Teil 1 Zehn einfache Prüfbeispiele zur Verifikation von Software-Ergebnissen. Beispiel 1 Einachsige Biegung mit Druck 11

Ähnliche Dokumente
Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software. Prüfbeispiele, Fehlerursachen, genaue Theorie. Bauingenieur- Praxis

Finite-Elemente-Methoden im Stahlbau

Nachweispraxis Biegeknicken und Biegedrillknicken

11 Balkenbiegung Technische Mechanik Balkenbiegung

Inhaltsverzeichnis. Teil I. Lehrbuch

Inhaltsverzeichnis. 1 Einführung in die Statik der Tragwerke 1

Stahlbau Grundlagen. Das elastische Biegetorsionsproblem 2. Ordnung dünnwandiger Stäbe. Prof. Dr.-Ing. Uwe E. Dorka

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5

Kippen von Biegeträgern

Bachelorarbeit. Realistische Stabilitätsnachweise eines durchlaufenden Fachwerkträgers. Im Fachgebiet Stahlbau Dozent: Prof. Dr. Ing.

Inhaltsverzeichnis. 1 Grundlagen der Bemessung 1. 2 Beanspruchbarkeit des Querschnittes 32

Festigkeitslehre. Ein Lehr- und Arbeitsbuch. Bearbeitet von Jens Wittenburg

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth

Inhaltsverzeichnis Einleitung Mathematische Grundlagen

Technische Mechanik kompakt

Herbert Mang Günter Hofstetter. Festigkeitslehre. Mit einem Beitrag von Josef Eberhardsteiner. Dritte, aktualisierte Auflage

Nachweis des Biegedrillknickens für Kragträger


Technische Mechanik für Wirtschaftsingenieure

Baustatik - einfach und anschaulich. Bauwerk. Herausgeber: Dr.-Ing. Eddy Widjaja

Einführung in die Festigkeitslehre

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag

Statik im Bauwesen. HUSS-MEDIEN GmbH Verlag Bauwesen Berlin. Fritz Bochmann/Werner Kirsch. Band 3: Statisch unbestimmte ebene Systeme

Grundkurs Technische Mechanik

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten

Technische Mechanik kompakt

Übung zu Mechanik 2 Seite 62

Technische Mechanik. Festigkeitslehre

Baustatik in Beispielen

Inhaltsverzeichnis. Vorwort...

Gottfried C. O. Lohmeyer. Baustatik 2. Festigkeitslehre

Stahl bau-praxis nach Eurocode 3

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

Lohmeyer Baustatik 1

T R A G W E R K E A U S H O L Z

Prof. Dr.-lng. Ulrich Quast. Nichtlineare Statik im Stahlbetonbau. Bauwerk

Baumechanik - Repetitorium

Inhaltsverzeichnis.

Finite Elemente Modellierung

MECHANIK & WERKSTOFFE

Baustatik 2. Gottfried CO. Lohmeyer Stefan Baar

Technische Mechanik für Wirtschaftsingenieure

Zur Leistungsfähigkeit, korrekten Anwendung und Kontrolle von EDV-Programmen für die Berechnung räumlicher Stabwerke im Stahlbau (Teil 2)

Lehrveranstaltung Stereostatik

Inhaltsverzeichnis. vii

Bemessung im Betonbau

Einführung in die Finite Elemente Methode für Bauingenieure

Inhaltsverzeichnis. 1 Einleitung 1

FEM - Zusammenfassung

Technische Mechanik für Wirtschaftsingenieure


TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

Baustatik kompakt. Statisch bestimmte und statisch/unbestimmte Systeme

Beuth Hochschule für Technik Berlin

Technische Mechanik Festigkeitslehre

4. Das Verfahren von Galerkin

Stahlbau 1. Name:... Matr. Nr.:...

Peter Gummert Karl-August Reckling MECHANIK. 2., durchgesehene Auflage. Mit 368 Abbildungen

7.4.3 Einführung des Verschiebungsansatzes Transformation des Differentialoperators und des Bereichsdifferentials

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN:

Biegelinie

STAHLBETONBAU BEMESSUNG UND KONSTRUKTION TEIL2

Inhaltsverzeichnis VII

Inhaltsverzeichnis. Ulrich Gabbert, Ingo Raecke. Technische Mechanik für Wirtschaftsingenieure. ISBN (Buch):

Baustatik Theorie I. und II. Ordnung

Kleines Einmaleins der

Baustatik I (WS 2017/2018) 1. Einführung. 1.2 Modellbildung LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN

Prof. Dr.-Ing. Andrej Albert FB Bauingenieurwesen / Fachgebiet Massivbau. Betonfertigteilbau

STAHLBAU. Prof. Dipl.-Ing. Eduard Kahlmeyer t Prof. Dr.-Ing. Kerstin Hebestreit Prof. Dr.-Ing. Werner Vogt. 5. überarbeitete Auflage 2008

Grundlagen des Leichtbaus

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer

Euler-Bernoulli-Balken

Innere Beanspruchungen - Schnittgrößen

Finite-Elemente-Methode

99/101 Stabilitätsnachweise RSTAB-Modul STAHL EC3 Acht. I LEITFADEN FÜR STABILITÄTSNACHWEISE MIT DEM RSTAB ZUSATZMODUL STAHL EC3

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

Finite-Elemente-Methode

1. Formänderungsenergie

kd Stahlbetonbemessung

Stahlbau 1. Name:... Matr. Nr.:...

Technische Mechanik 2 Festigkeitslehre

VII. Inhaltsverzeichnis

Biegelinie

Zwängungsfreie Torsion

1 Grundlagen der Statik. 2 Das zentrale ebene Kraftsystem. 4 Schwerpunkte

Lehrbuch der Technischen Mechanik Elastostatik

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK.

Martin Mayr. Technische Mechanik. Statik Kinematik - Kinetik - Schwingungen Festigkeitslehre. 6.. überarbeitete Auflage, mit 474 Abbildungen HANSER

1 Einleitung Historie und Anwendungsgebiete Elemente der Mehrkörperdynamik... 2 Literatur... 2

Festigkeitslehre, Kinematik, Kinetik, Hydromechanik

1 Grundlagen der Statik Die Kraft Axiome der Statik Das Schnittprinzip... 5

Biegung

1 Einleitung und Übersicht

Transkript:

Inhaltsverzeichnis Vorwort Zum Gebrauch dieses Buches 1 Teil 1 Zehn einfache Prüfbeispiele zur Verifikation von Software-Ergebnissen Beispiel 1 Einachsige Biegung mit Druck 11 Kragstütze mit aufgesetztem Koppelträger Beispiel 2 Durchschlagprobleme Analyse nach Th.II.O. unzulässig 16 Unsymmetrisches v. MISES-Fachwerk mit geringem Stichmaß Beispiel 3 Doppelbiegung ein simpler Fall? 20 Gabelgelagerter Einfeldträger mit Einzellasten F y und F z in Feldmitte Beispiel 4 Planmäßig zentrische Druckbeanspruchung Biegeknicken nach zwei Richtungen, Drillknicken 26 Über vier Geschosse durchlaufende, planmäßig zentrisch beanspruchte Stütze mit unterschiedlichen Randbedingungen in y- und z-richtung Beispiel 4a: Gabellagerung in jedem Geschoss 26 Beispiel 4b: Gabellagerung nur an den Enden der Stütze 29 Beispiel 5 Gekoppelte Beanspruchung in der System-Ebene und senkrecht zur Ebene 33 Ebenes Rautenfachwerk mit biege- und torsionssteifen Knoten Beispiel 6 Biegedrillknicken ohne Normalkraft ein Standard-Beispiel aus der Literatur 37 Gabelgelagerter Einfeldträger mit Streckenlast und sinusförmiger Vorkrümmung Beispiel 7 Biegedrillknicken mit Normalkraft 40 Abgespannter Träger mit Kragarm Beispiel 7a: Anschluss der Abspannung im Schwerpunkt Beispiel 7b: Anschluss der Abspannung am Obergurt Beispiel 8 Zustandslinien der Torsionsmomente Verlauf an Lasteinleitungspunkten 47 Tordierter Balken mit Längs- und Querlasten

VIII Inhaltsverzeichnis Beispiel 9 Torsion wölbfreier Querschnitte für Software unerwartet problematisch 50 Tordierter Kragträger Beispiel 10 Wie genau wird die nichtlineare Verformungsgeometrie erfasst? 53 Zwei Prüfbeispiele mit ebener Beanspruchung Beispiel 10a: Biegeträger mit beidseitig unverschieblichen Lagern 53 Beispiel 10b: Kragträger mit Lastmoment am freien Ende 55 Teil 2 Nichtlineare Stabtheorie großer Verformungen bei räumlicher Beanspruchung Theoretische Grundlagen und weitere Prüfbeispiele 1 Einleitung 61 2 Theorie II. und III. Ordnung die großen Missverständnisse 2.1 Vorbemerkungen 62 2.2 Verformungsgeometrie 63 2.3 Gleichgewicht am verformten System 64 2.4 Einfluss der Normalkraft auf die Verdrillung 66 2.5 Berücksichtigung der Wölbkrafttorsion und der sekundären Schubverformungen 68 2.6 Asymptotisches Verhalten und Genauigkeit 72 2.7 Durchschlagprobleme 75 2.7.1 Allgemeines 75 2.7.2 Beispiel: Stahlträger einer pagodenförmigen Kuppel 80 2.8 Klassifizierung 83 2.9 Superposition 86 2.10 Theorie III. Ordnung 86 2.11 DIN 18800 / EC3: Nachweis am Gesamtsystem 88 2.12 Zusammenfassung 90

Inhaltsverzeichnis IX 3 Torsionstheorie II. Ordnung: Wölbkrafttorsion mit Normalkraft 3.1 Vorbemerkungen 92 3.2 Erläuterung der Problematik an einem Beispiel 93 3.3 Herleitung des Torsionsmomenten-Anteils M xn 95 3.4 Klärung für den Sonderfall const 98 3.4.1 Belastung durch M T und N (inhomogener Fall) 98 3.4.2 Drillknicken (homogener Fall) 101 3.4.3 Spannungen 102 3.4.4 Baustatische Relevanz 103 3.5 Allgemeiner Fall const 104 3.5.1 Problemstellung 104 3.5.2 Übergangsbedingungen an Lasteinleitungsstellen innerhalb eines Trägers 105 3.5.3 Bedingungen am Rand eines Trägers 108 3.5.4 Einleitung von M T bzw. F x : Zusammenfassung 108 3.5.5 Drillknicken 109 3.5.5.1 DK-Last des beidseitig gabelgelagerten Trägers 109 3.5.5.2 Abgrenzung Drillknicken / Biegeknicken (DK / BK) 110 3.5.5.3 Einfluss des Wölbwiderstands auf die Drillknicklast 115 3.5.5.4 Last-Verdrillungskurven und asymptotisches Verhalten 117 4 Torsionstheorie großer Verformungen 4.1 Vorbemerkungen 118 4.2 Helix-Torsion: der Schraubenlinien-Effekt 118 4.2.1 Geometrie der Schraubenlinie (Helix) 118 4.2.2 Helix-Normalspannungen xh und Helix-Torsionsmoment M xh 120 4.2.3 Ermittlung der Helix-Flächenmomente 124 4.2.4 Helix-Schubspannungen xh 127 4.3 Torsion mit Normalkraft: Sonderfall const 129 4.3.1 Gleichgewicht, Differenzialbeziehung, Drillknicken 129 4.3.2 Verformungen und Zustandslinien 132 4.3.3 Last-Verdrillungskurven 132 4.3.4 Analytische Lösung 136 4.3.5 Ausnutzungsgrad des Querschnitts und baustatische Relevanz 142 4.4 Torsion mit Normalkraft: allgemeiner Fall const 147 4.4.1 Gleichgewicht, Differenzialbeziehung, Drillknicken 147

X Inhaltsverzeichnis 4.4.2 Zustandslinien 147 4.4.3 Last-Verdrillungskurve 150 4.4.4 Spannungen und Querschnittsausnutzung 154 4.5 Analogiebetrachtungen zu M xn und M xh an zwei Makro-Systemen 158 4.5.1 Analogiebetrachtung zu M xn 158 4.5.2 Analogiebetrachtung zu M xh 162 5 Allgemeine Stabtheorie großer räumlicher Verschiebungen und Drehungen 5.1 Vorbemerkungen 166 5.2 Grundlagen und Annahmen 167 5.3 Kinematik des Stabraums 169 5.3.1 Annahmen und Voraussetzungen zur Beschreibung der Deformation 169 5.3.2 Klassische Kinematik: Drehung mit Winkelgrößen 170 5.3.2.1 Rotation um eine schiefe Raumachse 171 5.3.2.2 Rotation um raumfeste Koordinatenachsen 177 5.3.2.3 Rotation um Folgeachsen (Kardanwinkel) 178 5.3.2.4 Semitangentiale Drehungen 179 5.3.2.5 Bewertung der Verwendung von Winkelgrößen 179 5.3.3 Drehungen, ausgedrückt durch Verschiebungen 180 5.3.3.1 Basisvektoren und Ableitungen 182 5.3.3.2 Drehtensor 183 5.4 Potenzial des elastischen Stabes 184 5.4.1 Einführung von Relativ- und Gesamtkinematen 184 5.4.2 Verschiebungsansatz 186 5.4.3 Dehnungs- und Verzerrungsmaß 188 5.4.3.1 Allgemeine Herleitung für den Stabraum 188 5.4.3.2 Vergleich mit den Ingenieurdehnungen 192 5.4.4 Elastizitätsgesetz 193 5.4.5 Potenzial der inneren Kräfte 194 5.4.5.1 i Potenzialanteil aus Längsdehnungen: 1 194 5.4.5.2 Darstellung der Potenzialterme aus Längsdehnungen 196 5.4.5.3 i Potenzialanteil aus Schubverzerrungen: 2 202 5.5 Elementkräfte und Element-Steifigkeitsmatrizen (Relativkinematik) 204 5.5.1 Variation (Ableitung) nach Relativkinematen 204 5.5.2 Transformation der Relativkinematen auf Gesamtkinematen 205

Inhaltsverzeichnis XI 5.6 Gesamtstruktur und globales Gleichgewicht 205 5.6.1 Gelenke und lokale Randbedingungen für Verwölbungen 205 5.6.2 Transformation von Komponenten auf globale Basen 206 5.6.2.1 Transformation von Knotenverschiebungen u, v, w 207 5.6.2.2 Transformation von Knotendrehgrößen w 2, u 3, u 2 207 5.6.3 Globales Gleichgewicht und Lösung des nichtlinearen Gleichungssystems 208 5.7 Beispiel: St. VENANT-Torsion mit Normalkraft 208 5.7.1 Allgemeines 208 5.7.2 Verschiebungen und Verzerrungen des Stabes 209 5.7.3 Verschiebungen und Verzerrungen bei St. VENANT-Torsion 210 5.7.4 Gleichgewicht nach der energetischen Methode 213 5.7.4.1 Potenzialanteil und Variation aus Längsdehnungen 213 5.7.4.2 Potenzialanteil und Variation aus Schubverzerrungen 217 5.8 Beispiel: Große Drehung einer Federplatte 218 5.8.1 Potenzial und Gleichgewicht 219 5.8.2 Berechnung der Momente: direkte Methode 220 5.8.3 Berechnung der Momente über Winkelgrößen 222 5.8.3.1 Berechnung der Drehwinkel 222 5.8.3.2 Kontrolle der Drehmatrix T 222 5.8.3.3 Ermittlung der Momente 223 5.9 Zur Einleitung von Momenten mit richtungstreuer bzw. zirkulatorischer Charakteristik 225 5.9.1 Änderung des Potenzials der äußeren Kräfte 226 5.9.2 Beispiel zur Variation des Potenzials gem. 5.9.1 227 5.9.3 Beispiel: Kragträger mit zirkulatorischer bzw. nicht-zirkulatorischer Last 230 5.10 Praktische Anwendungsbeispiele 232 5.10.1 Durchlaufträger mit Doppelbiegung 232 5.10.1.1 Systeme und Belastung 232 5.10.1.2 Ergebnisse für System 1 (3 Gabellager) 234 5.10.1.3 Ergebnisse für System 2 (2 Gabellager) 241 5.10.2 Balken mit Kragarm und exzentrischer Einzellast 243 5.10.3 Schlussfolgerungen aus den Beispielen 249 6 Einfluss der Güte der Stabtheorie auf das Konvergenzverhalten 6.1 Einführung 251 6.2 Potenzial für einachsige Biegung mit Druck 252 6.3 Lineare Kräfte und Steifigkeitsmatrix 252

XII Inhaltsverzeichnis 6.4 Nichtlineare Kräfte und Steifigkeitsmatrix 253 6.4.1 Variante 1: Berücksichtigung aller Terme, v linear 254 6.4.2 Variante 2: ohne Terme 4. Ordnung, v linear 255 6.4.3 Variante 3a: ohne Terme 4. Ordnung, v linear, N konstant 256 6.4.4 Variante 3b: ohne Terme 4. Ordnung, v kubisch, N konstant 257 6.5 Konvergenzverhalten und Bewertung 258 7 Zusammenfassung und Ausblick 260 Literatur und EDV-Programme 263 Sachverzeichnis 268