6. Induktives Beweisen - Themenübersicht

Ähnliche Dokumente
Logik für Informatiker

1 Übersicht Induktion

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

MafI 1 Repetitorium Übungen

Programmierung 1 - Repetitorium

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre

Zusammenfassung der letzten LVA. Diskrete Mathematik

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten:

Logik für Informatiker

Einführung in die Theoretische Informatik

2 Rationale und reelle Zahlen

Vorlesung Mathematik für Informatiker I. WS 11/12 Klausur 27. März 2012

4. Induktives Definieren - Themenübersicht

Die Folgerungsbeziehung

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

7. Ordnungsstrukturen - Themenübersicht

Logik für Informatiker

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Lösungen zu Kapitel 2

WS 2013/14. Diskrete Strukturen

3. Relationen Erläuterungen und Schreibweisen

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

13 Auswahlaxiom und Zornsches Lemma

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?

Vorlesung Mathematik für Informatiker I. WS 11/12 Klausur 27. März 2012

Mathematische Grundlagen der Computerlinguistik

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

WS 2009/10. Diskrete Strukturen

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Induktive Definitionen

1.2 Klassen und Mengen

2 Mengen, Relationen, Funktionen

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

4 Elementare Mengentheorie

Mathematik für Informatiker/Informatikerinnen 2

Logische Grundlagen der Mathematik, WS 2014/15

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Einführung in die Informatik 2

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

2 Mengen, Relationen, Funktionen

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist.

3.2 Unabhängigkeitsstrukturen

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Einführung in die Logik

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4

KAPITEL 4. Posets Hasse Diagramm

Logik für Informatiker

Was bisher geschah: klassische Aussagenlogik

6. Boolesche Algebren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15

Kapitel 1.2. Aussagenlogik: Semantik. Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Normalformen boolescher Funktionen

Grundbegriffe der Informatik

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Logik und Künstliche Intelligenz

Ordnungsrelationen auf Mengen

Tutorium: Diskrete Mathematik

2. Grundlagen. A) Mengen

Übungen zu Grundlagen der Theoretischen Informatik

8 Konvergenzkriterien und Häufungswerte von Folgen in R

2 Mengen, Abbildungen und Relationen

Wiederholung: Modellierung in Prädikatenlogik

6 Denotationale Semantik Semantik von Programmiersprachen

Grundbegriffe der Informatik

Aufgaben zur Verbandstheorie

Relationen A = Z A = R. R = {(a, b) a, b Z, a b} R = {(a, b) a, b R, a 3 = b 3 } R =, R = {(a, b) a, b N 0, a b ist ungerade }, A = N 0 A = N

Grundlagen der Mathematik

Relationen und Funktionen

b liegt zwischen a und c.

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

5. Ordinalzahlen (Vorlesung 11)

Übungen zur Vorlesung Einführung in die Mathematik

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Transkript:

6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise Verallgemeinerte Induktion Anwendung: Fibonacci-Funktion Strukturelle Induktion Anwendung: Boolesche Terme Vollständige Induktion Anwendung: Gesetze natürlicher Zahlen Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 144 / 182

6.1 Ordnungsrelationen Partielle Ordnungen Definition 6.1 (5.1) Eine homogene Relation A A heisst partielle Ordnung oder auch Halbordnung, gdw. 1 ist reflexiv: a A. a a 2 ist antisymmetrisch: a 1, a 2 A. a 1 a 2 a 2 a 1 a 1 = a 2 3 ist transitiv: a 1, a 2, a 3 A. a 1 a 2 a 2 a 3 a 1 a 3 Beispiele auf P(M) für beliebige Grundmenge M. Teilbarkeitsbeziehung auf N. Teilzeichenreihenbeziehung auf A definiert durch: w w df w 1, w 2 A. w 1 w w 2 = w. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 145 / 182

6.1 Ordnungsrelationen Partielle Ordnungen Definition 6.2 (Ordnung auf N) (5.2) Für n, m N definiere wir eine Relation durch n m df k N. n + k = m. Satz 6.3 (5.1) ist eine partielle Ordnung auf N. Später: ist total. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 146 / 182

6.1 Ordnungsrelationen Partielle Ordnungen Satz 6.3 (5.1) ist eine partielle Ordnung auf N. Beweis (Reflexivität): Sei n N. Für k = 0 gilt dann n + 0 = 0 + n = n, also auch n n. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 147 / 182

6.1 Ordnungsrelationen Partielle Ordnungen Satz 6.3 (5.1) ist eine partielle Ordnung auf N. Beweis (Antisymmetrie (1/3)): Seien m, n N mit n m und m n. Dann existieren Zahlen k 1, k 2 N mit : n + k 1 = m m + k 2 = n Setzt man m aus der ersten Gleichung in die Zweite ein, erhält man (n + k 1 ) + k 2 = n. Wegen der Assoziativität und Kommutativität der Addition folgt (k 1 + k 2 ) + n = n. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 148 / 182

6.1 Ordnungsrelationen Partielle Ordnungen Satz 6.3 (5.1) ist eine partielle Ordnung auf N. Beweis (Antisymmetrie (2/3)): Gemäß der Definition der Addition natürlicher Zahlen (siehe Definition 4.2(a)) folgt daraus und weiter (k 1 + k 2 ) + n = 0 + n k 1 + k 2 = 0 Es bleibt noch nachzuweisen, dass die bereits k 1 = 0 impliziert. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 149 / 182

6.1 Ordnungsrelationen Partielle Ordnungen Satz 6.3 (5.1) ist eine partielle Ordnung auf N. Beweis (Antisymmetrie (3/3)): Angenommen k 1 wäre von 0 verschieden. Dann gäbe es nach Lemma 4.1 eine natürliche Zahl k 1 mit k 1 = s(k 1) und damit wegen der Definition der Addition natürlicher Zahlen auch mit: k 1 + k 2 = s(k 1) + k 2 Def.4.2.(a) = s(k 1 + k 2 ). Also wäre k 1 + k 2 ein Nachfolger einer natürlichen Zahl und damit von 0 verschieden, im Widerspruch zu k 1 + k 2 = 0. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 150 / 182

6.1 Ordnungsrelationen Partielle Ordnungen Satz 6.3 (5.1) ist eine partielle Ordnung auf N. Beweis (Transitivität: Seien n, m, p N mit n m und m p. Dann existieren Zahlen k 1, k 2 N mit: n + k 1 = m m + k 2 = p Setzt man m aus der ersten Gleichung in die Zweite ein, so erhält man (n + k 1 ) + k 2 = p. Mit der Assoziativität der Addition folgt und damit n p. n + (k 1 + k 2 ) = p Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 151 / 182

6.1 Ordnungsrelationen Quasiordnungen Definition 6.1 Eine homogene Relation A A heisst Quasiordnung oder auch Präordnung, gdw. 1 ist reflexiv: a A. a a 2 ist transitiv: a 1, a 2, a 3 A. a 1 a 2 a 2 a 3 a 1 a 3 Beispiel Kleiner oder gleich groß -Beziehung auf Menge von Personen. Teilbarkeitsbeziehung auf Z (Beachte 1 1 und 1 1). Implikation auf Booleschen Termen. Weniger mächtig -Beziehung auf Mengensystemen. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 152 / 182

6.1 Ordnungsrelationen Quasiordnungen Beobachtung Beispiel Quasiordnung A A induziert Äquivalenzrelation auf A durch: a 1 a 2 df a 1 a 2 a 2 a 1. Man spricht hier auch vom Kern der Quasiordnung. bildet partielle Ordnung auf A/. Implikation auf Booleschen Termen ist Quasiordnung. Kern von ist die semantische Äquivalenz auf Booleschen Termen. Implikation auf Klassen semantisch äquivalenter Boolescher Terme ist partielle Ordnung. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 153 / 182

6.1 Ordnungsrelationen Totale Ordnungsrelationen Definition Eine Quasiordnung A A, in der alle Elemente vergleichbar sind, heißt totale Quasiordnung oder auch Präferenzordnung, d.h. Beispiel a 1, a 2 A. a 1 a 2 a 2 a 1 Weniger mächtig -Beziehung auf Mengensystemen. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 154 / 182

6.1 Ordnungsrelationen Totale Ordnungsrelationen Definition Eine partielle Ordnung A A, in der alle Elemente vergleichbar sind, heißt totale Ordnung oder auch lineare Ordnung, d.h. a 1, a 2 A. a 1 a 2 a 2 a 1 Beispiel auf N. Lexikographische Ordnung auf A*. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 155 / 182

6.1 Ordnungsrelationen Striktordnungen Beobachtung Zu einer gegebenen Quasiordnung lässt sich die zughörige Striktordnung definieren durch: Lemma 6.4 (5.1) a 1 a 2 df a 1 a 2 a 1 a 2. 1 ist asymmetrisch, d.h.: a 1, a 2 A. a 1 a 2 a 2 a 1 2 ist transitiv, d.h.: a 1, a 2, a 3 A. a 1 a 2 a 2 a 3 a 1 a 3 Folgerung: ist irreflexiv, d.h.: a A. a a Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 156 / 182

6.1 Ordnungsrelationen Striktordnungen Beobachtung Zu einer gegebenen Striktordnung lässt sich die zughörige partielle Ordnung definieren durch: a 1 a 2 df a 1 a 2 a 1 = a 2. Definition Reduziert man eine Striktordnung auf die unmittelbar benachbarten Abhängigkeiten erhält man die Nachbarschaftsordnung N definiert durch: a 1 N a 2 df a 1 a 2 a 3 A. a 1 a 3 a 2. Graphische Darstellung von N als Hasse-Diagramm bekannt. Es gilt: N = Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 157 / 182

6.1 Ordnungsrelationen Teilbarkeitsordnungen Teilbarkeitsordnungen auf {1, 2, 3, 4, 6, 12} als (a) Partielle Ordnung (b) Striktordnung (c) Nachbarschaftsordnung Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 158 / 182

6.1 Ordnungsrelationen Hasse-Diagramme Hasse Diagramme zu (a) auf N, (b) auf P({1, 2, 3}), (c) auf {1,..., 12}. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 159 / 182

6.1 Ordnungsrelationen Extremalelemente Definition 6.5 (Minimale, maximale Elemente) (5.3) Sei A A partielle Ordnung und B A. Ein Element b B heißt 1 minimales Element in B df b B. b b und 2 maximales Element in B df b B. b b. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 160 / 182

6.1 Ordnungsrelationen Extremalelemente Definition 6.7 (Kleinstes, größtes Element) (5.4) Sei A A partielle Ordnung und B A. Ein Element b B heißt 1 kleinstes Element in B df b B. b b und 2 größtes Element in B df b B. b b. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 161 / 182

6.2 Noethersche Induktion Noethersche Ordnungen Definition 6.9 (5.5) Eine Quasiordnung A A heißt Noethersch genau dann, wenn jede nichtleere Teilmenge von M ein minimales Element besitzt. Satz 5.2 (Absteigende Kettenbedingung) Eine Quasiordnung (M, ) ist genau dann Noethersch, wenn es in M keine unendliche, echt absteigende Kette x 0 x 1 x 2... gibt. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 162 / 182

6.2 Noethersche Induktion Noethersche Ordnungen Satz 5.2 (Absteigende Kettenbedingung) Eine Quasiordnung (M, ) ist genau dann Noethersch, wenn es in M keine unendliche, echt absteigende Kette x 0 x 1 x 2... gibt. Beweis : Sei x 0 x 1 x 2... eine unendliche, echt absteigende Kette in M. Dann ist A = df {x 0, x 1, x 2... } nichleer. Angenommen nun es gäbe ein minimales Element a min A. Dann existierte ein Index i mit x i = a min. Wegen x i x i+1 wäre x i aber im Widerspruch zur Annahme nicht minimal. Folglich gibt es kein minimales Element in A und M ist nicht Noethersch. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 163 / 182

6.2 Noethersche Induktion Noethersche Ordnungen Beispiel 6.10 (5.3) 1 auf N ist Noethersch, denn jede nichtleere Teilmenge enthält sogar ein kleinstes Element. 2 Die Teilzeichenreichenbeziehung auf A ist Noethersch. 3 ist Noethersch auf P(M) für jede endliche Grundmenge M. Beispiel 6.11 (Nicht Noethersche Ordnungen) (5.4) 1 auf Z ist nicht Noethersch, denn Z besitzt kein minimales Element. 2 auf Q 0 ist nicht Noethersch, denn { 1 2, 1 3, 1 4,...} besitzt kein minimales Element. 3 auf P(N) ist nicht Noethersch, denn {N, N\{0}, N\{0, 1}, N\{0, 1, 2},...} besitzt kein minimales Element. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 164 / 182

6.2 Noethersche Induktion Noethersche Induktion Beweisprinzip 6.12 (Noethersche Induktion)(7) Sei M M eine Noethersche Quasiordnung. Lässt sich eine Aussage A über M für jedes m M aus der Gültigkeit der Aussage für alle echt kleineren Elemente ableiten, dann ist sie für jedes m M wahr. ( m M. ( m M. m m A(m ) ) ) A(m) m M. A(m). Beweis: Per Kontraposition. Falls m M. A(m) nicht gilt, existiert nichtleere Menge G M von Gegenbeispielen. G = df {g M A(g)}. Weil Noethersch ist, existiert ein minimales Gegenbeipiel g min G. g min verletzt dann den Induktionsschluss. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 165 / 182

6.2 Noethersche Induktion Anwendung: Kommutativität der Addition Satz 6.19(2) n, m N. n + m = m + n. Beweis durch Noethersche Induktion über komponentenweise Ordnung auf N N. (n, m) (n, m ) df n n m m. Details: Skript. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 166 / 182

6.2 Noethersche Induktion Anwendung: Terminierung Euklidischer Algorithmus ggt : N N N n + m falls n = 0 oder m = 0 ggt(n, m) = ggt(n m, m) falls m < n ggt(n, m n) falls n < m Terminierung: Noethersche Quasiordnung auf N N: (n, m) sum (n, m ) df n + m n + m. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 167 / 182

6.2 Noethersche Induktion Anwendung: Terminierung Ackermann-Funktion ack : N N N m + 1 falls n = 0 ack(n, m) = ack(n 1, 1) falls n > 0, m = 0 ack(n 1, ack(n, m 1)) falls n > 0, m > 0 Terminierung: Lexikographische Ordnung (Noethersch und total) auf N N: (n, m) lex (n, m ) df n < n (n = n m m ). Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 168 / 182

6.2 Noethersche Induktion Anwendung: Terminierung Collatz-Funktion col : N\{0} {1} 1 falls n = 1 col(n) = col(n/2) falls n gerade col(3n + 1) falls n ungerade Terminierung: Keine geeignete Noethersche Ordnung bekannt. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 169 / 182

6.4 Verallgemeinerte Induktion Beweisprinzip Verallgemeinerte Induktion Beweisprinzip 6.13 (Verallgemeinerte Induktion)(8) Lässt sich eine Aussage über natürliche Zahlen für jede natürliche Zahl aus der Gültigkeit der Aussage für alle kleineren natürlichen Zahlen ableiten, dann ist sie für jede natürliche Zahl wahr. ( ) n N. ( m N. m < n A(m)) A(n) n N. A(n). Spezialfall der Noetherschen Induktion Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 170 / 182

6.4 Verallgemeinerte Induktion Anwendung Fibonacci-Zahlen Definition 6.14 (5.6) fib(0) = df 0 fib(0) = df 1 fib(n + 1) = df fib(n) + fib(n 1) Es gilt: n N. fib(n) < 2 n. Beweis: n = 0. Dann fib(0) Def. = 0 < 1 = 2 0. n = 1. Dann fib(1) Def. = 1 < 2 = 2 1. n 2. Dann gilt: fib(n) Def. = fib(n 2) + fib(n 1) IA < 2 n 2 + 2 n 1 2 n 1 + 2 n 1 = 2 2 n 1 = 2 n. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 171 / 182

6.4 Verallgemeinerte Induktion Strukturelle Induktion Erinnerung: Induktiv strukturierte Mengen (Folie 119) Definition 4.4 1 A eine Menge elementarer oder atomarer Bausteine und 2 O eine Menge von Operatoren (oder Konstruktoren) mit zugehörigen Stelligkeiten k 1, die es erlauben, kleinere Bausteine zu grösseren Einheiten zusammenzusetzen. Die durch A und O induktiv beschriebene Menge M ist die kleinste Menge, für die gilt: 1 A M und 2 Ist o ein Operator der Stelligkeit k und sind m 1,..., m k M, so ist auch o(m 1,..., m k ) M. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 172 / 182

6.4 Verallgemeinerte Induktion Gegeben: Strukturelle Induktion Induktiv strukturierte Menge M mit Atomen A und Konstruktoren O Eigenschaft A über M. Ziel: Beweise, dass A(m) gilt für alle Elemente m M. Vorgehen: 1 Man beweist, dass A für jedes Atom a A gilt. 2 Man beweist für jeden Konstruktor o O, dass unter der Voraussetzung, dass A für beliebige m 1,..., m k M gilt, A auch für o(m 1,..., m k ) gilt. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 173 / 182

6.4 Verallgemeinerte Induktion Strukturelle Induktion Beweisprinzip 6.15 (Strukturelle Induktion) (9) Sei M induktiv strukturierte Menge (mit Atomen A, Konstruktoren O). Lässt sich eine Aussage A über M für jedes Atom a A beweisen, und lässt sich für jeden Konstruktor o O aus der Gültigkeit der Aussage für m 1,..., m k M die Gültigkeit für o(m 1,..., m k ) ableiten, dann ist A für jedes m M wahr. ( ( a A. A(a) ) ( o O, m 1,..., m k M. ( A(m1 ) A(m k ) ) A ( o(m 1,..., m k ) ))) m M. A(m) Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 174 / 182

6.4 Verallgemeinerte Induktion Strukturelle Induktion.. als Spezialfall Noetherscher Induktion. Nachbarschaftsordnung N durch induktive Bauanleitung der Strukturen: m 1 N m 2 df o O. m 2 = o(m 1,..., m k ) m 1 {m 1,..., m k }. Ist-Teilstruktur -Relation als reflexiv-transitive Hülle von N, d.h: = N. Klar: ist Noethersch. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 175 / 182

6.4 Verallgemeinerte Induktion Anwendung: Aussagenlogik Satz 6.16 (Funktionale Vollständigkeit von und ) (5.3) Wir betrachten aussagenlogische Formeln (Definition 2.5, Folie 37), aufgefasst als induktiv beschriebene Menge aus den Atomen a, b, c,... (elementare Aussagen) sowie dem einstelligen Konstruktor und den zweistelligen Konstruktoren,,,. Zu jeder aussagenlogischen Formel φ existiert eine semantisch äquivalente Formel φ, so dass φ lediglich die Junktoren und enthält. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 176 / 182

6.4 Verallgemeinerte Induktion Anwendung: Aussagenlogik Beweis: (Strukturelle Induktion) Über den induktiven Aufbau von φ: Fall 1: φ = a. Trivial, denn φ enthält keine Junktoren. Fall 2: φ = ψ. Nach der Induktionsannahme (IA) existiert Formel ψ ψ, so dass ψ nur und enthält. Dies gilt dann auch für φ = ψ, und es gilt φ φ. Fall 3: φ = ψ 1 ψ 2. Dann existieren nach der IA ψ 1 ψ 1, ψ 2 ψ 2 mit der gewünschten Eigenschaft, und φ = ψ 1 ψ 2 φ enthält ebenfalls nur und. Fall 4: φ = ψ 1 ψ 2. Dann existieren nach der IA ψ 1 ψ 1, ψ 2 ψ 2 mit der gewünschten Eigenschaft, und φ = ( ψ 1 ψ 2 ) φ enthält ebenfalls nur und. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 177 / 182

6.4 Verallgemeinerte Induktion Anwendung: Aussagenlogik Beweis: (Strukturelle Induktion) Über den induktiven Aufbau von φ: Fall 5: φ = ψ 1 ψ 2. Dann existieren nach der IA ψ 1 ψ 1, ψ 2 ψ 2 mit der gewünschten Eigenschaft, und φ = (ψ 1 ψ 2 ) φa enthält ebenfalls nur und. Fall 6: φ = ψ 1 ψ 2. Dann existieren nach der IA ψ 1 ψ 1, ψ 2 ψ 2 mit der gewünschten Eigenschaft, und φ = ( (ψ 1 ψ 2 ) ( ψ 1 ψ 2 )) φb enthält ebenfalls nur und. a Aufgrund der Äquivalenz A B A B und der demorganschen Regeln. b Aufgrund der Äquivalenz A B (A B) ( A B) und der demorganschen Regeln. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 178 / 182

6.4 Verallgemeinerte Induktion Anwendung: Boolesche Terme Satz 6.13 (Kompositionalität von [[ ]] B )(Kap. 5.7.2, 5.7.3) Seien t, t, t BT mit t t. Dann gilt t[t /x] t[t /x], dass heißt man darf (simultan) Gleiches durch (semantisch) Gleiches ersetzen. Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 179 / 182

6.3 Vollständige Induktion Beweisprinzip: Vollständige Induktion Beweisprinzip 6.18 (Vollständige Induktion)(10) Ist eine Aussage A über natürliche Zahlen für 0 wahr und lässt sich ihre Gültigkeit für jede größere natürliche Zahl aus der Gültigkeit der Aussage für ihren Vorgänger ableiten, dann ist sie für jede natürliche Zahl wahr. ( A(0) n N. A(n) A(n + 1) ) n N. A(n). Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 180 / 182

6.3 Vollständige Induktion Vollständige Induktion Satz 6.15 (5.4) Seien n, m, k N. Dann gilt: Assoziativität: 1) (n + m) + k = n + (m + k) 2) (n m) k = n (m k) Kommutativität: 1) n + m = m + n 2) n m = m n Neutrale Elemente: 1) n + 0 = n 2) n 1 = n Distributivität: (n + m) k = n k + m k Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 181 / 182

6.3 Vollständige Induktion Beispiele Beispiel 6.16 (5.5) Für alle n N gilt: 1 Es gibt 2 n Teilmengen von n elementigen Mengen. n 2 i = n (n+1) 2, Summe der ersten n natürlichen Zahlen. 3 i=1 n (2i 1) = n 2, Summe der ersten n ungeraden Zahlen. i=1 Prof. Dr. Bernhard Steffen Mathematik für Informatiker 1-2013 182 / 182