Eindimensionale Potentialprobleme

Ähnliche Dokumente
Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Theoretische Physik II: Quantenmechanik

Quantentheorie für Nanoingenieure Klausur Lösung

ν und λ ausgedrückt in Energie E und Impuls p

WKB-Methode. Jan Kirschbaum

Eindimensionale Potentialprobleme

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

Probestudium der Physik 2011/12

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Die Schrödingergleichung

Die Lösungen der Gleichung b x = log b (x)

Bewegung im elektromagnetischen Feld

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Potentialtöpfe und Potentialbarrieren

2.6. Der endliche Potentialtopf

8 Das Bohrsche Atommodell

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Exakte Lösungen der stationären Schrödingergleichung

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

7 Die Hamilton-Jacobi-Theorie

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

1 Die Schrödinger Gleichung

Der harmonische Oszillator anhand eines Potentials

Wahrscheinlichkeitsrechnung und Quantentheorie

Die Zylinderfunktionen

Ferienkurs Quantenmechanik 2009

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die

9. Vorlesung Wintersemester

3.3 Das Abtasttheorem

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9

Musterlösungen Aufgabenblatt 1

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses

Elemente der Analysis II

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

5. Spezielle stetige Verteilungen

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

LMU Fakultät für Physik. T2p Quantenmechanik. Dr. Michael Haack

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

cos(kx) sin(nx)dx =?

10.2 Linearkombinationen

ε δ Definition der Stetigkeit.

1 Einführung, Terminologie und Einteilung

8 Euklidische Vektorräume und Fourierreihen

Klassische Theoretische Physik: Elektrodynamik

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Physik 4, Übung 8, Prof. Förster

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

Ferienkurs Experimentalphysik 4

r r : Abstand der Kerne

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Übungen zur Theoretischen Physik 1. Übungsblatt

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Zur Struktur der Quantenmechanik

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v.

Differential- und Integralrechnung

Lösungen zu den Hausaufgaben zur Analysis II

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

1.2 Einfache Eigenschaften von Funktionen

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Konvergenz im quadratischen Mittel - Hilberträume

Zeitunabhängige. Schrödinger-Gleichung: Kapitel Stationäre Zustände. Wir wollen die Schrödinger-Gleichung. i h Ψ t = h2 2 Ψ.

Lösungen der Übungsaufgaben von Kapitel 3

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

15.5 Stetige Zufallsvariablen

Lösungen der Aufgaben zu Kapitel 10

4 Fehlerabschätzungen und Konvergenz der FEM

Übungen zur Vorlesung MATHEMATIK II

Konstruktion der reellen Zahlen

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Einführung in die Theoretische Physik: Quantenmechanik

Eigenwerte und Diagonalisierung

Folgen, Reihen, Grenzwerte u. Stetigkeit

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

3 Lineare Differentialgleichungen

4 Messbare Funktionen

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Extremwerte von Funktionen mehrerer reeller Variabler

1.3 Mehrelektronensysteme

Nichtlineare Gleichungssysteme

5.10. Mehrdimensionale Extrema und Sattelpunkte

Übungen zur Quantenmechanik

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Gewöhnliche Dierentialgleichungen

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

10.6. Implizite ebene Kurven und Tangenten

Anwendungen der Differentialrechnung

Übungen zur Quantentheorie (Lehramt) WS 2006/07

Transkript:

Kapitel 4 Eindimensionale Potentialprobleme Wir werden nun die Schrödingergleichung in der Ortsdarstellung für einige einfache Potentialprobleme lösen. Wir betrachten ein spinloses Teilchen der Masse m, das sich in einem Potential bewegen kann. Das Potential sei zeitunabhängig (Stationärer Fall). Der Hamiltonoperator ist dann nach Gl. (3.10) Die Schrödingergleichung Ĥ = ˆ P 2 2m + ˆV ( ˆ Q). i d dt ψ(t) = Ĥ ψ(t) lautet dann im Ortsraum (d.h. für die Wellenfunktion) (3.31) i t ψ( x, t) = 2 2m 2 ψ( x, t) + V ( x) ψ( x, t). Wir behandeln die Schrödingergleichung, indem wir zunächst die Eigenwertgleichung von Ĥ (stationäre Schrödingergleichung 3.36) Ĥ ψ n = E n ψ n lösen. Die stationäre Schrödingergleichung im Ortsraum erhalten wir, indem wir in obiger zeitabhängiger Schrödingergleichung ψ( x, t) durch ψ n (x) ersetzen und i t durch E n. 81

4.1. Randbedingungen für die Wellenfunktion STATIONÄRE SCHRÖDINGERGLEICHUNG IM ORTSRAUM ( 2 2m 2 ) + V ( x) ψ n ( x) = E n ψ n ( x) (4.1) (Man beachte, dass E n, der Eigenwert des Hamilton-Operators zum Eigenzustand ψ n, nicht vom Ort abhängen kann.) Diese Gleichung werden wir im Folgenden in einigen einfachen eindimensionalen Fällen lösen. Wie wir in Kap. 3.4 gesehen haben, besitzen die Eigenzustände die einfache Zeitabhängigkeit ψ n (t) = e i Ent ψ n (0), d.h. im Ortsraum ψ n ( x, t) = e i Ent ψ n ( x, 0). (4.2) Die allgemeine Lösung der Schrödingergleichung ist eine Linearkombination der Eigenfunktionen, im Allgemeinen mit unterschiedlichen Energien und somit unterschiedlichen Zeitentwicklungen (s.s. 68). Diese Linearkombination ist so zu wählen, dass die jeweiligen Anfangsbedingungen erfüllt sind. Die Gesamtenergie E des Zustands erhält man als Erwartungswert des Hamiltonoperators. 4.1 Randbedingungen für die Wellenfunktion Zuerst leiten wir Randbedingungen der Ortsraum-Wellenfunktion für die Eigenzustände von Ĥ her. 4.1.1 Normierbarkeit, Spektrum In der klassischen Mechanik ist ein Teilchen gebunden, wenn seine Energie kleiner ist als der Wert V (x ) des Potentials im Unendlichen (wenn dieser Grenzwert existiert). Seine Bewegung ist dann auf einen endlichen räumlichen Bereich beschränkt. Wenn die Energie größer ist, kann das Teilchen ins Unendliche entkommen. 82

Kapitel 4. Eindimensionale Potentialprobleme In der Quantenmechanik ist die Situation im Wesentlichen dieselbe, man muss sie aber etwas anders formulieren. Gebundene Zustände Bei gebundenen Zuständen ist die Wahrscheinlichkeit, das Teilchen im Unendlichen anzutreffen Null. Genauer: Gebundene Zustände sind normierbare Eigenzustände von Ĥ. Wegen der unitären Zeitentwicklung ψ( x, t) = e i Ĥt ψ( x, 0) bleibt die Normierung für alle Zeiten erhalten. Aus der Normierbarkeit folgt 1 = ψ ψ = d D x ψ x x ψ = ψ( x) 2 d D x = dω dr ( ψ( x) 2 r D 1, 0 wobei D für die Dimension des jeweiligen Problems steht (D=1,2,3). Weil das Integral über den Radialanteil konvergiert, gilt: Die Wahrscheinlichkeitsdichte ψ( x) 2, ein Teilchen in einem gebundenen Zustand anzutreffen, fällt bei großen r schneller als r D ab. Man kann zeigen: Das Energiespektrum von gebundenen Zuständen ist diskret. Beispiel: Die gebundenen Zustände von Elektronen in einem Atom. Spezialfall: Ein Eigenzustand, dessen Wellenfunktion auf ein endliches Volumen beschränkt ist. In einem endlichen Volumen ist der Hilbertraum abzählbar (diskrete Wellenzahlen). Deswegen folgt dann sofort, dass das Energiespektrum diskret sein muss. Man kann auch zeigen, dass der Erwartungswert des Impulsoperators in einem gebundenen (Eigen-)Zustand Null ist. Dies ist plausibel, weil gebundene Zustände im Wesentlichen in einem endlichen Volumen lokalisiert sind. 83

4.1. Randbedingungen für die Wellenfunktion Ungebundene Zustände (Streuzustände) Ungebundene Zustände sind nicht normierbare Eigenzustände von Ĥ. Sie beschreiben Teilchen, die sich ausbreiten, zum Beispiel in der Art einer (nicht normierbaren) ebenen Welle. Diese Streuzustände selber sind nicht physikalisch realisierbar. Durch Linearkombination von ebenen Wellen kann man normierbare Wellenpakete konstruieren, die physikalisch realisierbar sind. Diese Linearkombinantionen sind aber keine Eigenzustände von Ĥ. Rechnungen kann man oft leichter mit ebenen Wellen durchführen als mit Wellenpaketen. Es gilt: Das Energiespektrum von ungebundenen Zuständen ist kontinuierlich. Beispiel: die Ionisationszustände eines Atoms. Wir werden ungebundene Zustände später näher besprechen. 4.1.2 Stetigkeit Wir behandeln zunächst den eindimensionalen Fall. Die Aussagen gelten entsprechend auch in drei Dimensionen (s.u.). 1) Die Wellenfunktion ψ(x) ist immer stetig. Beweis per Widerspruch: Wir betrachten x 0 +ε x 0 ε ( ) d dx ψ(x) dx = ψ(x 0 + ε) ψ(x 0 ε). Wir lassen zunächst auch unstetige Wellenfunktionen wie z.b. ψ(x) = Θ(x) mit der Ableitung ψ (x) = δ(x) zu. Die Verwendung der Ableitung in der Gleichung impliziert selber daher noch nicht die Stetigkeit von ψ(x). 84

Kapitel 4. Eindimensionale Potentialprobleme Wäre ψ unstetig bei x 0, so würde die rechte Seite für ε 0 nicht verschwinden. Dann müsste in der Tat d ψ(x) δ(x x dx 0) gelten, wodurch aber die kinetische Energie divergieren würde: E kin = ψ ˆP 2 = = + 2 2m 2m ψ ( ) d dx ψ (x) ( ) d dx ψ(x) dx = 2 2m δ(x x 0 ) δ(x x 0 ) dx = δ(0) =. d dx ψ(x) 2 dx Einen Zustand mit unendlicher kinetischer Energie kann man nicht erzeugen, daher muss für alle physikalisch realisierbaren Zustände die Wellenfuntion ψ(x) überall stetig sein. 2) Die Ableitung dψ dx ist bei endlichen Potentialen stetig. Wir integrieren die Schrödingergleichung von x 0 ε bis x 0 + ε 2 2m x 0 +ε x 0 ε d 2 dx 2 ψ n(x) dx + x 0 +ε x 0 ε V (x)ψ n (x) dx = E n x 0 +ε x 0 ε ψ n (x) dx. Die rechte Seite ist von der Ordnung O(ε), da ψ(x) keine δ-beiträge besitzt, denn sonst würde die kinetische Energie erst recht divergieren. Somit gilt ( ) lim ψ n (x 0 + ε) ψ n (x 0 ε) ε 0 = + 2m 2 lim ε 0 x 0 +ε x 0 ε V (x) ψ n (x) dx. Wenn V (x) überall endlich ist, verschwindet hier die rechte Seite. Daher ist x ψ n(x) stetig. Ein unendlich großes Potential ist physikalisch eigentlich nicht realisierbar. Um Rechnungen wesentlich zu vereinfachen, betrachtet man aber oft statt eines realisierbaren sehr großen Potentials in der Rechnung einen unendlich großen Wert (Beispiel in Kapitel 4.3.1). 85

4.1. Randbedingungen für die Wellenfunktion 3) Sprung der Ableitung von ψ bei Potentialen mit δ-anteil Wenn V (x) einen δ-funktionsbeitrag V (x) = C δ(x x 0 ) + (endliche Anteile) enthält, dann gilt x 0 +ε x 0 ε V (x) ψ(x) dx x 0 +ε x 0 ε C δ(x x 0 ) ψ(x) dx = C ψ(x 0 ) Ein solches Potential wird z.b. verwendet, um Potentialbarrieren auf rechnerisch einfach Art zu beschreiben. Damit erhalten wir einen Sprung in der Ableitung von ψ(x): ( ) lim ψ (x 0 + ε) ψ (x 0 ε) ε 0 = 2m 2 C ψ(x 0) (4.3) 4) Die Wellenfunktion verschwindet bei unendlichem Potential Wenn V (x) = in einem Intervall x (x a, x b ), dann verschwindet die Wellenfunktion in diesem Intervall, da sonst die potentielle Energie des Teilchens unendlich wäre. 5) Unstetigkeit von dψ dx am Rand eines unendlichen Potentials Wenn V (x) = in einem Intervall x (x a, x b ), dann ist zwar die Wellenfunktion Null im Intervall, und überall stetig, aber die Ableitung wird in der Regel an den Grenzen des Intervalls unstetig sein. Randbedingungen dreidimensionaler Probleme Aus ähnlichen Überlegungen folgt ebenso in drei Dimensionen, dass die Wellenfunktion und deren partielle Ableitungen überall stetig sein müssen, wenn das Potential überall endlich ist. Weitere allgemeine Eigenschaften der Wellenfunktion werden wir später besprechen. 86

4.2 Konstantes Potential Kapitel 4. Eindimensionale Potentialprobleme Besonders wichtig bei Potentialproblemen ist der Fall, dass das Potential in einem Intervall konstant ist. Wir behandeln das eindimensionale Problem. Es sei also V (x) = V 0 = konst. für a < x < b. In diesem Intervall wird dann die Schrödingergleichung Gl. (4.1) zu 2 2m ψ (x) = (E V 0 ) ψ(x) (4.4) (Schwingungsgleichung), mit der allgemeinen Lösung LÖSUNG DER SCHRÖDINGERGLEICHUNG FÜR KONSTANTES POTENTIAL ψ(x) = a 1 e κ x + b 1 e κ x (4.5a) = a 2 e i k x + b 2 e i k x (4.5b) = a 3 cos(kx) + b 3 sin(kx), (4.5c) mit 2 k 2 2m = E V 0, d.h. k 2 = κ 2 = 2m 2 (E V 0) (4.5d) Diese drei Lösungen sind äquivalent! Wenn E < V 0, dann ist κ reell, und die Formulierung der ersten Zeile ist bequem. Die Wellenfunktion ψ(x) hat dann im Intervall [a, b] i.a. exponentiell ansteigende und abfallende Anteile! Wenn E > V 0, dann ist k reell, und die zweite oder dritte Zeile sind, je nach Randbedingugen, bequeme Formulierungen. Die Wellenfunktion zeigt dann im Intervall [a, b] oszillierendes Verhalten. 87

4.3. Gebundene Zustände im Potentialtopf 4.3 Gebundene Zustände im Potentialtopf Ein Potentialtopf beschreibt in idealisierter Form eine Region, in der ein Teilchen gefangen ist, z.b. einen dotierten Bereich in einem Halbleiter. 4.3.1 Potentialtopf mit unendlich hohen Wänden Wir behandeln zunächst einen Potentialtopf mit unendlich hohen Wänden: Abbildung 4.1: Potentialtopf mit unendlich hohen Wänden V (x) = { V0 für 0 < x < L sonst Es gibt hier die drei skizzierten, qualitativ verschiedenen Teilgebiete. Eine oft sinnvolle Strategie bei solchen Potentialproblemen ist, zuerst allgemeine Lösungen für die Wellenfunktion in den Teilgebieten zu finden, und diese dann mit den Randbedingungen geeignet zusammenzusetzen. Die Energie E, d.h. der Eigenwert von Ĥ, ist nicht ortsabhängig! Für den unendlich hohen Potentialtopf finden wir: Gebiete I & III: Hier ist V (x) = und daher ψ(x) 0, da sonst E pot = V (x) ψ(x) 2 dx = Gebiet II: Hier ist das Potential konstant. 88

Kapitel 4. Eindimensionale Potentialprobleme 1. Versuch: Wir setzen E < V 0 = 0 an und verwenden Gl. (4.5a): ψ(x) = a e κx + b e κx 2m mit reellem κ = (V 2 0 E). Die Stetigkeit der Wellenfunktion bei x = 0 verlangt ψ(0) = 0, also a = b. Die Stetigkeit bei x = L verlangt ψ(l) = 0, somit e κl e κl = 0. Daraus folgt κ = 0 und damit ψ(x) = a(e 0 e 0 ) 0. Wir finden also keine Lösung mit E < V 0! Später werden wir allgemein sehen, dass bei gebundenen Zuständen die Energie E immer größer als das Minimum des Potentials sein muss. 2. Versuch: Wir setzen E > V 0 an und verwenden (wegen der Randbedingungen) Gl. (4.5c): ψ(x) = a sin kx + b cos kx (4.6) mit k = 2m(E V0 ) 2, a, b C. Die Wellenfunktion muss mehrere Bedingungen erfüllen: 1. Die Stetigkeit der Wellenfunktion ergibt hier die Randbedingungen ψ(0) = 0 und ψ(l) = 0, und daher b = 0 a sin(kl) = 0. Die zweite Bedingung zusammen mit der Normierung kann nur mit sin(kl) = 0 erfüllt werden, da mit a = 0 die Wellenfunktion wieder identisch verschwinden würde. Also muss k = nπ mit einer ganzzahligen Quantenzahl n gelten, die den gebundenen Zustand charak- L terisiert. Der Wert n = 0 ist ausgeschlossen, da dann wieder ψ 0 wäre. Wir können uns auf positive n beschränken, denn negative n ergeben mit sin( nkx) = sin(nkx) bis auf die Phase ( 1) dieselbe Wellenfunktion. 2. Die Ableitung der Wellenfunktion darf bei x = 0 und x = L beliebig unstetig sein, da dort das Potential unendlich ist. Hieraus erhalten wir im vorliegenden Fall keine weiteren Bedingungen an ψ. 89

4.3. Gebundene Zustände im Potentialtopf 3. Normierung der Wellenfunktion: Zum einen muss ψ(x) überhaupt normierbar sein, was in dem endlichen Intervall [0, L] kein Problem ist. Zum anderen können wir die Normierungskonstante a in Abhängigkeit von der Quantenzahl n berechnen: 1 = ψ ψ = dx ψ(x) 2 L = a 2 dx sin 2 ( nπ L x) 0 = a 2 L nπ = a 2 L nπ nπ 0 nπ 2 dy sin 2 y = a 2 L 2. mit y = nπ L x Also a 2 = 2, mit beliebiger Phase für a, welches wir reell wählen. L Insgesamt erhalten wir die LÖSUNG FÜR EIN TEILCHEN IM UNENDLICH HOHEN POTENTIALTOPF ψ n (x) = 2 L sin(k nx), 0 < x < L ; (ψ(x) = 0 sonst) (4.7) k n = nπ L ; n = 1, 2,... (4.8) E n = 2 k 2 n 2m + V 0 = 2 π 2 2mL 2 n2 + V 0 (4.9) Es sind somit hier Energie und Wellenzahl quantisiert, mit nur diskreten möglichen Werten, in Abhängigkeit von der Quantenzahl n. Die Energie nimmt hier mit n 2 zu und mit 1/L 2 ab. Interessanterweise bewirkt die L-Abhängigkeit der Energie eine nach außen gerichtete Kraft F = de auf die Wände. dl 90

Kapitel 4. Eindimensionale Potentialprobleme In Abbildung (4.2) sind Wellenfunktionen zu den drei tiefsten Eigenwerten dargestellt. Man erkennt, dass die Wellenfunktion des Grundzustands nur am Rand Null wird. Bei jeder Anregung kommt ein weiterer Nulldurchgang ( Knoten, englisch node ) hinzu. Abbildung 4.2: Eigenfunktionen von Ĥ zu den drei niedrigsten Energie- Eigenwerten. Dies ist eine kombinierte Darstellung. Es sind dünn die Eigenenergien gezeichnet (rechte Achse, V 0 = 0), und auf Höhe der Eigenenergien jeweils die Wellenfunktionen. Man beachte, dass für jede Eigenfunktion ein Phasenfaktor (insbesondere das Vorzeichen) beliebig gewählt werden kann. Die Aufenthaltswahrscheinlichkeit ψ(x, t) 2 ist in jedem Eigenzustand wegen der globalen Phase in ψ n (x, t) = e i Ent ψ n (x) zeitlich konstant. Bei einem allgemeinen Zustand ψ(x, t) = n c nψ n (x, t) gibt es dagegen zeitliche Oszillationen in der Aufenthaltswahrscheinlichkeit (und in anderen Observablen) wegen der auftretenden Phasendifferenzen. 91

4.3. Gebundene Zustände im Potentialtopf 4.3.2 Potentialtopf mit endlicher Tiefe Wir betrachten nun einen Potentialtopf mit endlicher Tiefe V (x) = { V0 < 0 für x L 2 0 sonst, (4.10) wie er in Abbildung (4.3) skizziert ist. Wir haben hier den Koordinatenur- Abbildung 4.3: Potentialtopf endlicher Tiefe. sprung im Vergleich zum vorherigen Beispiel um L verschoben. Dadurch wird das Potential in x symmetrisch, V (x) = V ( x), und die Rech- 2 nungen vereinfachen sich. Wir behandeln in diesem Abschnitt gebundene Zustände, das heißt im Fall des vorliegenden Potentials E 0. Der andere Fall (E > 0) wird anschließend besprochen. Wir werden bald allgemein zeigen, dass die Energie eines gebundenen Zustands größer als das Potential-Minimum sein muss, insgesamt also hier V 0 < E 0. Wir unterscheiden wieder die drei Bereiche konstanten Potentials, wie in Abbildung (4.3) skizziert. Die Schrödingergleichung lautet bei konstantem Potential 2 2m ψ (x) = (E V ) ψ(x), 92

Kapitel 4. Eindimensionale Potentialprobleme wie in Abschnitt 4.2 besprochen. In den Bereichen I und III ist V = 0. Im endlich tiefen Topf ist die Wellenfunktion dort nicht Null! Die allgemeine Lösung hat jeweils die Form ψ(x) = A 1 e κx + A 2 e +κx 2m( E) (4.11) mit κ = 2 und E < 0. Im Bereich I muss A I 1 = 0 sein, da die Wellenfunktion ansonsten für x exponentiell anwachsen würde und somit nicht normierbar wäre. Im Bereich III ist analog A III 2 = 0. Im Bereich II gilt V = V 0 < 0 und die allgemeine Lösung lautet ψ(x) = B 1 e ikx + B 2 e ikx 2m mit k = (E V0 ) 2. (4.12) Die gesamte Wellenfunktion ist somit A I 2 e κx ; x < L 2 ψ(x) = B 1 e ikx + B 2 e ikx ; L 2 x L 2 A III 1 e κx ; x > L 2. (4.13) Den Grenzfall E = 0 müssen wir vorab separat diskutieren. Hierbei ist κ = 0. Die Wellenfunktion ist dann in den äußeren Bereichen I und III konstant. Die Konstante muss Null sein, da die Wellenfunktion sonst nicht normierbar wäre. Die Ableitung der Wellenfunktion ist dann in den Bereichen I und III ebenfalls Null. Bei x = ± L müssen beide stetig sein. Damit 2 ist das Problem im Bereich II so wie beim Potentialtopfproblem mit unendlich hohen Wänden. Von den Lösungen dieses Problems wissen wir bereits, dass nur die Wellenfunktionen an den Potentialwänden verschwinden, nicht aber ihre Ableitungen. Wenn auch die Ableitung verschwindet, ist die Wellenfunktion komplett Null. Dies ist aber keine physikalisch akzeptable Lösung. Daher gibt es keine Lösung zu E = 0. Wir haben deshalb die Einschränkung V 0 < E < 0. 93

4.3. Gebundene Zustände im Potentialtopf Wie wir bald zeigen werden, kann man bei einem symmetrischen Potential (V (x) = V ( x)) die Eigenfunktionen von H in symmetrische und antisymmetrische Funktionen trennen. Die Wellenfunktionen lauten dann symmetrisch: A s e κx ; x L 2 ψ s (x) = ψ s ( x) = B s cos(kx) ; L 2 x L 2 A s e κx ; x L 2 (4.14a) anti-symm.: A a e κx ; x L 2 ψ a (x) = ψ a ( x) = B a sin(kx) ; L 2 x L 2 A a e κx ; x L 2 (4.14b) Nun werten wir die Stetigkeitsbedingungen zur Bestimmung der Konstanten aus ψ s ( L 2 ) : A s e κ( L 2 ) = B s cos(k L 2 ) ψ s( L 2 ) : A s e κ( L 2 ) = k κ B s sin(k L 2 ) ψ a ( L 2 ) : A a e κ( L 2 ) = B a sin(k L 2 ) tan(k L 2 ) = κ k (4.15a) ψ a( L 2 ) : A a e κ( L 2 ) = k κ B a cos(k L 2 ) tan(k L 2 ) = k κ (4.15b) (Bei x = L ergeben sich keine neuen Beziehungen, weil die Symmetrie 2 der Wellenfunktion schon in den Ansätzen für ψ s und ψ a genutzt wurde.) Diese beiden Gleichungen liefern die Quantisierungsbedingungen für die erlaubten Energieeigenwerte. Es gibt allerdings keine direkte algebraische Lösung für die Eigenenergien. Man kann sie numerisch bestimmen. Sehr viel mehr ersieht man aber aus einer graphischen Darstellung. Dazu ist es sinnvoll, zu dimensionslosen Größen überzugehen. Wir definieren η = k L 2 94

Kapitel 4. Eindimensionale Potentialprobleme und drücken die Energie E durch η aus, mittels Gl. (4.12) und E V 0 = V 0 E : η = k L = L 2m 2 2 E 2 V0 ( ) 4 η 2 2m = V L 2 2 0 E ( 2m 4 ml 2 V 0 E = 2 L 2 } 2 {{ 2 } κl 2 (4.11) L 2 =:Ṽ0 2m E = 2 η 2 ) Ṽ 0 η 2. Die Größe Ṽ0 ist ebenfalls dimensionslos. Sie spezifiziert die Tiefe des Potentials in natürlichen Einheiten des Systems. Die zur Wellenzahl proportionale Variable η parametrisiert die Lösungen. Der Bereich der erlaubten Energien, V 0 E < 0, korrespondiert zum Wertebereich 0 < η < Bei η = Ṽ 0 wird κ = 0. Ṽ 0. Zusammen mit Gl. (4.11) wird aus den Bedingungsgleichungen (4.15a) und (4.15b) symmetrisch: anti-symmetrisch: tan(η) tan(η)! = κ L 2 k L 2! = k L 2 κ L 2 = Ṽ 0 η 2 η η =. Ṽ 0 η 2 Die graphische Lösung dieser Gleichungen erhält man aus den Schnittpunkten der in Abbildung (4.4) dargestellten Kurven κ bzw. k mit der k κ Kurve zu tan(η) im Bereich 0 < η < Ṽ 0. Symmetrische Lösungen: Wenn η von 0 bis Ṽ 0 variiert, nimmt κ k die Werte bis Null an. Daher tritt unabhängig von Ṽ0 immer ein Schnittpunkt mit tan η auf. Es existiert somit immer mindestens ein symmetrischer, gebundener Zustand!. Wir können leicht die Zahl der gebundenen Zustände bei gegebenem Potentialparameter Ṽ0 bestimmen: Der Tangens hat Nullstellen bei η = nπ. Die Zahl der Schnittpunkte von κ mit tan(η) nimmt k immer um Eins zu, wenn der Maximalwert von η, also Ṽ 0, die Werte 95

4.3. Gebundene Zustände im Potentialtopf 10 tan(η) 5 0 κ/k 5 k/κ 10 0 2 4 6 8 10 η Abbildung 4.4: Graphische Bestimmung der Energie-Eigenwerte im Potentialtopf. Aufgetragen ist tan(η) über η (0, Ṽ 0 ) und außerdem die Funktionen k κ und κ k. Es wurde Ṽ0 = 100 gewählt. nπ überschreitet. Die Zahl der symmetrischen Eigenwerte ist somit N + = int(ṽ0 π + 1). Antisymmetrische Lösungen: Die Zahl der Schnittpunkte von k mit tan(η) κ wächst um Eins, wenn Ṽ 0 die Werte nπ + π/2 überschreitet. Die Zahl der anti-symmetrischen Eigenwerte ist demnach N = int(ṽ0 π + 1/2). Zur Festlegung der Wellenfunktion Gl. (4.14) nutzen wir die Stetigkeitsbedingungen Gl. (4.15a) und Gl. (4.15b) A s = B s e κ L 2 cos(k L 2 ) A a = B a e κ L 2 sin(k L 2 ) aus und erhalten daraus mit der dimensionslosen Länge ξ = x/( L 2 ) und η = k L 2 : 96

Kapitel 4. Eindimensionale Potentialprobleme Abbildung 4.5: Wellenfunktionen ψ n (ξ) zu allen drei gebundenen Eigenzuständen des Potentialtopfes mit einer Potentialhöhe Ṽ0 = 13. ψ s (ξ) = B s cos(η) e κ L 2 (ξ+1), ξ < 1 cos(ηξ), 1 ξ +1 cos(η) e κ L 2 (ξ 1), ξ > +1 (4.16a) sin(η) e κ L 2 (ξ+1), ξ < 1 ψ a (ξ) = B a sin(ηξ), 1 ξ +1 sin(η) e κ L 2 (ξ 1), ξ > +1. (4.16b) Die Parameter B a,s ergeben sich aus der Normierung. Ein Beispiel ist in der Abbildung (4.5) dargestellt. Die Wellenfunktion zur tiefsten Energie ist symmetrisch. Sie hat keine Nullstelle. Die Zahl der Nullstellen ist n 1, wobei die Quantenzahl n = 1, 2, 3... die erlaubten Energien E n durchnumeriert. In Abbildung (4.5) gibt die Null-Linie der Wellenfunktionen wieder gleichzeitig auf der rechten Achse die zugehörige Eigenenergie E n an. In den verwendeten Einheiten befinden sich die Potentialwände bei ±1. Im Gegensatz zur klassischen Mechanik ist die Aufenthaltswahrscheinlichkeit außerhalb des Topfes nicht Null. Man erkennt, dass stattdessen die Wellenfunktion mit steigender Quantenzahl n zunehmend aus dem Potentialbereich hinausragt. 97

4.4. Unabhängige Freiheitsgrade: Produktansatz 4.4 Unabhängige Freiheitsgrade: Produktansatz Oft hat das betrachtete physikalische System voneinander unabhängige Freiheitsgrade, zum Beispiel bei räumlich getrennten Teilsystemen, oder bei einem Potential der Form V ( x) = V 1 (x) + V 2 (y) + V 3 (z) (siehe unten). Ob die Freiheitsgrade unabhängig sind, hängt von den Wechselwirkungen ab, d.h. vom jeweiligen Hamiltonoperator. Wir betrachten zwei Freiheitsgrade A und B, mit zugehörigen Basisvektoren { ϕ A } und { ϕ B } (Beispiel: { x } und { y }, die zueinander paarweise orthonormal sein sollen. Der zugehörige Produktraum wird von den Basisvektoren ϕ A, ϕ B = ϕ A ϕ B aufgespannt. Die Freiheitsgrade A und B sind unabhängig, wenn der Hamiltonoperator aus zwei Teilen ĤA und Ĥ B besteht, die getrennt auf die Freiheitsgrade A bzw. B wirken: Ĥ = Ĥ A + ĤB, mit (4.17) Ĥ A ϕ A, ϕ B (ĤA = ϕ ) A ϕ B und (4.18) Ĥ B ϕ A, ϕ B (ĤB = ϕ A ϕ ) B. (4.19) Dann gilt auch [ĤA, ĤB ] = 0. Die Lösungen der Eigenwertgleichung für den Gesamt-Hamiltonoperator Ĥ ψ = E ψ bekommt man nun durch den Produktansatz ψ n,m = ψ A n ψ B m, (4.20) wobei ψ A n und ψ B m jeweils Linearkombinationen von { ϕ A } bzw. { ϕ B } sind und Lösungen der Eigenwertgleichungen zu ĤA bzw. Ĥ B : Ĥ A ψ A n = E A n ψ A n (4.21) Ĥ B ψ B m = E B m ψ B m. (4.22) 98

Kapitel 4. Eindimensionale Potentialprobleme Beweis: Ĥ ψ n,m = = (ĤA ) ( ) + ĤB ψn A ψm B (ĤA ) ψn A ψm B + ψn A = E A n ψ n,m + E B m ψ n,m = (E A n + E B m) ψ n,m = E n,m ψ n,m (ĤB ) ψm B Die Eigenenergie E n,m ist somit die Summe der Einzelenergien, und man schreibt sie am einfachsten mit einem doppelten Index. Beispiel 1: Ein Teilchen in einem Potential V ( x) = V 1 (x)+v 2 (y)+v 3 (z). Der Ortsraum wird von den Basisvektoren x = x y z aufgespannt. Der Hamiltonoperator ist Ĥ = ˆ p 2 2m + ˆV ( ˆQ) (4.23) = ˆp2 x 2m + ˆV 1 ( ˆQ x ) }{{} Ĥ x + ˆp2 y 2m + ˆV 2 ( ˆQ y ) }{{} Ĥ y + ˆp2 z 2m + ˆV 3 ( ˆQ z ) }{{} Ĥ z. (4.24) Ĥ x wirkt nur auf x, etc. Die Eigenvektoren von Produkt Ĥ kann man dann als Ψ = ψ x ψ y ψ z (4.25) schreiben, wobei ψ ν = dν ψ ν (ν) ν (ν = x, y, z) (4.26) Eigenvektoren von Ĥν sein müssen, d.h. zum Beispiel Ĥ y ψ y = E y ψ y. (4.27) 99

4.4. Unabhängige Freiheitsgrade: Produktansatz Beispiel 2: Ein Teilchen mit Spin 1, das sich in einem räumlich konstanten Magnetfeld B und einem ortsabhängigen Potential V ( x) bewegt. Das 2 Teilchen hat Ortsfreiheitsgrade mit Basisvektoren x, und einen Spinfreiheitsgrad mit Basisvektoren σ = + z und z. Der Produktraum wird von den Basisvektoren x, σ = x σ aufgespannt. Der Hamiltonoperator ist, wie schon in Kap. 3.2 erwähnt, Ĥ = ˆ p 2 2m + ˆV ( ˆ Q) }{{} =: Ĥ x µ B ˆ S }{{}. (4.28) =: Ĥ σ Ĥ x wirkt nur auf x und Ĥσ wirkt nur auf σ. Die Eigenvektoren von Ĥ kann man deshalb als Produkt Ψ = ψ x χ (4.29) schreiben, wobei ψ x = d 3 x ψ( x) x und χ = σ=±z χ σ σ (4.30) Eigenvektoren von Ĥ x bzw. Ĥ σ sein müssen, d.h. Ĥ x ψ x = E x ψ x und Ĥ σ χ = E χ χ. 100