Logik für Informatiker

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Logik für Informatiker 1. Grundlegende Beweisstrategien: Noethersche Induktion Viorica Sofronie-Stokkermans Universität Koblenz-Landau 1

2 Letzte Vorlesung 1. Grundlegende Beweisstrategien Direkter Beweis Beweis durch Kontraposition: Um zu beweisen, dass B, zeige dass B. Beweis durch Widerspruch: Um zu beweisen, dass B, zeige dass B falsch Äquivalenzbeweis Um zu beweisen dass ( B) ( genau dann, wenn B) Beweise dass B und dass B. Beweis durch Fallunterscheidung Um B zu beweisen, beweise dass 1 B,..., n B, wobei 1 n wahr 2

3 Letzte Vorlesung Grundlegende Beweisstrategien ussagen mit Quantoren: x U : (x) Wähle a beliebig aus U. Beweise (a). Da a beliebig gewählt werden kann, folgt x U : (x) x U : (x) E Sei a ein geeignetes Element aus U. Beweise, dass (a). Damit folgt E x U : (x). Ähnlich für x U E y U : (x,y) 3

4 Letzte Vorlesung Induktion über die natürlichen Zahlen N (1) Induktionsbasis: Beweise p(0) (2) Induktionsvoraussetzung: Für ein beliebig gewähltes n N gilt p(n) (3) Induktionsschluss: Folgere p(n + 1) aus der Induktionsvoraussetzung p(n) 4

5 Letzte Vorlesung Induktion über die natürlichen Zahlen N Verallgemeinerte vollständige Induktion Gelten die beiden ussagen: p(0) und n N : p(0) p(1) p(n) p(n + 1) dann gilt die ussage n N : p(n). Äquivalent Gilt die ussage: n N : ( dann gilt die ussage k N : (k < n p(k)) p(n)) n N : p(n). 5

6 Letzte Vorlesung Induktion über die natürlichen Zahlen N Verallgemeinerte vollständige Induktion Gilt die ussage: n N : ( dann gilt die ussage k N : (k < n p(k)) p(n)) n N : p(n). Induktionsvoraussetzung: Induktionsschluss: Für ein beliebig gewähltes n N, gilt p(k) für alle k < n Folgere p(n) aus der Induktionsvoraussetzung 6

7 Beispiel Satz: Jede natürliche Zahl lässt sich als Produkt von Primzahlen darstellen. p(n): n lässt sich als Produkt von Primzahlen darstellen. 7

8 Beispiel Satz: Jede natürliche Zahl lässt sich als Produkt von Primzahlen darstellen. p(n): n lässt sich als Produkt von Primzahlen darstellen. Beweis: Sei n N beliebig gewählt. Induktionsvoraussetzung: p(k) gilt für alle k < n Induktionsschluss: Folgere p(n) aus der Induktionsvoraussetzung 8

9 Beispiel Satz: Jede natürliche Zahl lässt sich als Produkt von Primzahlen darstellen. p(n): n lässt sich als Produkt von Primzahlen darstellen. Beweis: Sei n N beliebig gewählt. Induktionsvoraussetzung: p(k) gilt für alle k < n Induktionsschluss: Folgere p(n) aus der Induktionsvoraussetzung Fallunterscheidung: Fall 1: n Primzahl. Dann lässt sich n als Produkt von Primzahlen darstellen. Fall 1: n keine Primzahl. Dann n = k 1 k 2, mit k 1, k 2 N, k 1, k 2 > 1. Da aber k i < n, i = 1, 2 ist nach Induktionsvoraussetzung bereits eine Darstellung als Produkt von Primzahlen für k i bekannt. Multipliziert man diese beiden Produkte miteinander, so erhält man eine Darstellung für n. 9

10 Verallgemeinerte vollständige Induktion Theorem: Falls dann gilt n N : ( n N : p(n) k N : (k < n p(k)) p(n)) P Q Beweis: < wohlfundiert (es gibt keine unendliche Folge x 1,...,x n,... mit x 1 > x 2 > > x n >... ) Verallgemeinerung - beliebige Menge statt N - < partielle Ordnung auf - < wohlfundiert 10

11 Partielle Ordnungen Definition: Eine binäre Relation R über einer Menge ist eine partielle Ordnung gdw. R ist reflexiv, transitiv und antisymmetrisch. (,R): partiell geordnete Menge. R ist eine totale Ordnung gdw. R(x,y) oder R(y, x) für alle x,y. 11

12 Wohlfundierte partielle Ordnungen Sei (, ) eine partiell geordnete Menge. Notation: x < y gdw.: (x y und x y) (für x,y ) Definition: Sei, und m. m ist ein Minimales Element von, gdw.: es gibt kein x mit x < m. Definition (, ) heißt noethersch (oder wohlfundiert) gdw.: Es gibt keine unendlich absteigende Kette in, das heißt: Es gibt keine unendliche Folge (x i ) i N, mit x i für alle i N und x i+1 < x i für alle i N. (Unendlich aufsteigende Ketten sind zulässig) Beispiele: (N, ) is wohlfundiert; (Z, ), (0 { 1 n n N}, ) und (R, ) sind nicht wohlfundiert 12

13 Wohlfundierte partielle Ordnungen Lemma. (, ) ist noethersch (wohlfundiert) gdw.: jede nicht-leere Teilmenge von hat (mindestens) ein Minimales Element. Beweis: Statt P Q, beweisen wir Q P. Sei nicht-leere Teilmenge von, die kein minimales Element enthält. Sei x 1. Da x 1 nicht minimal ist, gibt es x 2 mit x 2 < x 1. Da x 2 nicht minimal ist, gibt es x 3 mit x 3 < x 2 < x 1. Wir können deswegen eine unendliche absteigende Kette von Elementen aus bilden, d.h. ist nicht noethersch. Statt P Q, beweisen wir wieder Q P. nnahme: (, ) ist nicht noethersch, d.h. es gibt eine unendliche Folge (x i ) i N, mit x i für alle i N und x i+1 < x i für alle i N. Sei = {x i i N}. Wir zeigen, dass kein minimales Element hat: Sei a. Dann a = x i für einen i N. Dann ist x i+1 < a; deshalb kann a nicht minimal sein. 13

14 Wohlfundierte partielle Ordnungen Lemma. (, ) ist noethersch (wohlfundiert) gdw.: jede nicht-leere Teilmenge von hat (mindestens) ein Minimales Element. Nota bene Es genügt nicht, dass ein minimales Element hat (selbst dann nicht, wenn total ist). Beispiel: (0 { 1 n n N}, ) 14

15 Wohlfundierte (Noethersche) Induktion Theorem: (Verallgemeinerte vollständige Induktion) Falls dann gilt n N : ( n N : p(n) k N : (k < n p(k)) p(n)) P Q Sei (, ) noethersch (wohlfundiert). Sei p ein Prädikat auf, d.h., eine Funktion p : {wahr,falsch} (Eigenschaft der Elementen aus, die wahr oder falsch sein kann.) Theorem. (Noethersche Induktion) Falls dann gilt x : ( x : p(x) y : (y < x p(y)) p(x)) P Q 15

16 Verallgemeinerte vollständige Induktion Theorem: Falls dann gilt n N : ( n N : p(n) k N : (k < n p(k)) p(n)) P Q Beweis: Zu zeigen: P Q Kontrapositionsbeweis: Wir zeigen, dass Q P nnahme: Q := ( n N : p(n)) n N : p(n). > wohlfundierte Ordnung auf N: es gibt keine unendliche Folge x 1,...,x n,... mit x 1 > x 2 > > x n >.... Sei Y = {n N p(n)} =. Dann hat Y ein minimales Element m, d.h. m(m Y ( k N : (k < m k Y))) = P. E E 16

17 Wohlfundierte (Noethersche) Induktion Sei (, ) noethersch (wohlfundiert). Sei p ein Prädikat auf, d.h., eine Funktion p : {wahr,falsch} (Eigenschaft der Elementen aus, die wahr oder falsch sein kann.) Theorem. Falls dann gilt x X : ( x X : p(x) y X : (y < x p(y)) p(x)) P Q Beweis: zu zeigen: P Q. Kontrapositionsbeweis: Q P nnahme: Q := ( x X:p(x)) ( x X: p(x)). > wohlfundierte Ordnung auf X: es gibt keine unendliche Folge x 1,...,x n,... mit x 1 > x 2 > > x n >.... Sei Y = {y X p(y)} =. Dann hat Y ein minimales Element x 0, d.h. x 0 (x 0 Y ( y X : (y < x 0 y Y))). E E 17

18 Wohlfundierte (Noethersche) Induktion Sei (, ) noethersch (wohlfundiert). Sei p ein Prädikat auf, d.h., eine Funktion p : {wahr,falsch} (Eigenschaft der Elementen aus, die wahr oder falsch sein kann.) Theorem. Falls dann gilt x X : ( x X : p(x) y X : (y < x p(y)) p(x)) P Q Beweis: zu zeigen: P Q. Kontrapositionsbeweis: Q P nnahme: Q := ( x X:p(x)) ( x X: p(x)). > wohlfundierte Ordnung auf X: es gibt keine unendliche Folge x 1,...,x n,... mit x 1 > x 2 > > x n >.... Sei Y = {y X p(y)} =. Dann hat Y ein minimales Element x 0, d.h. x 0 (x 0 Y ( {z } y X : (y < x 0 y Y) )) = P. {z } p(x 0 ) y<x 0 p(y) E E 18

19 Fehlerquellen Häufige Fehler bei Induktionsbeweisen Ordnung ist nicht noethersch Nicht alle Minima (Induktionsanfänge) bedacht Bei Induktionsschritt die Grenzfälle nicht bedacht 19

20 Fehlerquellen Was ist hier falsch? Behauptung: lle Menschen haben die gleiche Haarfarbe 20

21 Fehlerquellen Was ist hier falsch? Behauptung: lle Menschen haben die gleiche Haarfarbe p(n) : In einer Menge von n Menschen haben alle die gleiche Haarfarbe 21

22 Fehlerquellen Was ist hier falsch? Behauptung: lle Menschen haben die gleiche Haarfarbe p(n) : In einer Menge von n Menschen haben alle die gleiche Haarfarbe Induktionbasis: n = 1 Für eine Menge mit nur einem Menschen gilt die Behauptung trivial 22

23 Fehlerquellen Was ist hier falsch? Behauptung: lle Menschen haben die gleiche Haarfarbe p(n) : In einer Menge von n Menschen haben alle die gleiche Haarfarbe Induktionsvoraussetzung: p(n) wahr. Induktionsschritt: Beweise, dass aus p(n), p(n + 1) folgt. n + 1 Menschen werden in eine Reihe gestellt. Der Mensch links außen wird rausgeschickt. Nun kann die Induktionsbehauptung angewendet werden und alle verbliebenen haben die gleiche Haarfarbe (mit dem rechts außen). 23

24 Fehlerquellen Was ist hier falsch? Behauptung: lle Menschen haben die gleiche Haarfarbe p(n) : In einer Menge von n Menschen haben alle die gleiche Haarfarbe Induktionsvoraussetzung: p(n) wahr. Induktionsschritt: Beweise, dass aus p(n), p(n + 1) folgt. n + 1 Menschen werden in eine Reihe gestellt. Der Mensch rechts außen wird rausgeschickt. Die Induktionsbehauptung kann angewendet werden und alle verbliebenen haben die gleiche Haarfarbe (mit dem links außen). lso haben die beiden außen die gleiche Haarfarbe, wie die in der Mitte, und die haben auch alle die gleiche Haarfarbe lso haben alle n + 1 Menschen die gleiche Haarfarbe. 24

25 Beispiele von noetherschen Ordnungen Ordnungen auf kartesischen Produkten Die Produktordnung Die lexikographische Ordnung 25

26 Produktordnung Definition: Seien (, ) und (B, B ) partiell geordnete Mengen. Dann ist die Produktordnung produkt auf B gegeben durch: (x,y) produkt (x,y ) gdw. (x x und y B y ) 26

27 Produktordnung Definition: Seien (, ) und (B, B ) partiell geordnete Mengen. Dann ist die Produktordnung produkt auf B gegeben durch: (x,y) produkt (x,y ) gdw. (x x und y B y ) Lemma: Wenn (, ) und (B, B ) noethersch sind, dann ist ( B, produkt ) noethersch. 27

28 Produktordnung Lemma: (X, ) noethersch gdw: für jede unendliche Folge (x i ) i N mit x i X für alle i N und mit x 1 x 2 x 3... xn... es gibt ein m N so dass xm = x k für alle k m. Definition: Seien (, ) und (B, B ) partiell geordnete Mengen. Dann ist die Produktordnung produkt auf B gegeben durch: (x,y) produkt (x,y ) gdw. (x x und y B y ) Lemma: Wenn (, ) und (B, B ) noethersch sind, dann ist ( B, produkt ) noethersch. Beweis: Sei ((x i, y i )) i N unendliche Folge in B mit (x 1, y 1 ) produkt (x 2, y 2 ) produkt (x 3, y 3 ) produkt produkt (x n, y n ) produkt... Dann x 1 x 2 x 3... x n... und y 1 B y 2 B y 3 B... B y n B... Da (, ) noethersch ist, es gibt m 1 so dass x m1 = x k für alle k m 1. Da (B, B ) noethersch ist, es gibt m 2 so dass x m2 = x j für alle j m 2. Sei m = max(m 1, m 2 ). Dann (x m, y m ) = (x i, y i ) für alle i m. Das zeigt, dass ( B, produkt ) noethersch ist. 28

29 Lexikographische Ordnung Definition: Seien (, ) und (B, B ) partiell geordnete Mengen. Dann ist die lexikographische Ordnung auf B gegeben durch: (x,y) (x, y ) gdw. x = x und y = y oder x < x oder x = x und y < B y 29

30 Lexikographische Ordnung Definition: Seien (, ) und (B, B ) partiell geordnete Mengen. Dann ist die lexikographische Ordnung auf B gegeben durch: (x,y) (x, y ) gdw. x = x und y = y oder x < x oder x = x und y < B y Lemma: Wenn (, ) und (B, B ) noethersch sind, dann ist ( B, ) noethersch. 30

31 Lexikographische Ordnung Lemma: (X, ) noethersch gdw: für jede unendliche Folge (x i ) i N mit x i X für alle i N und mit x 1 x 2 x 3... xn... es gibt ein m N so dass xm = x k für alle k m. Definition: Seien (, ) und (B, B ) partiell geordnete Mengen. Dann ist die lexikographische Ordnung auf B gegeben durch: (x,y) (x, y ) gdw. x = x und y = y oder x < x oder x = x und y < B y Lemma: Wenn (, ) und (B, B ) noethersch sind, dann ist ( B, ) noethersch. Beweis: Sei ((x i, y i )) i N unendliche Folge in B mit (x 1, y 1 ) (x 2, y 2 ) (x 3, y 3 ) (x n, y n )... Fall 1: Die ersten Komponenten sind alle gleich: Dann y 1 B y 2 B.... (B, B ) noethersch ist, es gibt m 1 so dass x m1 = x j für alle j m 1. 31

32 Lexikographische Ordnung Lemma: (X, ) noethersch gdw: für jede unendliche Folge (x i ) i N mit x i X für alle i N und mit x 1 x 2 x 3... xn... es gibt ein m N so dass xm = x k für alle k m. Definition: Seien (, ) und (B, B ) partiell geordnete Mengen. Dann ist die lexikographische Ordnung auf B gegeben durch: (x,y) (x, y ) gdw. x = x und y = y oder x < x oder x = x und y < B y Lemma: Wenn (, ) und (B, B ) noethersch sind, dann ist ( B, ) noethersch. Beweis: Sei ((x i, y i )) i N unendliche Folge in B mit (x 1, y 1 ) (x 2, y 2 ) (x 3, y 3 ) (x n, y n )... Fall 2: x 1 = x 2 = = x i1 x i1 +1 =... = x i2....da(, ) noethersch ist, es gibt m 2 so dass x m2 = x k für alle k m 2. 32

33 Lexikographische Ordnung Definition: Seien (, ) und (B, B ) partiell geordnete Mengen. Dann ist die lexikographische Ordnung auf B gegeben durch: (x,y) (x, y ) gdw. x = x und y = y oder x < x oder x = x und y < B y Lemma: (X, ) noethersch gdw: für jede unendliche Folge (x i ) i N mit x i X für alle i N und mit x 1 x 2 x 3... xn... es gibt ein m N so dass xm = x k für alle k m. Lemma: Wenn (, ) und (B, B ) noethersch sind, dann ist ( B, ) noethersch. Beweis: Sei ((x i, y i )) i N unendliche Folge in B mit (x 1, y 1 ) (x 2, y 2 ) (x 3, y 3 ) (x n, y n )... Sei m = max(m 1, m 2 ). Dann (x m, y m ) = (x i, y i ) für alle i m. Das zeigt, dass ( B, ) noethersch ist. 33

34 Beispiel für Induktion: ckermann-funktion CK(x,y) = 8 >< >: y + 1 falls x = 0 CK(x 1,1) falls x 0 und y = 0 CK(x 1,CK(x, y 1)) falls x 0 und y 0 34

35 Beispiel für Induktion: ckermann-funktion CK(x,y) = 8 >< >: y + 1 falls x = 0 CK(x 1,1) falls x 0 und y = 0 CK(x 1,CK(x, y 1)) falls x 0 und y 0 Die ckermann-funktion ist eine 1926 von Wilhelm ckermann gefundene, extrem schnell wachsende mathematische Funktion, mit deren Hilfe in der theoretischen Informatik Grenzen von Computer- und Berechnungsmodellen aufgezeigt werden können. 35

36 Beispiel für Induktion: ckermann-funktion CK(x,y) = 8 >< >: y + 1 falls x = 0 CK(x 1,1) falls x 0 und y = 0 CK(x 1,CK(x, y 1)) falls x 0 und y 0 Theorem. CK ist eine totale Funktion auf N N. 36

37 Beispiel für Induktion: ckermann-funktion CK(x,y) = 8 >< >: y + 1 falls x = 0 CK(x 1,1) falls x 0 und y = 0 CK(x 1,CK(x, y 1)) falls x 0 und y 0 Theorem. CK ist eine totale Funktion auf N N. Induktionbasis: CK(0, 0) = 1 (definiert) 37

38 Beispiel für Induktion: ckermann-funktion CK(x,y) = 8 >< >: y + 1 falls x = 0 CK(x 1,1) falls x 0 und y = 0 CK(x 1,CK(x, y 1)) falls x 0 und y 0 Theorem. CK ist eine totale Funktion auf N N. Induktionsvoraussetzung: CK(m,n ) definiert für alle (m,n ) < (m,n). Induktionsschritt: Beweis durch Fallunterscheidung m = 0: CK(0, n) = n + 1 (definiert) m 0, n = 0. Dann (m 1,1) < (m,0), d.h. CK(m 1,1) definiert ber CK(m,0) = CK(m 1,1), so CK(m,n) definiert. m 0, n 0. Dann (m, n 1) < (m,n), d.h. CK(m, n 1) definiert. (m 1, z) < (m,z), d.h. CK(m 1, CK(m,n 1)) definiert. 38

39 Zusammenfassung Grundlegende Beweisstrategien Induktion über die natürlichen Zahlen Partielle Ordnung, totale Ordnung, minimale Elemente Noethersche (wohlfundierte) Menge Noethersche Induktion (Theorem, Beweis) Fehlerquellen Produktordnung/Lexikographische Ordnung Beispiel für noethersche Induktion: ckermann-funktion 39

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 2. Induktion Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Induktion Zentrale Rolle Wesentliches Beweisprinzip in Mathematik

Mehr

1 Übersicht Induktion

1 Übersicht Induktion Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht

Mehr

Übungen zu Grundlagen der Theoretischen Informatik

Übungen zu Grundlagen der Theoretischen Informatik Übungen zu Grundlagen der Theoretischen Informatik INSTITUT FÜR INFORMATIK UNIVERSITÄT KOBLENZ-LANDAU SS 2013 Lösungen 02 Aufgabe 1 Geben Sie einen regulären Ausdruck für die Sprache aller Wörter über

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 4 18.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung Sematik: Σ-Strukturen = (U, (f : U

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 3: Beweisverfahren

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 3: Beweisverfahren FH Wedel Prof. Dr. Sebastian Iwanowski DM3 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 3: Beweisverfahren Meinel 3, 6, 7 Lang 4.1 (nur bis S. 43), 2.2

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Literatur zur Vorlesung Skriptum von U. Furbach Ulrich Furbach Logic for Computer Scientists http://userpages.uni-koblenz.de/

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q.

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q. Beispiel 27 (Beweis durch Widerspruch) Wir nehmen an, dass die zu zeigende Aussage falsch ist und führen diese Annahme zu einem Widerspruch. Satz 28 3 ist irrational, d. h. 3 / Q. Beweis: Widerspruchsannahme:

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

6. Rekursive Funktionen und Induktion

6. Rekursive Funktionen und Induktion 6. Rekursive Funktionen und Induktion 6.1 Rekursive Funktionen Definition rekursiver Funktionen Terminierung 6.2 Beweisen durch Induktion 6.3 Fundierte Relationen Maschinelles Beweisen mit PVS 6 1 6.1

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik Strukturelle Induktion Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 0 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 1:30-14:00 Uhr, o.n.v.

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 2. Beweistechniken Malte Helmert Gabriele Röger Universität Basel 18. Februar 2015 Beweis Beweis Ein Beweis leitet die Korrektheit einer mathematischen Aussage aus einer Menge von

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 1 Grundbegriffe der Mengenlehre und der Logik

Kapitel 1 Grundbegriffe der Mengenlehre und der Logik Wolter/Dahn: Analysis Individuell 3 Kapitel 1 Grundbegriffe der Mengenlehre und der Logik In diesem Abschnitt werden einige Grundbegriffe der Mengenlehre und grundlegende 1/0/0 Prinzipien der mathematischen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive

Mehr

Programmierung 1 - Repetitorium

Programmierung 1 - Repetitorium WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Donnerstag, den 10.04.03 Kapitel 7 Korrektheit 7.1 Abstrakte Prozeduren Abstrakte Prozedur

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Kapitel 1 Mathematische Objekte In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Objekte wie Tupel, Mengen, Relationen und Funktionen. Außerdem erklären wir die

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

Vorkurs: Grundlagen für das Mathematikstudium. Caroline Uhler

Vorkurs: Grundlagen für das Mathematikstudium. Caroline Uhler Vorkurs: Grundlagen für das Mathematikstudium Caroline Uhler Inhaltsverzeichnis 1 Logische Grundbegriffe 3 2 Elementare Mengenlehre 5 3 Relationen und Abbildungen 8 3.1 Produkte......................................

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Strukturelle Rekursion und Induktion

Strukturelle Rekursion und Induktion Kapitel 2 Strukturelle Rekursion und Induktion Rekursion ist eine konstruktive Technik für die Beschreibung unendlicher Mengen (und damit insbesondere für die Beschreibung unendliche Funktionen). Induktion

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/77 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

5. Ordinalzahlen (Vorlesung 11)

5. Ordinalzahlen (Vorlesung 11) EINFÜHRUNG IN DIE LOGIK UND MENGENLEHRE 29 5.. Grundlegende Eigenschaften. 5. Ordinalzahlen (Vorlesung ) Definition 5. (Wohlordnung). Eine lineare Ordnung < auf einer Menge a heißt Wohlordnung, wenn jede

Mehr

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper 40 Andreas Gathmann 4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 12. November 2014 Darstellung natürlicher Zahlen durch Mengen 1. Wie können wir natürliche Zahlen durch Mengen darstellen? Idee 0 = und

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

8. Einfache Fixpunkttheorie

8. Einfache Fixpunkttheorie 8. Einfache Fixpunkttheorie Fragestellung: was unter einem (kleinsten) Fixpunkt zu verstehen ist t(x) = x y : D. t(y) = y x y wann ein Fixpunkt existiert monotone Funktionen über CPOs haben einen kleinsten

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/76 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

Musterlösung 11.Übung Mathematische Logik

Musterlösung 11.Übung Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt SS 2015 Aufgabe 2 Musterlösung 11.Übung Mathematische Logik Geben Sie für die folgenden

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Beweise und Beweisstrategien andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Kapitel 4. Induktive Definitionen und Beweise

Kapitel 4. Induktive Definitionen und Beweise Kapitel 4 Induktive Definitionen und Beweise Bei der Definition der Semantik der Programmiersprache IMP haben wir an vielen verschiedenen Stellen induktive Definitionen benutzt: angefangen bei der Syntax

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (I) 3.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Organisatorisches 1. Teilklausur: Mittwoch,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 86 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Die Lösungshinweise dienen

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Logik/Beweistechniken

Logik/Beweistechniken Mathematikvorkurs bei Marcos Soriano Logik/Beweistechniken erstellt von: Daniel Edler -II- Inhaltsverzeichnis 1 Logik/Beweistechniken 1 1.1 Allgemeine Vorgehensweise......................... 1 2 Konjunktion/Disjunktion

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Vollständige Induktion

Vollständige Induktion Seite 1 Klaus Messner, klaus_messner@web.de Seite 2 Problem: Problem Man hat eine Aussage (z.b. eine Formel) und soll zeigen, dass diese Aussage für alle natürlichen Zahlen gilt. Beispiel: Es soll gezeigt

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr