Elektr. Feld Magn. Feld Strömungsfeld Bemerkung. [U] = V [Ψ el ] = As = C [C] = F. [V m ] = [Θ] = A [Ψ m ] = [Φ m ] = W b = V s [L] = V s.

Größe: px
Ab Seite anzeigen:

Download "Elektr. Feld Magn. Feld Strömungsfeld Bemerkung. [U] = V [Ψ el ] = As = C [C] = F. [V m ] = [Θ] = A [Ψ m ] = [Φ m ] = W b = V s [L] = V s."

Transkript

1 Elektrizitätslehre 3 - Formelsammlung (Revision : powered by LTEX) Seite 1 von 6 1 Elektrische Felder 1.1 Integral-Gesetze der Elektrotechnik Elektr. Feld Magn. Feld Strömungsfeld Bemerkung Feldgrösse E, D H, B E, J Konstante ε 0 = Dielektrizitätskonstante µ 0 = 4π 10 7 Permeabilitätskonstante σ = 1 ρ Spezifische Leitfähigkeit Stoffgleichung D = ε0 ε r E B = µ0 µ r H J = σ E Kraft Fluss (durch Fläche ) Spannung (Weg B) FC = q E FL = q( v B) Ψ el = D d Φm = B d 1) B U B = E ds B V mb = H ds U B = I = J d bei Spulen: Ψ m NΦ = i Φ i B E ds Schaltelemente Q = CU Ψ m = LI, Ψ m21 = M 21 I 1 I = GU, U = RI = 1 Λ, R = 1 G Hüllengesetz D d = Qi B d = 0 2) J 2) d = 0 ohne Verschiebungsstrom (Quellengleichungen) Maxwell IV Maxwell III Kirchhoff 1 (käme ggf. noch dazu) Umlaufspannung E ds = 0 Φm Induktionsgesetz Maxwell II H ds = θ + Ψel Vollständiges Durchflutungsgesetz Maxwell I E ds = 0 Φ Kirchhoff Einheiten ε = s V m µ = H m = V s m D = s m = C 2 m E = V 2 m U = V Ψ el = s = C C = F B = V s m = T H = 2 m V m = Θ = Ψ m = Φ m = W b = V s L = V s σ = S m E = V m J = m 2 = 10 6 mm 2 U = V I = R = Ω 1.3 Magnetismus Magnetische Feldlinien verlaufen ausserhalb eines Magneten vom Nord- zum Südpol und sind immer geschlossen. Name Formel Bemerkung Lorentzkraft F = Q( v B) = I( l B) F = Q v B sin α F = N Rechte-Hand-Regel F = Daumen; v, I = Zeigefinger; B = Mittelfinger Bei Q < 0 wechselt Richtung von B! = H Induktionsgesetz llgemeine Form u i = Φ = d B d B, Rechtsschraube + B, Linksschraube u i = V u i = Ψ, meist u i = N Φ Induktionsgesetz bewegter Leiter im Magnetfeld u i = Ei dl = ( v B) dl u i = V u i = v B l falls v B Durchflutungsgesetz V m = H ds = J d Ik = Θ V m, Θ = }{{} =NI Magn. Widerstand / Leitwert = Vm Φ = Θ Φ = l µ / Λ = 1 = W b / Λ = W b Induktivität L = Ψ I Bei idealer Koppl.: L = ΛN 2 = N 2 L = V s = H F. Braun, L. Schmid, U. Giger, R. Koller, S. rnold, S. Ferretti 20. Januar 2009

2 Elektrizitätslehre 3 - Formelsammlung (Revision : powered by LTEX) Seite 2 von Diverse Formeln bzgl. Magnetismus M feld ausserhalb langen Leiters: M feld innerhalb geraden, langen Leiters: Hall-Sonde: H(r) = I 2 π r H(r) = I eingeschlossen 2πr total = I r 2π r U a 2 H = I B e n p h M feld der Zylinderspule: M feld einer Toroidspule: Kraft auf stromführende Leiter: H(r) = N I l l d H innen (r) = N I 2 π r H aussen = 0 FL = I( l B) F L = I l B sin α H = I D = I 2a H = I 2 a 2 a 2 +h H = I 23 4πa (cos(α 1) cos(α 2 )) H = I Zusammenstellung magnetischer Grössen für spezielle Leiteranordnungen 2 π s Bemerkungen: 1) ohne Fluss durch Leiter 2) nur äussere Induktivität 3) = πd2 4 l m πd m 4) Wickeldurchmesser d in radialer und axialer Richtung d D llgemein gilt: Φ = Λ Θ, Λ = 1 L = Ψ I L = Λ = 1, falls N = 1 L = ΛN 2 = N 2, falls die N-Windungen unter sich ideal gekoppelt sind. 1.6 Gegeninduktion, Transformator Gegeninduktion (M XY ; X: Wirkung, Y : Ursache) Gegeninduktivität M 21 = Ψm21 i 1 = (Meist = N2φm21 i 1 ) (wenn µ = const.) M = k L 1 L 2 = M 21 = M 12 Gegeninduktionsspannung u 21 = Ψ di 21 = M 1 21 Transformatorgleichungen u 1 = L 1 di 1 + M 12 di 2 = L 1 di 1 +M 12 di b di 2 u 2 = L 2 + M di 1 21 = L di b 2 + M di 1 21 Idealer Trafo ü = u 1 u 2 = N 1 N 2 = n (im Leerlauf: 1 ü = k L2 ) L 1 Durchsetzt das sich ändernde Magnetfeld einer stromdurchflossenen Spule eine zweite Spule, so wird auch in dieser eine Spannung (=Gegeninduktionsspannung) induziert. Gleichsinnig / Gegensinnig Verlustbehafteter Trafo Primärstrom im Leerlauf: L H (ideal L H ) Hysterese- & Wirbelstromverluste: R F e (ideal: R F e ) Kupferwiderstände: R Cu1, R Cu2 (ideal: R Cu 0) Streufluss (Kopplung): L σ1, L σ2 (ideal: L σ 0) F. Braun, L. Schmid, U. Giger, R. Koller, S. rnold, S. Ferretti 20. Januar 2009

3 Elektrizitätslehre 3 - Formelsammlung (Revision : powered by LTEX) Seite 3 von 6 2 Wechselstromrechnung 2.1 llgemein zeitabhängige Grössen rithmetischer Mittelwert, Gleichwert, Linearer MW X 0 = X = X m = 1 T t 0 x(t) Quadratischer MW, Leistung X 2 = 1 T x 2 (t) MW n. Ordnung X n = 1 T x n (t) t 0 t 0 Effektivwert X = X 2 1 = T x 2 (t) Gleichrichtwert X m = X = 1 T x(t) t Begriffe Z = R + jx: Komplexer Widerstand (Impedanz); R: Wirkwiderstand (Resistanz); X: Blindwiderstand (Reaktanz) Y = G + jb: Komplexer Leitwert (dmittanz); G: Wirkleitwert (Konduktanz); B: Blindleitwert (Suszeptanz) Z = Z e jϕ Z = U I = ( ) R 2 + X 2 ϕ = arctan Im(Z) Re(Z) G = Re(Y ) 1 R, B = Im(Y ) 1 X 2.3 Schaltelemente bei zeitabhängigen Vorgängen Ohmscher Widerstand R Kapazitität C Induktivität L u und i können sprunghaft ändern u kann nicht sprunghaft ändern i kann nicht sprunghaft ändern u(t) = Ri(t) i(t) = u(t) R Z = R 2.4 Vorgehen bei Schaltvorgängen u(t) = 1 C t 0 i(t) = C du(t) Z = 1 jωc = j ωc W C = 1 2 CU 2 C i(τ)dτ + u(0) t 0 u(t) = L di(t) i(t) = 1 L t 0 Z = jωl W L = 1 2 LI2 L u(τ)dτ + i(0) u(t) = U E + (U U E )e t τ τ = CR bzw. τ = L R = ε σ U = lim t 0 + u(t) 2.5 Komplexe Darstellung sinusförmiger Vorgänge U E = lim t u(t) Für Ströme äquivalent Momentanwert in R: a(t) = Â cos(ωt + ϕ) Momentanwert in C: a(t) = Âejϕ e jωt mplitude in C: Â = Âejϕ Differentiation: d a(t) = jωâ Integration: a(t) = Â jω 2.6 Leistungen und Energie Blindleistungskompensation Momentanleistung p(t) = u(t)i(t) Komplexe Leistung S = U I = U I e j(ϕu ϕi) Konjugiert Komplexer Strom! Wirkleistung P = Re(S) = UI cos(ϕ) Blindleistung Q = Im(S) = UI sin(ϕ) Kapazitiv: Q < 0; induktiv: Q > 0 Scheinleistung S = S = UI = U 2 R = I2 R C: Q c = ωcuc 2, L: Q L = ωlil 2 Leistungsfaktor cos ϕ = P S = P UI Leistungsanpassung Z L = Z i ; P max = U 2 q 4R i = I2 q Ri 4 Q Lk = P tan ϕ k Q C = Q Lk Q L C = Q C ωu 2 F. Braun, L. Schmid, U. Giger, R. Koller, S. rnold, S. Ferretti 20. Januar 2009

4 Elektrizitätslehre 3 - Formelsammlung (Revision : powered by LTEX) Seite 4 von Systematische Netzwerkanalyse Netzwerkgleichungen, Integro-Differentialgleichungen nstelle der Matrizendarstellung werden hier die Netzwerkgleichungen vollständig ausgeschrieben mit f(t) und d f(t) Zweigstrommethode Bild 1 Maschengleichungen enthalten Zweigströme Maschen- & Stromknotengleichungen benötigt kann nicht in Matrizenform dargestellt werden Kreis- oder Maschenstrommethode (s. Bilder rechts) Bild 2 Maschengleichungen enthalten Maschenströme nur Maschengleichungen benötigt Kann in Matrizenform dargestellt werden Baum verbindet alle Knoten, ist aber nie geschlossen ufzustellende Maschen bestehen immer aus beliebig vielen Ästen (Zweige vom Baum) und einer Sehne Matrix der Maschenstrommethode (Bild 2) R1 + R 2 + jωl jωl 2 j2ωm 12 (R 2 + jωl jωm 12 jωm 13 ) (R 2 + jωl jωm 12 jωm 13 ) R 2 + jωl 2 + jωl jωc 3 llgemein: Impedanzen Z symmetrisch zur Diagonalen Maschenströme J = J J B = U0 0 Spannungsquellen U Gegenrichtung positiv, sonst negativ Gekoppelte Spulen Vorzeichen der Gegeninduktivität: Fliesst der fremde (induzierende) Strom bei der Markierung hinein, so hat er dieselbe Wirkung als wenn er bei der gekoppelten Spule in die Markierung hineinfliessen würde! F. Braun, L. Schmid, U. Giger, R. Koller, S. rnold, S. Ferretti 20. Januar 2009

5 Elektrizitätslehre 3 - Formelsammlung (Revision : powered by LTEX) Seite 5 von Knotenpotentialmethode oder Trennbündelmethode Gegeben: I C5 = ki 8 Knoten B hat keine Gleichung, da E B = U 01 Rechnung nur mit dmittanzen (Leitwerten) Y = 1 Z = G + jb Schema mit (idealen) Stromquellen G jωl 2 + jωc 3 0 G 4 0 G 6 + G 8 kg 8 G E }{{} 6 E I C5 C = U 04 G 4 + U 01 jωl E G 4 G 6 jωl 7 + G 4 + G D U 04 G 4 6 llgemein: dmittanzen Y symmetrisch zur Diagonalen Knotenpotentiale E = Stromquellen J Hineinfliessen positiv, sonst negativ spekte zur Wahl der Methode rt der gegebenen Quellen nzahl Gleichungen Spezialitäten Gesuchte Grössen Spannungsquellen Stromquellen z k + 1 nzahl idealer Stromquellen k 1 nzahl idealer Spannungsquellen Gegeninduktivitäten Gesteuerte Stromquellen (Sehnen-) Ströme (Knoten-) Spannungen 2.8 Stern-Dreieck-Umwandlung Umwandlung Y : Z ac Z bc Z c = Z ab + Z bc + Z ac Umwandlung Y : Y a Y c Y ac = Y a + Y b + Y c Bei gleichen Widerständen: R Y = R 3 Bei gleichen Kapazitäten: C Y = C 3 Bei gleichen Induktivitäten: L Y = L 3 F. Braun, L. Schmid, U. Giger, R. Koller, S. rnold, S. Ferretti 20. Januar 2009

6 Elektrizitätslehre 3 - Formelsammlung (Revision : powered by LTEX) Seite 6 von Impedanz-Transformationen Werden gebraucht, wenn Bauteile verschiedene Werte haben können. Bspw. wird in einer Schaltung eine Kapazität oder eine Induktion variiert. Bei der Umwandlung von Z nach Y und umgekehrt handelt es sich um die komplexe Kehrwertfunktion: Y = 1 1 Z (arg(z) = arg(y ), Y = Z ) (Unendlich ferner Punkt wird in den Ursprung abgebildet und umgekehrt) Verläuft die OK von Z oberhalb der Re-chse, so verläuft die OK von Y unterhalb der Re-chse und umgekehrt. Konstruktion der kreisförmigen Ortskurve: 1. ndere Orstkurve (komplexer Kehrwert) als Gerade darstellen. (Dient als Orientierungshilfe und zur Überprüfung) 2. Extremalwerte berechnen und als Punkte P 1, P 2 darstellen. (P 1 = Z 0 = lim R 0 Z, P 2 = Z = lim R Z) 3. Mittelsenkrechte von P 1, P 2 konstruieren, deren Schnittpunkt mit Re- oder Im-chse den Kreismittelpunkt M ergibt. Mittels Betrachtung des nfangswinkels (ϕ Z0 = ϕ Y0 oder ϕ Z = ϕ Y ) kann die nfangsrichtung des Kreises in der Nähe des Ursprungs bestimmt werden und der falsche Mittelpunkt (M Re oder M Im ) ausgeschlossen werden. 4. Ortskurve (Kreis mit Mittelpunkt M, schneidet P 2 und P 1 ) konstruieren 3 Mathematische Formeln Cosinussatz c 2 = a 2 + b 2 2 a b cos γ Sinussatz a sin α = b sin β = c sin γ = 2r = u π F. Braun, L. Schmid, U. Giger, R. Koller, S. rnold, S. Ferretti 20. Januar 2009

Elektrotechnik II Formelsammlung

Elektrotechnik II Formelsammlung Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz

Mehr

Formelsammlung Elektrotechnik von Sascha Spors V1.3 /

Formelsammlung Elektrotechnik von Sascha Spors V1.3 / Formelsammlung Elektrotechnik von Sascha Spors V.3 /..96 Mathematische Formeln : arctan( b a Z a + jb Y arg(z ; arctan( b a arctan( b < a für a >, b +π für a π für a

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

1 Wechselstromtechnik

1 Wechselstromtechnik Wechsel- & Drehstromtechnik - Formelsammlung (evision : 65 - powered by LATEX) Seite 1 von 8 1 Wechselstromtechnik 1.1 Periodisch zeitabhängige Grössen 1.1.1 Gleichrichterschaltungen Einweggleichrichtung

Mehr

Elektrotechnik I Formelsammlung

Elektrotechnik I Formelsammlung Elektrotechnik I Formelsammlung Andreas itter und Marco Weber. Dezember 009 Inhaltsverzeichnis Physikalische Gesetze Physikalische Konstanten...................................... Physikalische Zusammenhänge..................................

Mehr

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag Gert Hagmann Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Mit 225 Abbildungen, 4 Tabellen, Aufgaben und Lösungen

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

1 Elektrostatik Skript S. 3-1

1 Elektrostatik Skript S. 3-1 Zusammenfassung El (Revision : 16 - powered by LTEX) Seite 1 von 6 1 Elektrostatik Skript S. 3-1 Name Formel Einheit Dielektrizitätskonstante 1 s ε = ε r ε 0 = ε r 8.854 10 V m Ladung Q = It = CU [Q] =

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Bearbeitet von Gert Hagmann 17., durchgesehene und korr. Auflage.

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld Kapitel Pearson Folie: Kapitel 5 Das stationäre Folie: 2 Lernziele Kapitel Pearson Folie: 3 5. Magnete Kapitel Pearson Folie: 4 5. Magnete Kapitel Pearson S N Folie: 5 5.2 Kraft auf stromdurchflossene

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Elektrotechnik für Studium und Praxis: Lösungen Lösungen zu Kapitel Aufgabe.1 Aus der Maschengleichung ergibt sich: I 4 = U q1 + U q R 1 I 1 R I R I R 4 I 4 = 4 V + 1 V Ω 5 A Ω, A 5 Ω 4 A Ω I 4 = (4 +

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien Vorwort V VII 1 Einleitung 1 2 Grundbegriffe 3 2.1 Elektrische Ladung 3 2.2 Leiter und Nichtleiter 4 2.3 Elektrischer

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Elektrische Ladung, elektrostatisches Feld

Elektrische Ladung, elektrostatisches Feld ET 1 Elektrische Ladung, elektrostatisches Feld Elektrische Ladung Die elektrische Ladung Q eines (geladenen) Körpers wird durch diejenige Kraft festgestellt, die er auf andere geladene Körper ausübt.

Mehr

Ersatzschaltbild und Zeigerdiagramm

Ersatzschaltbild und Zeigerdiagramm 8. Betriebsverhalten des Einphasentransformators Seite Ersatzschaltbild und Zeigerdiagramm Jeder Transformator besteht grundsätzlich aus zwei magnetisch gekoppelten Stromkreisen. Bild 8.-: Aufbau und Flusslinien

Mehr

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung:

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung: Elektrotechnik - Zusammenfassung. Grundlagen Stromstärke: Stromdichte: 𝐽, 𝐽 𝐴 Spannung: 𝑈" " 𝐸 𝑙" 2. Netzwerke bei Gleichstrom 2.2 Bezugspfeile Erzeuger- Pfeilsystem: Verbraucher- Pfeilsystem: Spannungs-

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27 Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 Elektrische Ladung... 5 Aufbau eines Atom... 6 Ein kurzer Abstecher in die Quantenmechanik... 6 Elektrischer Strom... 7 Elektrische Spannung... 9 Widerstand...

Mehr

2 Komplexe Rechnung in der Elektrotechnik

2 Komplexe Rechnung in der Elektrotechnik Komplexe echnung in der Elektrotechnik. Einleitung Wechselstromnetwerke sind Netwerke, in denen sinusförmige Spannungen oder ströme gleicher Frequen auf ohmsche, induktive und kapaitive Widerstände wirken.

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

Inhaltsverzeichnis. Gleichstromlehre

Inhaltsverzeichnis. Gleichstromlehre Inhaltsverzeichnis I Gleichstromlehre 1 Elektrische Grundgrößen... 12 1.1 Elektrische Ladung... 12 1.2 Elektrische Stromstärke... 13 1.3 Elektrische Spannung... 15 1.4 Elektrischer Gleichstromkreis......

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Inhaltsverzeichnis. Rainer Ose. Elektrotechnik für Ingenieure. Grundlagen. ISBN (Buch): ISBN (E-Book):

Inhaltsverzeichnis. Rainer Ose. Elektrotechnik für Ingenieure. Grundlagen. ISBN (Buch): ISBN (E-Book): Inhaltsverzeichnis Rainer Ose Elektrotechnik für Ingenieure Grundlagen ISBN (Buch): 978-3-446-43244-4 ISBN (E-Book): 978-3-446-43955-9 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43244-4

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Grundlagen. der. Elektrotechnik

Grundlagen. der. Elektrotechnik Skriptum zu den Grundlagen der Elektrotechnik von Prof. Dr. rer. nat. Hartmann Bearbeitet von: Stand: 02.10.2002 Thorsten Parketny i Inhaltsverzeichnis 1. Grundbegriffe und Werkzeuge...1 1.1. Elektrische

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Wechselstromwiderstände Wirkwiderstand, ideale Spule und idealer Kondensator im Wechselstromkreis Wirkwiderstand R In einem Wirkwiderstand R wird elektrische Energie in Wärmeenergie umgesetzt. Er verursacht

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

Grundlagen der Elektrotechnik 2

Grundlagen der Elektrotechnik 2 Grundlagen der Elektrotechnik 2 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien V 1 Einleitung 1 2 Grundbegriffe der Wechselstromtechnik 3 2.1 Kenngrößen periodisch zeitabhängiger Größen 3 2.1.1

Mehr

Elektrotechnik für Ingenieure Grundlagen

Elektrotechnik für Ingenieure Grundlagen Rainer Ose Elektrotechnik für Ingenieure Grundlagen ISBN-10: 3-446-41196-8 ISBN-13: 978-3-446-41196-8 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41196-8

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1 FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-4.) Lineare Schaltungen mit passiven Bauelementen 4. Die Schaltelemente Widerstand, Kapazität, Induktivität und Übertrager 4..

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 16.09.2014 16.09.2014 Musterlösung Grundlagen der Elektrotechnik B Seite 1 von 13 Aufgabe 1: Gleichstrommaschine (20 Punkte) LÖSUNG

Mehr

Kapitel 7 Der Übergang zu den zeitabhängigen Stromund Spannungsformen 15

Kapitel 7 Der Übergang zu den zeitabhängigen Stromund Spannungsformen 15 Vorwort zur 1. Auflage 11 Vorwort zur 2. Auflage 13 Kapitel 7 Der Übergang zu den zeitabhängigen Stromund Spannungsformen 15 7.1 Vorbetrachtungen............................................ 16 7.2 Modellbildung..............................................

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

Grundlagen der Elektrotechnik 2 Übungsaufgaben

Grundlagen der Elektrotechnik 2 Übungsaufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2006.07 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Aufgabensammlung Elektrotechnik

Aufgabensammlung Elektrotechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Hermann Wellers Aufgabensammlung Elektrotechnik 3., erweiterte und

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Prof. Dr.-Ing. B. Schmülling Musterlösung zur Klausur Grundlagen der Elektrotechnik I im Sommersemester 17 Aufgabe 1: Die Lösungen zu Aufgabe 1 folgen am Ende. Aufgabe : 1. I = 600 ma R a = 5,5 Ω R c =

Mehr

Elektrotechnik für Ingenieure - Formelsammlung

Elektrotechnik für Ingenieure - Formelsammlung Wilfried Weißgerber Elektrotechnik für Ingenieure - Formelsammlung Elektrotechnik kompakt 3., überarbeitete und erweiterte Auflage STUDIUM VIEWEG+ TEUBNER VII Inhaltsverzeichnis Vorwort Schreibweisen,

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 2 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.7.28 Aufgaben. Ein Transformator mit Primärwindungen und 3 Sekundärwindungen wird mit einem Wechselstrom

Mehr

Grundlagen der Elektrotechnik 2

Grundlagen der Elektrotechnik 2 Manfred Albach Grundlagen der Elektrotechnik 2 Periodische und nicht periodische Signalformen 2., aktualisierte Auflage Grundlagen der Elektrotechnik 2 - PDF Inhaltsverzeichnis Grundlagen der Elektrotechnik

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65

Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65 1 Physikalische Größen, Einheiten, Gleichungen...1 1.1 Physikalische Größen...1 1.2 Das internationale Einheitensystem...1 1.3 Gleichungen...5 2 Gleichstromkreise...6 2.1 Grundbegriffe der elektrischen

Mehr

Grundgebiete der Elektrotechnik

Grundgebiete der Elektrotechnik Arnold Führer Klaus Heidemann Wolfgang Nerreter Grundgebiete der Elektrotechnik Band 2: Zeitabhängige Vorgänge mit 462 Bildern, 105 durchgerechneten Beispielen und 147 Aufgaben mit Lösungen 8., völlig

Mehr

Helmut Haase Heyno Garbe. Elektrotechnik. Theorie und Grundlagen. Mit 206 Abbildungen. Springer

Helmut Haase Heyno Garbe. Elektrotechnik. Theorie und Grundlagen. Mit 206 Abbildungen. Springer Helmut Haase Heyno Garbe Elektrotechnik Theorie und Grundlagen Mit 206 Abbildungen Springer Inhaltsverzeichnis Vorwort Symbole und Hinweise V VII 1 Grundbegriffe 3 1.1 Ladung als elektrisches Grundphänomen

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Ingo Wolff Grundlagen der Elektrotechnik Einführung in die elektrischen

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte)

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik III WS 014/015 Prof Dr A Shnirman Blatt 8 Dr B Narozhny Lösungen 1 Elektromagnetische Induktion:

Mehr

1. Basics / Repetitorium:

1. Basics / Repetitorium: 1. Basics / Repetitorium: Differentieller Widerstand: R U I Effizienz:, bei Leistungsanpassung ist 0.5 mit Ähnlichkeitssatz (lineare Verbraucher & Quellen): Man nimmt das Ergebnis mit einem runden Wert

Mehr

Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" Physikalische Grundbegriffe... 1

Gliederung des Vorlesungsskriptes zu Grundlagen der Elektrotechnik I Physikalische Grundbegriffe... 1 - Grundlagen der Elektrotechnik I - I 23.05.02 Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" 1 Physikalische Grundbegriffe... 1 1.1 Aufbau der Materie, positive und negative Ladungen...

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas!

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas! Zeitlich veränderliche Felder: Elektrodynamik Die Maxwell-Gleichungen im statischen Fall (1) 1 E d = ρdv E = V( ) (2) B d = B = etwas! (3) E dr = E = (4) Integralform ε Hier fehlt noch Differentialform

Mehr

Formelsammlung GET 2

Formelsammlung GET 2 Formelsammlung GET Dr. Oliver Haas. September 06 Inhaltsverzeichnis Formelzeichen und Einheiten 3 Zehnerpotenzen und Vorsatzzeichen 3 3 Magnetisches Feld 4 3. Permeabilität...................................

Mehr

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

Elektrotechnik I MAVT

Elektrotechnik I MAVT Prof. Dr. Q. Huang Elektrotechnik MAVT Prüfung H07 BSc 23.08.2007 1. [30P] DC-Aufgaben (a) [9P] Betrachten Sie die Schaltung in Abbildung 1 und lösen Sie die nachfolgenden Aufgaben. Vereinfachen Sie die

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben 1) Lorentz-Kraft Grundlagen der Elektrotechnik II Übungsaufgaben Ein Elektron q = e = 1.602 10 19 As iegt mit der Geschwindigkeit v = (v x, v y, v z ) = (0, 35, 50) km/s durch ein Magnetfeld mit der Flussdichte

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2014/2015 Grundlagen der Elektrotechnik I&II Datum: 9. Februar 2015 Prüfer: Prof. Dr.-Ing. H.-P. Beck Institut für Elektrische Energietechnik

Mehr

Einführung 23. Teil I Größen der Elektrotechnik und ihre Zusammenhänge 33. Kapitel 1 Die wesentlichen mathematischen Grundlagen 35

Einführung 23. Teil I Größen der Elektrotechnik und ihre Zusammenhänge 33. Kapitel 1 Die wesentlichen mathematischen Grundlagen 35 Inhaltsverzeichnis Einführung 23 Über dieses Buch 25 Konventionen indiesem Buch 26 Was Sie nicht lesen müssen 26 Törichte Annahmen über den Leser 26 Wie dieses Buch aufgebaut ist 27 Teil I: Größen der

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

A. Rechenregeln für Zeiger

A. Rechenregeln für Zeiger 257 A. Rechenregeln für Zeiger Nachdem man festgelegt hat, wie Sinusgrößen durch Zeiger dargestellt werden können, soll untersucht werden, welche Rechenregeln für Zeiger gebraucht werden. Diese sind: Addition,

Mehr

Leistungselektronik - Formelsammlung Seite 1 von 5. x(t)dt. x2 (t)dt

Leistungselektronik - Formelsammlung Seite 1 von 5. x(t)dt. x2 (t)dt Leistungselektronik - Formelsammlung Seite von 5 allgemeine Formeln Spannung über einer Induktivität Strom durch Kondensator Zeitkonstante u L (t) = L di i C (t) = C du = L oder = C Berechnung des Mittelwertes

Mehr

1 Wechselstromtechnik

1 Wechselstromtechnik Wechsel- & Drehstromtechnik - Formelsammlung (0-0-0, Commit : f4c5 - gemäss Unterricht Heiner Prechtl/HS0 Seite von Wechselstromtechnik. Periodisch zeitabhängige Grössen.. Mittelwerte periodischer Grössen

Mehr

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R. Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem

Mehr

Elektrotechnik und Elektronik für Informatiker

Elektrotechnik und Elektronik für Informatiker Elektrotechnik und Elektronik für Informatiker Band 1 Grundgebiete der Elektrotechnik Von Prof. Dr.-Ing. Reinhold Paul Technische Universität Hamburg-Harburg 2., durchgesehene Auflage Mit 282 Bildern und

Mehr

1 Generelle Eigenschaften el. Maschinen

1 Generelle Eigenschaften el. Maschinen Elekrische Maschinen - Formelsammlung (Revision : 870 - powered by LATEX) Seite 1 von 8 1 Generelle Eigenschaften el. Maschinen 1.1 Generelle Formeln von el. Maschinen Name Formel Einheit Permeabilität

Mehr

Elektrotechnik I Zusammenfassung & Formelsammlungfloba

Elektrotechnik I Zusammenfassung & Formelsammlungfloba Elektrotechnik I Zusammenfassung & Formelsammlungfloba 1 Grundbegriffe Elementarladung: e =1, 6022 10 9 C el. Strom = geordnete Bewegung von Ladungen im Stromkreis, jede Bewegung von el. Ladung ist mit

Mehr

Grundgebiete der Elektrotechnik 2

Grundgebiete der Elektrotechnik 2 Grundgebiete der Elektrotechnik 2 Wechselströme, Drehstrom, Leitungen, Anwendungen der Fourier-, der Laplace- und der Z-Transformation von Prof. Dr.-Ing. Horst Clausert, TU Darmstadt Prof. Dr.-Ing. Günther

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Helmut Haase Heyno Garbe Hendrik Gerth Grundlagen der Elektrotechnik Mit 228 Abbildungen Inhaltsverzeichnis Symbole und Hinweise VII 1 Grundbegriffe 1 1.1 Ladung als elektrisches Grundphänomen 1 1.2 Elektrische

Mehr

Inhalt. 1 Einleitender Überblick...13

Inhalt. 1 Einleitender Überblick...13 Inhalt 1 Einleitender Überblick...13 2 Grundbegriffe der Elektrotechnik...17 2.1 Elektrische Ladung...17 2.2 Elektrisches Potential und Spannung...18 2.3 Elektrischer Strom...20 2.4 Spannungsfall...20

Mehr

Induktion 1. Induktion Phänomenologie 2. Induktion in einem zeitlich veränderlichen Magnetfeld:

Induktion 1. Induktion Phänomenologie 2. Induktion in einem zeitlich veränderlichen Magnetfeld: Induktion. Induktion Phänomenologie. Induktion in einem zeitlich veränderlichen Magnetfeld: i. Induktionsgesetz ii. enzsche Regel iii. Wirbelströme 3. Induktivität einer eiteranordnung: i. Gegeninduktivität

Mehr

Elektrotechnik für Studierende Inhalt. Vorwort...11

Elektrotechnik für Studierende Inhalt. Vorwort...11 5 Inhalt Vorwort...11 1 Signale...13 1.1 Definitionen zu Signalen...13 1.2 Klassifizierung von Signalen...15 1.2.1 Klassifizierung nach dem Signalverlauf...15 1.2.1.1 Determinierte Signale...15 1.2.1.2

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr