Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Ähnliche Dokumente
Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,

4 x

Grundwissen 9. Klasse

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

Klasse 9+ (Mittelstufe Plus) Hinweise und Lösungen

Rechnen mit Quadratwurzeln

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Grundwissen Mathematik 9. Klasse

Grundkenntnisse. Begriffe, Fachtermini (PRV) Gib die Winkelart von an.

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik 9. Klasse

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

m und schneidet die y-achse im Punkt P(0/3).

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Quadratische Funktionen Arbeitsblatt 1

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

y x oder y 3x. Nenne eine Gleichung einer Parabel, die den Scheitelpunkt im Ursprung hat und nach oben geöffnet ist.

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Aufgaben. 1. Quadratische Funktionen: 2. Quadratische Funktionen in Anwendungen

1. Selbsttest Heron-Verfahren Gleichungen

Grundwissen 9. Klasse Mathematik

c) Die Parabel ist nach oben geöffnet, der Scheitelpunkt liegt auf der x Achse und ist somit auch die einzige Nullstelle.

Schritt 1: Skizze anfertigen. Schritt 2: Volumenformel für das Prisma anwenden. M GYM K09 BY 3.KA ML Var1. Aufgabe 1

Graphen quadratischer Funktionen und deren Nullstellen

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.

Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I

MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

2. Die Satzgruppe des Pythagoras

f(x) 1,71 1,92 0,33-0,96 3,75

Funktionsgraphen (Aufgaben)

Grundwissensaufgaben Klasse 10

Mathematik 1. Klassenarbeit Klasse 10e- Gr. A 28. Sept Quadratische Funktionen - ups -

Grundwissen 9-1. Aufgabe Seite 1. Die Terme f(x) = 35x 2 31x + 6 und g(x) = a(x b)(x c) sind äquivalent. Bestimme a, b und c.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

und schneidet die -Achse im Punkt 0 3. Berechnen Sie die Koordinaten der Schnittpunkte von und. Lösung: 4 1;2 4

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Quadratische Funktionen Die Normalparabel

Lösungen zur Abschlussprüfung Mathematik 2008

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

Muster für den Schultest. Muster Nr. 1

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0.

Arbeitsblätter Förderplan EF

Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Aufgabe W2a/2005 Eine Parabel hat die Gleichung 4 1. Durch den Scheitelpunkt der Parabel und durch den Punkt %6 5 geht die Gerade. Berechnen Sie die G

Realschule Abschlussprüfung

Lösung Aufgabe P1: Abschlusspruefung Realschule Mathematik 2008 Loesung. 1 von Berechnung der Dreiecksseite :

2. Mathematikschulaufgabe

Selbsteinschätzungstest

Mathematik Klasse 8 Zusammenfassung

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

1. Mathematikschulaufgabe

d) Die Parabel verläuft symmetrisch zur Achse durch die Punkte ( 1 0,5) und (2 5,5).

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

Mathematik Lösung der Klassenarbeit Nr. 3 Klasse 8a Seite

Vorbereitung auf die erste Klassenarbeit

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Tag der Mathematik 2017

Tag der Mathematik 2017

Grundwissen 9. Sabine Woellert

Selbsteinschätzungstest Auswertung und Lösung

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2017 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

7 Aufgaben im Dokument. Aufgabe P5/2010

Verschiedene Varianten von Aufgaben zu Parabeln

3. Mathematikschulaufgabe

MATHEMATIKLEHRPLAN 5. SCHULJAHR SEKUNDARSTUFE

a) 2x 2 + kx + 1 = 0 b) 3x 2 + 4x + k = 0 c) kx 2 + 5x 1 = 0 d) kx x k = 0 e) x 2 + 2kx k = 0 f) x 2 + 2kx + k + 2 = 0

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.

F u n k t i o n e n Quadratische Funktionen

m= und schneidet die y-achse im Punkt P(0/3).

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Repetition Begriffe Geometrie. 14. Juni 2012

Tag der Mathematik 2017

Lösung Aufgabe P1: Abschlusspruefung Realschule Mathematik 2009 Loesung. 1 von Berechnung der Strecke : 2. Berechnung der Strecke :

Merkhilfe Grundwissen

Grundwissen 8 - Aufgaben Seite 1

Formelsammlung Mathematik 9

Schritt 1: Pfadregeln anwenden für a) und b)

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5

Der Satz des Pythagoras

Funktionen, Gleichungen, geometrische Körper und Trigonometrie

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap =

(Tip zu g): Die Ziffern bestehen aus aufeinanderfolgenden Quadratzahlen).

Transkript:

Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende Gleichungen richtig oder falsch? Begründe. a a) = a für a > 0 a b) ( a²) = a für a R Lösungen a) = -1,5 + 64 9 = 3 + 8 3 = 9 6 + 16 6 = 7 6 b) = 4 4 1000 1000 = 4 1000 = 4000 4 c) = 3 3 3 3 a² a² a² a² a) L = {9} b) L = { 5; 5} c) L ={ } a) Wahr, da a = a a = a a = a a a a a b) Falsch z. B. a = 1 = 3a² c) a² b² = a b für 0 < b < a Berechne die Kantenlänge x eines Würfels mit einem Volumen von 51 Liter. Vervollständige die Lücken so, dass sich eine binomische Formel ergibt: c) Falsch z. B. a = 4 und b = : 16 4 = 1 3 x = 51dm³ = 8dm 144c 6 + = ( + 1 d)² 144c6 + 1c³d + d² = ( 1c³ + 1 d)² Verwandle in eine Summe bzw. Differenz: a) ( 3 x² + 3)² b) ( - 4x)² Verwandle in ein Produkt: a) 3p² - 6pv + 3v² a) = 9 4 x4 + 9x² + 9 b) = 8 x + 16x² a) = 3 (p - v) = ( 3p 3v)² b) 4 x² + y² + 4 yx b) = ( x + y)² 9 3 3 1 4 Vereinfache mit Hilfe der Potenzgesetze und gib das Ergebnis als Wurzel an: 3 a) ( x 4 ) 1 b) x 1 x 0,5 x 3 4 c) 4 n n 6 d) h 3 Bestimme im unten stehenden Dreieck mit einem rechten Winkel bei C sinα, cosα, tanα, sinβ, cosβ und tanβ. 3 a) ( x 4 ) 1 = x 4 3 1 3 = x² b) = x 1 1 4 +3 4 = x c) = (4: ) n n = 4 d) = h 3 1 6 = h 1 4 = 1 4 h Sinus und Kosinus am Einheitskreis Welche der Aussagen sind wahr? Begründe. a) sin0 < sin15 b) cos90 > sin0 a) Wahr, da sich mit wachsendem Winkel die Sinuswerte erhöhen (bis 90 ) b) Falsch, da cos90 = 0; sin 0 = 0; also gilt cos90 = sin0!

Eine Leiter der Länge 7,5 m lehnt in der Höhe 6,6 m an einer Hauswand. Bestimme den Winkel α und wie weit das untere Ende der Leiter von der Hauswand entfernt ist. sinα = 6,6m = 0,88 α 61,6 7,5m (7,5m)² (6,6m)² 3,6m Berechne sinα, wenn gilt cosα = 15 17 Ein Tetraeder-Würfel wird zweimal geworfen und jedes Mal die Ziffer notiert, die auf der Unterseite steht. a) Gib die Ergebnismenge Ω an. b) Schreibe folgende Ereignisse als Menge: A: Es wird zwei Mal dieselbe Zahl gewürfelt B: Es wird mindestens einmal eine 1 gewürfelt. c) Bestimme P(A) und P(B) Aus einer Urne mit zwei weißen und drei roten Kugeln werden nacheinander drei Kugeln ohne zurücklegen gezogen. Zeichne ein passendes Baumdiagramm und lies ab. a) Gib die Wahrscheinlichkeit an, mit der man zuerst eine weiße Kugel zieht. b) Gib die Wahrscheinlichkeit an, mit der man zwei weiße Kugeln und eine rote Kugel zieht. c) Gib die Wahrscheinlichkeit an, mit der man beim zweiten Zug eine weiße Kugel zieht. sin²α + cos²α = 1 sinα = 1 cos²α = 8 17 a) Ω = {(1; 1), (1; ), (1; 3), (1; 4), (; 1), (; ), (; 3), (; 4), (3; 1), (3; ), (3; 3), (3; 4), (4; 1), (4; ), (4; 3), (4;4)} b) A = {(1;1),(;),(3;3),(4;4)} B = {(1; 1), (1; ), (1; 3), (1; 4), (; 1), (3; 1), (4; 1)} c) P(A) = 1 4, P(B) = 7 16 a) P( erste Kugel weiß ) = 5 b) Günstig sind die Ziehungen wwr, wrw und rww P( zwei Kugeln weiß, eine Kugel rot ) = 5 1 4 1 + 5 3 4 1 3 + 3 5 1 1 3 = 0,3 c) Günstig sind die Ziehungen ww und rw (der 3. Zug spielt keine Rolle) P( zweite Kugel weiß ) = 5 1 4 + 3 5 4 = 4 10 = 5 a) Ergänze die fehlenden Wahrscheinlichkeiten im folgenden Baumdiagramm, das zu einem Urnenexperiment gehört. a) b) Beschreibe ein dazu passendes Urnenexperiment Berechne die Längen der Seiten a und c sowie die Höhe h für ein rechtwinkliges Dreieck ABC mit Hypotenuse c, der Seite b = 9,6 cm und Hypotenusenabschnitt q = 4,8 cm. Berechne die Länge des Seite c für ein rechtwinkliges Dreieck ABC mit = 90, a = 7,3 cm und b = 4,7cm. b) In einer Urne befinden sich 8 Kugeln. Fünf gelbe, zwei rote und eine blaue Kugeln. Es wird zweimal ohne Zurücklegen gezogen. Kathetensatz: b = c q => c = b => c = 19, cm; q p = c q = 14,4 cm; a = c p 16,6 cm; (Kathetensatz) h = p q 8,3 cm; (Höhensatz) = 90 => a ist Hypotenuse des Dreiecks Also gilt: a = b + c c = a b c 5,6 cm;

Konstruiere mit Hilfe des Höhensatzes (Kathetensatzes) eine Strecke der Länge 1 cm. Höhensatz: h = p q Man wählt z.b. für p = 4 cm und für q = 3 cm, also gilt: h = 4cm 3cm = 1cm => h = 1 cm Konstruktion: 1. Strecke c mit den oben genannten Hypotenusenabschnitten p = 4 cm und q = 3 cm. Thaleskreis um die Strecke c geschnitten mit dem Lot auf c durch den Punkt L (Höhenfußpunkt) ergibt den Punkt C 3. Die Strecke h = LC = 1 cm Verwandle das untenstehende Rechteck durch eine geeignete Konstruktion mit Hilfe des Kathetensatzes (Höhensatzes) in ein flächengleiches Quadrat. Kathetensatz: z.b.: b = c q Man trägt zunächst die kürzere Seite des Rechtecks nach innen ab (im Bild Punkt L), so dass die längere Seite in zwei Abschnitte (Hypotenusenabschnitte) geteilt wird. Der Punkt C (siehe Abb.)) liegt dann auf: 1. Lot auf die Längere Seite des Rechtecks durch den Punkt L. Thaleskreis um die längere Seite des Rechtecks Die Strecke b = [AC] (siehe Abb.) hat dann nach dem oben genannten Kathetensatz die Länge der Seite des gesuchten Quadrats. Gegeben ist ein Dreieck ABC, von dem die Seitenlängen a = 13 cm, b = 1 cm und c = 4 cm bekannt sind. Entscheide durch Rechnung, ob es dabei um ein rechtwinkliges Dreieck handelt! Wegen a b + c (Kehrsatz des Satzes von Pythagoras) ist das Dreieck nicht rechtwinklig!

Berechne die Kantenlänge s sowie den Oberflächeninhalt O der unten abgebildeten Pyramide mit quadratischer Grundfläche G mit Seitenlänge a = 6,0 cm und der Höhe h = 8,0 cm. Für O gilt: O = G + 4 S = a + 4 0,5 a h Seitenfläche = = a + a ( a ) + h = 36cm + 1 73cm 139 cm Für s gilt: s = h + ( a ) = h + a 4 = h + a ; s = (8cm) + (6cm) = 8cm 9,1cm; h Seitenfläche ( a ) Eine zylindrische Litfaßsäule ist 3,0 m hoch. Sie hat einen Außendurchmesser von d = 14 dm. Wie groß ist die Fläche, die beklebt werden kann? Eine zylinderförmige Regentonne hat einen Innendurchmesser von 8,0 dm und eine Höhe von 1,10 m. a) Wie viel Regenwasser passt maximal in die Tonne? b) Bis zu welcher Höhe ist die Tonne gefüllt, wenn 180 Liter in ihr enthalten sind? Stelle eine Gleichung für den Oberflächeninhalt O eines Tetraeders in Abhängigkeit seiner Kantenlänge a auf. (siehe Abbildung unten) M Zylinder = π r h = π d h 14,1 m a) V Zylinder = G h = π r h = 176 π dm 3 553dm 3 b) V Zyl = π r h h = V = 180dm3 πr π (4dm) 3,6 dm O = 4 0,5 a a ( a ) = a a 3 = a 3 Ein kegelförmiges Sektglas hat den Randdurchmesser 6 cm und eine Höhe von 15 cm. Wie viel Prozent des Gesamtvolumens sind enthalten, wenn es bis zur halben Höhe gefüllt ist. Gegeben ist die Funktion f(x) = (x + ) + 5. Welche Aussagen lassen sich (ohne weitere Rechnung) über den Graphen dieser Funktion machen? Eine Normalparabel mit dem Scheitel S(0 0) hat die Gleichung y = x ; diese Parabel wird nun um drei Einheiten nach rechts und um zwei Einheiten nach oben verschoben. Wie lautet die neue Funktionsgleichung? - Bringe diese auch auf die Form y = ax + bx + c! 1 1 V Flüssigkeit = 3 πr h V gesamt 1 3 πr h = 1 r R = 1 (r R ) = 1 (1,5 3 ) = = 1,5% Der Graph ist eine nach unten geöffnete Normalparabel mit dem Scheitel S( 5)! y = (x 3) + (Scheitelform) ergibt umgeformt: y = x 6x + 11

Gegeben ist die Parabel p durch den Funktionsterm p(x) = 3x + 1x + 9. a) Bestimme den Scheitelpunkt der Parabel p! b) Bestimme ohne Rechnung die Anzahl der Nullstellen der Funktion p! Bestimme die Anzahl der Nullstellen folgender Parabeln: a) f(x) = 7(x + 5) 016 b) g(x) = 0,15x + 17 c) h(x) = 5x x + 3. Gegeben ist die quadratische Funktion durch den Term f(x) = x + 3x + 4. a) Berechne die Lösungen der quadratischen Gleichung x + 3x + 4 = 0. b) Welche geometrische Bedeutung haben die Lösungen für die quadratische Funktion? c) Liegt der Scheitelpunkt des Graphen G f unteroder oberhalb der x-achse? - Begründe deine Antwort ohne den Scheitelpunkt zu bestimmen! a) mittels quadratischer Ergänzung erhält man den umgeformten Funktionsterm p(x) = 3 (x ) + 1; also liegt der Scheitel bei S( 1)! b) Da der Scheitel oberhalb der x-achse liegt und die Parabel nach unten geöffnet ist, muss es zwei Nullstellen geben! a) Die Parabel ist nach oben geöffnet und der Scheitel S( 5 016) liegt unterhalb der x-achse; damit zwei Nullstellen! b) Die Parabel ist nach oben geöffnet und der Scheitel S(0 17) liegt oberhalb der x-achse; damit keine Nullstelle! c) Die Diskriminante D hat den Wert D = b 4ac = = ( ) 4 5 3 = 54 < 0; damit gibt es keine Nullstellen! a) z. B. mit Mitternachtsformel : x 1 = 1 und x = 4! b) Es wurden die Schnittpunkte des Graphen G f mit der x-achse (y = 0) bestimmt; die Lösungen sind daher die Nullstellen der Funktion f! c) Die Parabel ist nach unten geöffnet; außerdem besitzt die Funktion zwei Nullstellen. Daher muss der Scheitel oberhalb der x-achse liegen! Die rechte Abbildung zeigt eine zur Normalparabel kongruente Parabel mit der Gleichung y = f(x) a) Gib einen passenden Term für f(x) an! b) Zeichne die Gerade mit der Gleichung y = 3 x in die Abbildung ein! c) Beschreibe, wie man rechnerisch die Koordinaten der Punkte bestimmen kann, in denen sich die Parabel und die Gerade schneiden! a) y = 5 x. b) Geradengleichung y = mx + t: d. h. m = 1,5 ( nach rechts und 3 nach unten ) und y- Achsenabschnitt t = verwenden! c) Die beiden x-koordinaten der Schnittpunkte erhält man durch Lösen der Gleichung 5 x = 1,5 x; die y-koordinaten durch Einsetzen der beiden Lösungen in den Funktionsterm f(x)!

Eine Parabel wird durch die Funktionsgleichung y = 0,5(x ) + 4 beschrieben. Entscheide, ob die folgenden Aussagen richtig oder falsch sind! - Die Parabel ist symmetrisch zur Geraden y =. - Die Parabel schneidet die y-achse im Punkt P(0 ). - Die Parabel enthält den Punkt Q(6 10). - Die Parabel verläuft für x < unterhalb der x- Achse. - Die Parabel schneidet die x-achse nicht. Bestimme die Lösungsmenge der folgenden Gleichung: x 4 7x 18 = 0 - falsch (x = ) - richtig - falsch (denn f(6) = 4) - richtig - falsch (zwei Nullstellen!) Mit der Substitution u := x ergibt sich die quadratische Gleichung u 7u 18 = 0; deren Lösungen sind u 1 = und u = 9. Durch Resubstituieren (u 1 = = x nicht lösbar!) ergeben als Lösung der Ausgangsgleichung 3 und +3!