Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches



Ähnliche Dokumente
3.1. Die komplexen Zahlen

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

7 Rechnen mit Polynomen

Vorlesung. Komplexe Zahlen

Primzahlen und RSA-Verschlüsselung

ax 2 + bx + c = 0, (4.1)

Zeichen bei Zahlen entschlüsseln

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Mathematischer Vorkurs für Physiker WS 2009/10

Lineare Gleichungssysteme

Rationale Zahlen. Weniger als Nichts? Ist Null nichts?

Die reellen Lösungen der kubischen Gleichung

a n auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

Komplexe Zahlen und Wechselstromwiderstände

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Simplex-Umformung für Dummies

Einführung in die Algebra

Repetitionsaufgaben Wurzelgleichungen

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Was meinen die Leute eigentlich mit: Grexit?

Mathematischer Vorbereitungskurs für Ökonomen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Diagnoseaufgaben. egative Zahlen. Ganz In mit Ganztag mehr Zukunft. Das neue Ganztagsgymnasium NRW. TU Dortmund

1 Mathematische Grundlagen

Der Zwei-Quadrate-Satz von Fermat

Musterlösungen zur Linearen Algebra II Blatt 5

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

Informationsblatt Induktionsbeweis

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

Lineare Gleichungssysteme

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x y = x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

Thema: Winkel in der Geometrie:

Bruchrechnung Wir teilen gerecht auf

3. LINEARE GLEICHUNGSSYSTEME

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Binnendifferenzierte Aufgaben: Subtrahieren von negativen Zahlen

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

DOWNLOAD. Arbeiten in der Baufirma. Mathe-Aufgaben aus dem. Karin Schwacha. Downloadauszug aus dem Originaltitel: Mathe-Aufgaben aus dem Berufsalltag:

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Eigenwerte und Eigenvektoren von Matrizen

Betragsgleichungen und die Methode der Fallunterscheidungen

Vorkurs Mathematik Übungen zu Polynomgleichungen

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Repetitionsaufgaben: Lineare Funktionen

Professionelle Seminare im Bereich MS-Office

Analysis I für Studierende der Ingenieurwissenschaften

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

Mathe-Übersicht INHALTSVERZEICHNIS

Zahlen auf einen Blick

Lineare Differentialgleichungen erster Ordnung erkennen

Grundlagen der Informatik

Quadratische Gleichungen

Rekursionen. Georg Anegg 25. November Methoden und Techniken an Beispielen erklärt

2. Negative Dualzahlen darstellen

Mathematische Grundlagen 2. Termrechnen

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

ONLINE-AKADEMIE. "Diplomierter NLP Anwender für Schule und Unterricht" Ziele

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

Gleichungen und Ungleichungen

3. Zusammenhang. 22 Andreas Gathmann

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit

Linearen Gleichungssysteme Anwendungsaufgaben

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

Anleitung über den Umgang mit Schildern

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

Die Größe von Flächen vergleichen

Alle gehören dazu. Vorwort

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester gehalten von Harald Baum

Wir machen neue Politik für Baden-Württemberg

Formelsammlung zur Kreisgleichung

Liebe Teilnehmerinnen und Teilnehmer am Telekolleg,

Wie halte ich Ordnung auf meiner Festplatte?

Geld Verdienen im Internet leicht gemacht

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Charakteristikum des Gutachtenstils: Es wird mit einer Frage begonnen, sodann werden die Voraussetzungen Schritt für Schritt aufgezeigt und erörtert.

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Transkript:

Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus. Schwierigkeiten treten dagegen auf, wenn man aus Zahlen, die kleiner sind als 0, die Wurzel ziehen will. Um diese Schwierigkeiten zu beheben, führt man einen neuen Typ von Zahlen ein: die imaginären Zahlen, die zusammen mit den reellen Zahlen die sogenannten komplexen Zahlen bilden. Was komplexe Zahlen leisten, wie man sie bildet und wie man mit ihnen rechnet, könnt ihr im folgenden erfahren. 1) Motivierende Aufgabe Versuche, folgende Aufgabe zu lösen: x + y = 10 x y = 40 Versucht man die Aufgabe zu lösen, so kommt man auf die Gleichung (x 5)2 = 15 Diese Gleichung hat keine Lösung im Bereich der reellen Zahlen, weil man aus 15 keine Wurzel ziehen kann. Aber meint ihr wirklich, die Wurzel aus 15 gibt es nicht? Die komplexen Zahlen schaffen fast alles. Hier mehr dazu! 2) Historisches Komplexe Zahlen verdanken ihr Leben einem Manne, den seine Mutter (wie er selbst berichtet) abtreiben wollte; der sich dann zu einem Wüstling, Streithansl, magisch-mystischen Mathematiker und europaweit gefeierten Arzt entwickelte; ein Mann, der als Student Rektor der Universität Padua und als Greis Insasse des Gefängnisses von Bologna war; der sich erdreistete, das Horoskop Jesu zu stellen und in seinem Buch Über das Würfelspiel Betrugsanleitungen zu geben, und der nebenbei auch noch die Cardanische Aufhängung erfand: Seite 1 von 10

Geronimo Cardano (1501 1576), ein vollblütiger Sohn der italienischen Renaissance. (Quelle: Harro Heuser, Lehrbuch der Analysis I, 15. Auflage 2003, S.41) Viele Mathematiker waren nicht bereit, diese in ihren Augen widersprüchlichen Zahlen zu akzeptieren und bestritten ihre Existenz. Jedoch zeigt sich, dass die komplexen Zahlen genauso eine Erweiterung des Zahlenbereiches sind, wie schon vorher die negativen Zahlen, die Brüche und die Wurzeln. 3) Von der natürlichen zur komplexen Zahl Die Zahlen 1, 2, 3, 4, 5, 6,...bezeichnet man als natürliche Zahlen. Wenn man zwei natürliche Zahlen addiert oder multipliziert, erhält man wieder eine natürliche Zahl. Was passiert aber, wenn man etwa von der Zahl 4 die Zahl 8 subtrahieren will? Zu dieser Aufgabe gibt es im Bereich der natürlichen Zahlen keine Lösung. Hier führt man die negativen Zahlen ein: 4 8 ist dann 4. Die negativen Zahlen, die natürlichen Zahlen und die 0 nennt man nun die ganzen Zahlen. Im Bereich der ganzen Zahlen kann man jetzt uneingeschränkt addieren, subtrahieren und multiplizieren. Will man aber 2 durch 3, 7 durch 5 oder 5 durch 8 teilen, stößt man wieder auf Probleme. 2 7 5 Hier führt man rationale Zahlen ein: 2:3 = 3, 7:5 = 5, 5:8 = 8. Jede ganze Zahl ist auch eine rationale Zahl. Nun kann man (mit Ausnahme der Division durch 0) alle Grundrechenarten uneingeschränkt durchführen. Aber: Was ist, wenn man aus 2 die Wurzel ziehen will? Es gibt keine rationale Zahl, die die Wurzel aus 2 ist. Hier führt man die irrationalen Zahlen ein, und schon kann man z.b. aus 2 die Wurzel ziehen. Auch die Kreiszahl Pi ist eine irrationale Zahl, auf die man stößt, wenn man den Umfang und Inhalt eines Kreises berechnen will. 2 = 1,41... π = 3,14159... Die rationalen und die irrationalen Zahlen zusammen bilden die reellen Zahlen. Nun kann man aus jeder nichtnegativen Zahl die Wurzel ziehen. Was ist aber mit den Wurzeln aus negativen Zahlen? Multipliziert man eine positive Zahl (oder 0) mit sich selbst, erhält man eine positive Zahl (bzw. 0). Multipliziert man eine negative Zahl mit sich selbst, Seite 2 von 10

erhält man ebenfalls eine positive Zahl. Es existiert also keine reelle Zahl, deren Quadrat eine negative reelle Zahl ist. Gleichungen der Form x² = a (mit a > 0) haben keine reelle Lösung. Um solche Gleichungen lösen zu können, führt man daher eine neue Klasse von Zahlen ein: die Wurzeln aus negativen reellen Zahlen. Sie haben die Form a (mit a > 0) und werden als imaginäre Zahlen bezeichnet. So ist beispielsweise 5 diejenige imaginäre Zahl, die die Gleichung x² = 5 löst. Aus dieser Eigenschaft folgt bereits eine erste Rechenregel für imaginäre Zahlen. Multipliziert man sie mit sich selbst, erhält man als Produkt genau die negative reelle Zahl, die unter dem Wurzelzeichen steht: a a = a. Zwei kleine Aufgaben: Welche der beiden folgenden Zahlen ist größer: 4 oder 2 1? Es gilt: 4 = 1 4 = 4 1 = 2 1. Beide Zahlen sind also identisch. Welche der beiden folgenden Zahlen ist größer: 5 oder 5 1? Es gilt: 5 = 1 5 = 5 1. Auch diese Zahlen sind also identisch. Ganz allgemein gilt für jede reelle Zahl a > 0: a = 1 a = a 1. Man kann also alle imaginären Zahlen als ein reelles Vielfaches von 1 darstellen. Für 1 führt man das Symbol i ( imaginär, imaginäre Einheit ) ein. Damit können wir z.b. schreiben: 1 = 2i, 5 = 5 i. Oder allgemein ausgedrückt: Jede imaginäre Zahl lässt sich in der Form bi darstellen, wobei b eine reelle Zahl ist. Was ist 4 + 6? Lösung: 4 + 6 i. Seite 3 von 10

Addiert man eine reelle Zahl und eine imaginäre Zahl, erhält man ein solches Gebilde. Alle Zahlen, die sich in dieser Weise als Summe aus einer reellen und einer imaginären Zahl darstellen lassen, bezeichnet man als komplexe Zahlen. Imaginäre Zahlen sind dann komplexe Zahlen, bei denen der reelle Anteil 0 ist, reelle Zahlen sind komplexe Zahlen, bei denen der imaginäre Anteil 0 ist. Die Menge der komplexen Zahlen umfaßt also auch die reellen und die imaginären Zahlen. Allgemein kann man komplexe Zahlen in der Form a + bi schreiben, wobei a und b reelle Zahlen sind und i für die imaginäre Einheit steht. Man kann komplexe Zahlen aber auch als Zahlenpaar (a, b) darstellen, wenn man sich darauf einigt, dass a den reellen und b den imaginären Anteil der komplexen Zahl bezeichnet. Also: (5,6) = 5 + 6i = 5 + 6 1. 4) Rechenregeln Man kann mit komplexen Zahlen rechnen wie mit reellen Zahlen auch. Man muss dabei nur berücksichtigen, dass definitionsgemäß i i = 1 1 = 1 ist. - Addition: (a+bi)+(c+di) = (a+b)+(c+d)i - Subtraktion: (a+bi) (c+di) = (a c)+(b d)i - Multiplikation: (a+bi) (c+di) = ac+bic+adi+bidi = ac+bdii+bci+adi = (ac bd)+(bc+ad)i - Division: (a+bi)/(c+di) = ((a+bi)(c-di))/((c+di)(c-di)) = ((ac+bd)+(bc ad)i)/(cc+dd) = (ac+bd)/(cc+dd)+i(bc-ad)/(cc+dd), falls c+di 0. 5) Problem: Keine Anordnung nach Größe möglich Aufgabe: Überlege dir, ob die imaginäre Zahl i größer ist als 0 oder kleiner. Angenommen: i > 0. Dann wäre i i > 0, denn das Produkt zweier positiver Zahlen ist eine positive Zahl. Andererseits gilt: i i = 1 1 = 1 < 0. Die Annahme führt zu einem Widerspruch. Angenommen i < 0. Dann wäre i > 0, also auch ( i)( i) > 0, da das Produkt zweier positiver Zahlen positiv ist. Seite 4 von 10

Andererseits gilt: ( i)( i) = ( 1 )( 1 ) = 1 <0. Auch diese Annahme führt zu einem Widerspruch. Wir stellen also fest: i kann weder größer noch kleiner als 0 sein. i kann aber auch nicht gleich 0 sein, denn 0 0 = 0 > 1 = i i. Es gibt also keine Möglichkeit, imaginäre und reelle Zahlen zusammen der Größe nach so zu ordnen, daß die Ordnung mit den üblichen Rechenregeln verträglich ist. Das bedeutet: Wenn man sich die reellen Zahlen als eine Zahlengerade vorstellt, gibt es keine Möglichkeit, die imaginären Zahlen in die Zahlengerade einzufügen. Das ist einer der Hauptgründe gewesen, warum Mathematiker früher nicht bereit waren, imaginäre Zahlen zu akzeptieren. Dieses Problem wurde erst 1831 von Carl Friedrich Gauß (1777 1855) gelöst. 6) Lösung: Gaußsche Zahlenebene Zur anschaulichen Darstellung komplexer Zahlen ersetzte Carl Friedrich Gauß die Zahlengerade durch eine Zahlenebene. Jede komplexe Zahl läßt sich als Punkt in der Gaußschen Zahlenebene darstellen, indem man ihren Realteil als x-koordinate und ihren Imaginärteil als y-koordinate auffaßt. Alle reellen Zahlen liegen auf der x-achse (reelle Achse), alle imaginären Zahlen liegen auf der y-achse (imaginäre Achse). Die Addition zweier komplexer Zahlen entspricht anschaulich ihrer Vektoraddition. Um die Multiplikation anschaulich darzustellen, muß man zunächst zwei neue Begriffe einführen: Seite 5 von 10

Der Betrag einer komplexen Zahl ist die Länge des Ortsvektors, die man nach dem Satz des Pythagoras berechnen kann. z = a + i b z 2 = a2+b2 z 2 2 = a + b Das Argument einer komplexen Zahl ist der Winkel zwischen dem Ortsvektor und der reellen Achse. z = a + i b arg (z)= α b sin α = z cos = a z Man kann eine Zahl a + bi so schreiben: 1 1 a b z z z z z = a+ bi = a + b i = z + i z z = z ( cosα + isinα ) mit α := arg(z) Diese Darstellung nennt man auch Darstellung in Polarkoordinaten. Nun eine kleine Aufgabe: Multipliziere x = 1+i und y = -1+2i miteinander und trage das Ergebnis auf der Zahlenebene ein. Vergleiche den Winkel der neuen Zahl mit den beiden alten Winkeln und den Betrag der neuen Zahl mit den alten Beträgen. Was fällt dir auf? Lösung: x y = (1 + i) (-1 + 2i) = -1 (-i) + 2i + 2i i = 1 + i + 2 1 1 = -1 i (-2) = - 3 + i Seite 6 von 10

Der Betrag ist das Produkt der alten Beträge, der Winkel die Summe der alten Winkel. Anschaulich sieht das so aus: Dass dieser Zusammenhang grundsätzlich gilt kann man auch ganz allgemein beweisen. Seien zwei komplexe Zahlen x und y gegeben in ihrer Polardarstellung mit α := arg(x) und β := arg(y). x = x y = y cosα + sin α cos β + sin β Durch formales ausmultiplizieren erhält man: x y = x ( cosα + i sinα ) y cos β + i sin β = x y ( cosα + i sinα ) cos β + i sin β = x y ( cosα cos β + cosα i sin β + i sinα cos β + i sin α i sin β ) = x y ( cosα cos β + i i sin α sin β +i cosα sin β + i sin α cos β ) = x y ( cosα cos β + 1 1sinα sin β +i cosα sin β + i sin α cos β ) = x y ( cosα cos β - sinα sin β +i ( cosα sin β +sin α cos β ) Um diese Gleichung weiter umformen zu können müssen wir zuerst die Additionstheoreme einfügen. Seite 7 von 10

Die Additionstheoreme für Winkelfunktionen lauten: cos( α + β) = cosα cos β sinα sin β sin( α + β) = cosα sin β + sinα cos β Dieser Beweis kommt durch folgende Schritte zustande: 2. Seite 8 von 10

4. betrachten wir nun wieder die Gleichung: x y = x y ( cosα cos β - sinα sin β +i ( cosα sin β +sin α cos β ) es folgt weiter: = x y (cos( α + β ) + i sin( α + β )) Anschaulich bedeutet das: Seite 9 von 10

Man erhält das Produkt zweier komplexer Zahlen, indem man die Streckenlänge miteinander multipliziert und die beiden Winkel addiert. Noch eine kleine Aufgabe für Freaks: Überlege dir wie viel komplexe Zahlen es gibt, die die vierte Wurzel aus 1 sind. Wie viele Lösungen hat die Gleichung x4 = 1?? Tipp: Versuche die Wurzeln zu finden, indem du sie in der Gaußschen Zahlenebene darstellst. Überlege dir, wie groß die Streckenlänge der Wurzel sein muss (1 Lösung) und überlege dir, wie groß der Winkel sein muss (4 Lösungen)! Seite 10 von 10