. E6 Einsteinufer 19 10587 Berlin email: sirri.aydinli@tu-berlin.de http://www.li.tu-berlin.de

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 12-13 Prof. Dr. Alexander Mirlin Blatt 10

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung)

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) 20. Vorlesung III Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) Versuche: Aluring (Nachtrag zur Lenzschen Regel, s.20)

Mehr

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen Ferienkurs Theoretische Physik 3: Elektrodynamik Ausbreitung elektromagnetischer Wellen Autor: Isabell Groß Stand: 21. März 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Homogene Maxwell-Gleichungen

Mehr

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec (1) Zwei Signale liegen im Protonenspektrum bei 1.45 und 4.57 ppm, das Spektrometer hat eine Frequenz von 400.13 MHz. Wieweit liegen die Signale in Hz bzw. in rad/sec auseinander? 4.57 ppm 1.45 ppm = 3.12

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Atomvorstellung: Antike bis 19. Jh.

Atomvorstellung: Antike bis 19. Jh. GoBack Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell 1 / 24 Atomvorstellung der Griechen Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell Die

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

A5 - COMPTON - Effekt

A5 - COMPTON - Effekt A5 - COMPTON - Effekt Aufgabenstellung: 1. Nehmen Sie die Energiespektren der an einem Streukörper unter verschiedenen Winkeln gestreuten Röntgenstrahlung auf. Führen Sie eine Energiekalibrierung durch.

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte

Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte Vorlesung: Stellarphysik II Was wird behandelt? Schwarzkörperstrahlung Raumwinkel und Intensität Eektivtemperatur Photometrische

Mehr

MP7. Grundlagen-Vertiefung Version vom 2. April 2013

MP7. Grundlagen-Vertiefung Version vom 2. April 2013 MP7 Grundlagen-Vertiefung Version vom 2. April 2013 Inhaltsverzeichnis 1 Raumwinkel 1 2 Fotometrische Größen 1 3 Stahlungsgesetze der Hohlraumstrahlung 3 3.1 Strahlungsgesetze - klassische Physik.....................

Mehr

1 Felder bewegter Ladungen

1 Felder bewegter Ladungen Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 16.10.2008 1 Felder

Mehr

Intensität gebeugten Lichts als Funktion des Abstrahlwinkels ϑ für Lichtstreuung (λ = 550 nm,

Intensität gebeugten Lichts als Funktion des Abstrahlwinkels ϑ für Lichtstreuung (λ = 550 nm, Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 008/009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom.01.009 14.10 Lichtstreuung

Mehr

Quantenphänomene und Strahlungsgesetze

Quantenphänomene und Strahlungsgesetze Quantenphänomene und Strahlungsgesetze Ludwig Prade, Armin Regler, Pascal Wittlich 17.03.2011 Inhaltsverzeichnis 1 Quantenphänomene 2 1.1 Ursprünge....................................... 2 1.2 Photoeffekt......................................

Mehr

Bauelemente der Optoelektronik Lichterzeugung und Photovoltaik

Bauelemente der Optoelektronik Lichterzeugung und Photovoltaik Bauelemente der Optoelektronik Lichterzeugung und Photovoltaik Lösungen zur Übungseinheit Photometrische Größen c Frank Demaria, DVI erzeugt am 11. November 21 1. Fahrradbeleuchtung (a) LUX, lx (korrekte

Mehr

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015 Q34 LK Physik 25. September 2015 Geschichte Antike Vorstellung von Leukipp und Demokrit (5. Jahrh. v. Chr.); Begründung des Atomismus (atomos, griech. unteilbar). Anfang des 19. Jahrh. leitet Dalton aus

Mehr

Elektron-Proton Streuung

Elektron-Proton Streuung Elektron-Proton Streuung Seminar Präzessionsexperimente er Teilchenphysik Sommersemester 014 0.06.014 SIMON SCHMIDT ELEKTRON-PROTON STREUUNG 1 Übersicht Theorie I Kinematik Wirkungsquerschnitte Experiment

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

Kapitel 6. Vielteilchensysteme. 6.1 Einleitung. 6.2 Drehimpuls Definition und Drehimpulserhaltung

Kapitel 6. Vielteilchensysteme. 6.1 Einleitung. 6.2 Drehimpuls Definition und Drehimpulserhaltung Kapitel 6 Vielteilchensysteme 6. Einleitung In diesem Kapitel werden wir die bisher abgeleiteten Gesetze für eine Massenpunkt auf Systeme von mehreren oder vielen Massenpunkten übertragen. Beim Massenpunkt

Mehr

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 4. 06. 009 Aufgaben. Wie in

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

LICHT - Von Terahertz bis Röntgen Synchrotron Strahlung in allen Farben

LICHT - Von Terahertz bis Röntgen Synchrotron Strahlung in allen Farben Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.h. LICHT - Von Terahertz bis Röntgen Synchrotron Strahlung in allen Farben Das Produkt Licht Licht als Sonde THz 1 Das Produkt

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Beiträge der Strömungen des intergalaktischen Mediums von Galaxienhaufen zum Sunyaev-Zeldovich-Effekt

Beiträge der Strömungen des intergalaktischen Mediums von Galaxienhaufen zum Sunyaev-Zeldovich-Effekt Beiträge der Strömungen des intergalaktischen Mediums von Galaxienhaufen zum Sunyaev-Zeldovich-Effekt Diplomarbeit vorgelegt von Jens Chluba aus Tralee (Irland) angefertigt an der Universitäts-Sternwarte

Mehr

Der Ursprung der Masse

Der Ursprung der Masse Der Ursprung der Masse Dieter Zeppenfeld Institut für Theoretische Physik Universität Karlsruhe Dieter Zeppenfeld, Karlsruhe, 24. Juni 2006 p.1 Typischen Massenskalen bekanntes Universum Sonne Erde Elefant

Mehr

Magnetohydrodynamik. Ivan Kostyuk 11. Juni 2015

Magnetohydrodynamik. Ivan Kostyuk 11. Juni 2015 Magnetohydrodynamik Ivan Kostyuk 11. Juni 2015 Zusammenfassung Dies ist eine Zusammenfassung meines Vortrages zum Thema Magnetohydrodynamik, welchen ich am 22.05.2015 im Rahmen des Seminares Elektrodynamik

Mehr

Versuch A9 - Strahlung. Abgabedatum: 28. Februar 2008

Versuch A9 - Strahlung. Abgabedatum: 28. Februar 2008 Versuch A9 - Strahlung Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Zusammenhang 3 2.1 Raumwinkel.............................. 3 2.2 Strahlungsgrößen...........................

Mehr

A. Mechanik (18 Punkte)

A. Mechanik (18 Punkte) Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie

Mehr

Erzeugung und Abstrahlung von Wellen

Erzeugung und Abstrahlung von Wellen Kapitel 12 Erzeugung und Abstrahlung von Wellen Bisher haben wir die Ausbreitung elektromagnetischer Wellen diskutiert, ihre Erzeugung durch zeitabhängige Ladungs- und Stromverteilungen dagegen noch ausgespart.

Mehr

(3) Grundlagen II. Vorlesung CV-Integration S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(3) Grundlagen II. Vorlesung CV-Integration S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (3) Grundlagen II Vorlesung CV-Integration S. Müller KOBLENZ LANDAU Wiederholung I Strahlungsphysik (Radiometrie) Lichttechnik (Photometrie) V(λ)-Kurve.0 0.8 0.6 0.4 0. 0 400 500 600 700 800λ[nm] violett

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Aufgabe 1 - Schiefe Ebene - (10 Punkte)

Aufgabe 1 - Schiefe Ebene - (10 Punkte) - schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Modifikation der Eigenschaften von Antikaonen in dichter Materie

Modifikation der Eigenschaften von Antikaonen in dichter Materie Modifikation der Eigenschaften von Antikaonen in dichter Materie Thomas Roth 7. Juli 2004 Motivation Kaonen...... in dichter Materie Motivation Kaonen... sind die leichtesten Mesonen mit Strangeness ±1...

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16

Mehr

3.2.6 Wechselwirkungen der Sekundärteilchen

3.2.6 Wechselwirkungen der Sekundärteilchen 3.2. GELADENE KOMPONENTE 57 eine weiche elektromagnetische (Elektronen und Gamma-Teilchen), eine harte myonische sowieeinehadronischekomponente, die einzeln nachgewiesen werden können und zum Nachweis

Mehr

Brahe Kepler. Bacon Descartes

Brahe Kepler. Bacon Descartes Newton s Mechanics Stellar Orbits! Brahe Kepler Gravity! Actio = Reactio F = d dt p Gallilei Galilei! Bacon Descartes Leibnitz Leibniz! 1 Statistical Mechanics Steam Engine! Energy Conservation Kinematic

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1 Hochfrequenz-Resonatoren Prof. Dr. H. Podlech 1 Maxwellgleichungen Bedeutung?? Prof. Dr. H. Podlech 2 Maxwellgleichungen im Vakuum Prof. Dr. H. Podlech 3 Wellengleichungen 2. Maxwell-Gl. Wellengleichung

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V Bedeutung hoher Teilchenenergien Dann ist die Spannung Die kleinsten Dimensionen liegen heute in der Physik unter d < 10 15 m Die zur Untersuchung benutzten Wellenlängen dürfen ebenfalls nicht größer sein.

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr