Aufgaben zu Kapitel 28

Größe: px
Ab Seite anzeigen:

Download "Aufgaben zu Kapitel 28"

Transkript

1 Aufgaben zu Kapitel 28 Aufgaben zu Kapitel 28 Verständnisfragen Aufgabe 28 Geben Sie bei den folgenden linearen Systemen den Typ des kritischen Punktes, ) an Welche Stabilitätseigenschaften liegen vor? a) x 2 t) xt), b) x t) 4 5 xt), c) x t) 4 xt), 3 2 d) x 4 t) xt) 2 4 Aufgabe 282 Für x, y) aus dem Rechteck R {x, y) x <, y <b} ist die Funktion f definiert durch fx,y) + y 2 a) Geben Sie mit dem Satz von Picard-Lindelöf ein Intervall [ α, α] an, auf dem das Anfangswertproblem y x) fx,yx)), y), genau eine Lösung auf α, α) besitzt b) Wie muss man die Zahl b wählen, damit die Intervalllänge 2α aus a) größtmöglich wird? c) Berechnen Sie die Lösung des Anfangswertproblems Auf welchem Intervall existiert die Lösung? Aufgabe 283 Bestimmen Sie die allgemeine Lösung des Systems x 3 t) Axt) xt) Zeigen Sie dazu: a) λ 2ist doppelte Nullstelle des charakteristischen Polynoms von A und v, ) ist ein zugehöriger Eigenvektor b) Der Ansatz xt) e λt v 2 + te λt v liefert die Gleichung A λe 2 )v 2 v Bestimmen Sie eine Lösung v 2 c) Die Funktionen x t) e λt v und x 2 t) e λt v 2 + tx t) bilden ein Fundamentalsystem Aufgabe 284 Gegeben ist ein Fundamentalsystem {u, u 2 } eines Differenzialgleichungssystems u x) Ax) ux) und v eine weitere Lösung Welches ist die Dimension von A? Ist auch {u, u 2, v} bzw {u + u 2, u u 2 } ein Fundamentalsystem? Aufgabe 285 Bestimmen Sie die Stabilitätsbedingung für das verbesserte Euler-Verfahren siehe Seite 433) Zeigen Sie, dass der Schnitt des Gebiets absoluter Stabilität mit der reellen Achse das Intervall 2, ) ist Aufgabe 286 Gegeben ist die Differenzialgleichung x 2 y x) xy x) + yx), x,a) mit den Randwertvorgaben y ), ya) b, wobei A>und b R gilt Bestimmen Sie ein Fundamentalsystem der Differenzialgleichung Für welche A ist das Randwertproblem eindeutig lösbar? Geben Sie für ein A, für das keine eindeutige Lösbarkeit vorliegt, je einen Wert von b an, für den das System keine bzw unendlich viele Lösungen besitzt Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

2 2 Aufgaben zu Kapitel 28 Rechenaufgaben Aufgabe 287 Bestimmen Sie alle kritischen Punkte der folgenden Differenzialgleichungssysteme a) b) x t) x t) + x 2 t)) 2, x 2 t) x t) + x 2 t), x t) x t) x 2 t), x 2 t) x t)) 2 x 2 t)) 3 Was können Sie ohne weitere Betrachtungen über die Stabilität der Punkte aussagen? Aufgabe 288 Berechnen Sie die ersten drei sukzessiven Iterationen zu dem Anfangswertproblem u x) x ux)) 2, x R, u) Aufgabe 289 Lösen Sie das Anfangswertproblem u x) ux), u) Aufgabe 28 Bestimmen Sie für die Differenzialgleichung x 2 y x) 3 2 xy x) + yx) x 3 a) zunächst die allgemeine Lösung der zugehörigen homogenen linearen Differenzialgleichung durch Reduktion der Ordnung Nutzen Sie, dass y x) x 2 die homogene Differenzialgleichung löst b) Bestimmen Sie dann eine partikuläre Lösung und die allgemeine Lösung der inhomogenen Differenzialgleichung durch Variation der Konstanten c) Geben Sie die Lösung des Anfangswertproblems mit an y) 7 5 und y ) 2 5 Anwendungsprobleme Aufgabe 28 Zwei Populationen x, y mit x,y stehen in Konkurrenz um eine für beide lebenswichtige Ressource Die zeitliche Veränderung der Populationen wird durch das folgende Differenzialgleichungssystem beschrieben: x t) xt) xt) 2 ) yt) y t) yt) 2 2 yt) ) 3 xt) a) Überlegen Sie sich, welchen Einfluss die einzelnen Koeffizienten im System beschreiben Stellen Sie dazu zunächst fest, um was für ein Modell es sich handelt, wenn eine der beiden Populationen nicht vorhanden ist b) Können beide Populationen koexistieren, oder muss eine davon aussterben? Aufgabe 282 Die Verteilung und der Abbau von Alkohol im menschlichen Körper kann durch das folgende einfache Modell beschrieben werden Mit Bt) bezeichnet man die Menge an Alkohol im Blut zum Zeitpunkt t, mit Gt) die Menge an Alkohol im Gewebe Der Austausch des Alkohols zwischen Blut und Gewebe sowie die Ausscheidung werden durch das Differenzialgleichungssystem B t) αbt) βbt) + γ Gt) G t) βbt) γ Gt) Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

3 Aufgaben zu Kapitel 28 3 beschrieben Dabei beschreibt der Koeffizient α die Geschwindigkeit der Ausscheidung aus dem Körper, der Koeffizient β die Geschwindigkeit des Übergangs vom Blut ins Gewebe und der Koeffizient γ die des Übergangs vom Gewebe ins Blut Geben Sie das Verhalten des Alkoholgehalts qualitativ an Was ist bei der numerischen Lösung des Systems zu beachten? Aufgabe 283 Das Anfangswertproblem x t) Axt) mit x), ) soll einmal mit dem Euler-Verfahren und mit dem Rückwärts-Euler-Verfahren 6 2 xt), t >, 8 4 x k+ x k + h Ax k, k, 2, x k+ x k + h Ax k+, k, 2, und der Schrittweite h gelöst werden Führen Sie für beide Verfahren jeweils die ersten 5 Schritte durch Verwenden Sie dazu nach Möglichkeit einen Computer, da die auftretenden Rechnungen unhandlich sind Welche Schlussfolgerungen ziehen Sie? Aufgabe 284 Zu lösen ist das Randwertproblem xu x) + u x) ux) x 2, u), u) Formulieren Sie das Randwertproblem als Variationsgleichung Stellen Sie außerdem das lineare Gleichungssystem auf, das bei der Methode der finiten Elemente mit 4 Hutfunktionen gelöst werden muss Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

4 4 Hinweise zu Kapitel 28 Hinweise zu Kapitel 28 Verständnisfragen Aufgabe 28 Bestimmen Sie jeweils die Eigenwerte der Matrix und konsultieren Sie die Übersicht auf Seite 939 Aufgabe 282 Bestimmen Sie das Maximum von f auf R und verwenden Sie die Aussage des Satzes von Picard- Lindelöf Die Differenzialgleichung kann durch Separation gelöst werden Aufgabe 283 Für a) und b) muss nur lineare Algebra verwendet werden Stellen Sie für c) die Wronski-Determinante auf Aufgabe 284 Wie viele Elemente hat ein Fundamentalsystem eines n n-differenzialgleichungssystems? Aufgabe 285 Wenden Sie das verbesserte Euler-Verfahren auf die Testprobleme für Stabilitätsuntersuchungen an Aufgabe 286 Es ist eine Euler sche Differenzialgleichung, deren Fundamentalsystem durch den Ansatz yx) x λ bestimmt werden kann Versuchen Sie, die Randwerte durch eine Linearkombination der Funktionen des Fundamentalsystems zu erfüllen Rechenaufgaben Aufgabe 287 Die kritischen Punkte bestimmen Sie durch Lösen der Gleichung x Für die Stabilität des kritischen Punkts z müssen Sie die Eigenwerte von F z) bestimmen, wobei F die Funktion ist, die das System beschreibt Aufgabe 288 Formulieren Sie das Anfangswertproblem als Integralgleichung und leiten Sie daraus eine Fixpunktgleichung her Aufgabe 289 Verwenden Sie den Exponentialansatz ux) v expλx) mit Eigenwert λ und Eigenvektor v Aufgabe 28 Wählen Sie bei der Variation der Konstanten Forderungen so, dass keine zweiten oder noch höheren Ableitungen der freien Funktionen auftreten Anwendungsprobleme Aufgabe 28 Bestimmen Sie kritische Punkte des Differenzialgleichungssystems Welche davon sind stabil? Interpretieren Sie auf dieser Grundlage das Verhalten der Trajektorien Aufgabe 282 Bestimmen Sie die allgemeine Lösung des Systems durch einen Exponentialansatz Überlegen Sie sich die Vorzeichen der Eigenwerte der zugehörigen Matrix Aufgabe 283 Lösen Sie die Gleichung des Rückwärts-Euler-Verfahrens nach x k+ auf Aufgabe 284 Nutzen Sie xu x) + u x) xu x)) und verwenden Sie partielle Integration zur Herleitung der Variationsgleichung Schreiben Sie die Hutfunktionen explizit auf und bestimmen damit die Koeffizienten im Gleichungssystem Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

5 Lösungen zu Kapitel 28 5 Lösungen zu Kapitel 28 Verständnisfragen Aufgabe 28 a) Instabiler Sattelpunkt, b) instabiler Spiralpunkt, c) asymptotisch stabiler uneigentlicher Knoten, d) stabiles Zentrum Aufgabe 282 a) α b/ + + b) 2 ), b) Maximum für b 2, c) yx) tanx + π/4) für x 3π/4,π/4) Aufgabe 283 a), c) siehe ausführlicher Lösungsweg, b) v 2, ) Aufgabe 284 Die Dimension der Matrix ist 2 {u, u 2, v} ist kein Fundamentalsystem, {u + u 2, u u 2 } ist ein Fundamentalsystem Aufgabe 285 Die Stabilitätsbedingung lautet + hλ + hλ)2 2 < Aufgabe 286 Ein Fundamentalsystem ist durch {x, x ln x} gegeben Für A e ist das Randwertproblem eindeutig lösbar Für A b e gibt es unendlich viele Lösungen, ansonsten ist das Randwertproblem unlösbar Rechenaufgaben Aufgabe 287 a) Kritische Punkte z, ) und z 2, ) Beide sind instabil b) Kritischer Punkt ist z, ), der asymptotisch stabil ist Aufgabe 288 Die Iterierten sind u x) x + x2 2, u 2 x) x x2 2 3 x3 + 4 x4 2 x5, u 3 x) x x2 4 3 x x x x x x x9 + 4 x 44 x Aufgabe 289 ux) e x, cos x sin x,cos x + sin x), x R Aufgabe 28 a) y h x) c x 2 +x 2 x für x>, b) yx) 2 5 x 3 +c x 2 +c 2 x, x>, c) c und c 2 2 Anwendungsprobleme Aufgabe 28 a) Siehe ausführlichen Lösungsweg, b) ja, asymptotisch nehmen die Populationen den Wert x, y) 3/4, /2) an Aufgabe 282 Die Lösung ist Bt) c γ + λ ) e λt + c 2 γ + λ 2 ) e λ2t, Gt) c β e λ t + c 2 β e λ 2 t für t>mit zwei Konstanten c, c 2 R Aufgabe 283 Siehe ausführlichen Lösungsweg Aufgabe 284 Das Gleichungssystem ist c c c , c 4 97 wobei die c j die Koeffizienten der entsprechenden Hutfunktion sind Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

6 6 Lösungswege zu Kapitel 28 Lösungswege zu Kapitel 28 Verständnisfragen Aufgabe 28 a) Das charakteristische Polynom ist pλ) λ )λ 2 λ + )λ 2) Es gibt zwei reelle Eigenwerte mit unterschiedlichen Vorzeichen Es handelt sich um einen Sattelpunkt, der stets instabil ist b) Das charakteristische Polynom ist bis auf einen Faktor /9) pλ) 3λ 4)3λ 2) + 3λ 3) λ 3 3i)3λ 3 + 3i) Es liegen die konjugiert komplexen Eigenwerte ± i vor, daher handelt es sich um einen Spiralpunkt Da der Realteil der Eigenwerte positiv ist, laufen die Trajektorien aus dem kritischen Punkt heraus Der kritische Punkt ist instabil c) Das charakteristische Polynom lautet bis auf einen Faktor /9) pλ) 3λ + 4)3λ + 2) + 3λ + 3) 2 Wir haben den einzigen Eigenwert λ Wir bestimmen den zugehörigen Eigenraum durch Lösen des homogenen linearen Gleichungssystems [ ] 4 + 3E 2 2 v Wir erhalten die Lösung v t, ), t R Der Eigenraum hat also die Dimension Damit liegt ein uneigentlicher Knoten im 2 Fall vor Da der Eigenwert ein negatives Vorzeichen hat, ist der kritische Punkt asymptotisch stabil d) Das charakteristische Polynom ist pλ) λ 4)λ + 4) + 2 λ Es liegen die komplex konjugierten Eigenwerte ±2i vor Da der Realteil der Eigenwerte null ist, handelt es sich um ein Zentrum Der Punkt ist stabil, aber nicht asymptotisch stabil Aufgabe 282 a) Da für x, y) R gilt y b, + b) mit b>, so folgt fx,y) + y b) 2 Damit ist die Konstante M aus dem Satz von Picard-Lindelöf gleich + + b) 2 Mit a folgt damit denn + + b) 2 >b α min{, b M }min{, b + + b) 2, b) Wir bestimmen das Maximum von α als Funktion von b b + + b) 2 } α b) b2 + 2b + 2 b2b + 2) 2 b 2 b 2 + 2b + 2) 2 b 2 + 2b + 2) 2 Daher nimmt α für b 2 ein Extremum an Es ist α 2 2) > Da α) und lim αb), handelt es sich um ein Maximum b Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

7 Lösungswege zu Kapitel 28 7 c) Durch Separation erhalten wir aus der Differenzialgleichung dy x + C + y2 Damit ergibt sich die allgemeine Lösung Durch Einsetzen der Anfangswerte folgt yx) tanx + C) yx) tan x + π ) 4 Diese Funktion existiert auf dem Intervall 3π/4,π/4) In Dezimaldarstellung ist α 2) 27 und π/ Aufgabe 283 a) Das charakteristische Polynom ergibt sich als deta λe 2 ) 3 λ) λ) + λ + 2) 2 Damit ist 2 eine doppelte Nullstelle Das Lösen des LGS A + 2E 2 )v v liefert den Eigenvektor v, ) b) Aus der Forderung x t) λe λt v 2 + e λt v + tλe λt v! Axt) e λt Av 2 + te λt Av ergibt sich wegen Av λv das LGS e λt v e λt Av 2 λe λt v 2 e λt A λe 2 ) v 2 Lösen dieses LGS liefert zum Beispiel den Vektor v 2, ) c) Die Wronski-Determinante von x, x 2 ist an der Stelle null von null verschieden, Daher bilden diese beiden Lösungen ein Fundamentalsystem W) detv, v 2 )) Aufgabe 284 Es handelt sich um ein lineares homogenes System Der Vektorraum der Lösungen hat die Dimension n, wenn Ax) eine n n-matrix ist Nach Voraussetzung ist {u, u 2 } ein Fundamentalsystem, dh eine Basis des Lösungsraumes Daher ist n 2 Die drei Vektoren u, u 2, v des 2-dimensionalen Lösungsraumes sind stets linear abhängig, können also keine Basis und daher auch kein Fundamentalsystem sein Man rechnet leicht nach, dass die beiden Elemente u + u 2 und u u 2 des Lösungsraumes linear unabhängig sind und daher ebenfalls ein Fundamentalsystem bilden Aufgabe 285 Das verbesserte Euler-Verfahren ist durch die Gleichungen gegeben Wir wenden dieses Verfahren auf das Testproblem k ) j+ fx j,y j ), k 2) j+ fx j+,y j + hk ) j+ ), y j+ y j + h ) k ) 2 j+ + k2) j+ y x) λ yx), y) Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

8 8 Lösungswege zu Kapitel 28 explizit an Dann ergibt sich Damit ist die Stabilitätsbedingung k ) f, ) λ, k 2) fx, + hk ) ) f h, + hλ) λ + hλ), y + h 2 hλ)2 λ + λ + hλ)) + hλ + 2 hλ)2 + hλ + 2 < Wir setzen nun μ hλ Esist + μ + μ2 2 2 Die Stabilitätsbedingung ist daher für μ R äquivalent zu μ + ) 2 < Die Lösungsmenge dieser Ungleichung ist das Intervall 2, ) [ ] μ + ) 2 + Aufgabe 286 Es handelt sich um eine Euler sche Differenzialgleichung Der Ansatz yx) x λ führt auf die Gleichung λλ ) λ + λ 2 2λ + λ ) 2 Ein Fundamentalsystem ist daher durch {x, x ln x} gegeben Die allgemeine Lösung der Differenzialgleichung ist mit Konstanten c, c 2 R Die Ableitung der Lösung ist Aus der Anfangsbedingung y ) folgt somit Damit liefert die Bedingung an der Stelle A den Ausdruck yx) c x + c 2 x ln x, x >, y x) c + c 2 + ln x) c + c 2 + ) c + c 2 b c A + c )A ln A A ln A + c A ln A) Ist ln A, dh A e, so können wir diese Gleichung nach c auflösen und erhalten eine eindeutig bestimmte Lösung des Randwertproblems Ist A e, so lautet die Gleichung b elne+ e Ist b e, so kann also c R beliebig gewählt werden, es gibt unendlich viele Lösungen Für b e gibt es keine Lösung des Randwertproblems Rechenaufgaben Aufgabe 287 a) Die Forderungen x t) x 2 t) für alle t führt auf die Gleichungen x + x 2 2, x + x 2, wobei wir die Abhängigkeit von t unterdrückt haben Einsetzen der zweiten Gleichung in die erste liefert x 2 x 2 ) So erhalten wir die kritischen Punkte z, ) und z 2, ) Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

9 Lösungswege zu Kapitel 28 9 Die Ableitung der Funktion F, die das System beschreibt, ist F x) 2x2 Daher gilt F z ) Diese Matrix besitzt den doppelten Eigenwert Daher ist dieser kritische Punkt instabil Im anderen kritischen Punkt ist F z 2 ) 2 Diese Matrix besitzt die Eigenwerte ± 2 Ein Eigenwert ist negativ, der andere positiv, es handelt sich also um einen Sattelpunkt, der stets instabil ist b) Die Forderung x t) führt auf die Gleichungen x x 2, x 2 x3 2, wobei wir wieder die Abhängigkeit von t weggelassen haben Die erste Gleichung kann nur für x 2 erfüllt sein, es gilt dann x /x 2 Damit erhält man aus der zweiten Gleichung x 2 Es gibt daher nur den einzigen kritischen Punkt z, ) Die Ableitung der Funktion F ist hier Daher gilt F x2 x x) 2x 3x2 2 F z) 2 3 Diese Matrix hat die Eigenwerte 2 ± i Daher handelt es sich um einen asymptotisch stabilen Spiralpunkt Aufgabe 288 Durch Integration erhalten wir aus der Differenzialgleichung die Integralgleichung x ux) + [ ξ uξ)) 2] dξ Wir starten mit der konstanten Funktion u x) Damit ergibt sich x u x) + ξ ) dξ x + x2 2, x u 2 x) + ξ ξ + ξ 2 2 dξ 2 x x2 2 3 x3 + 4 x4 2 x5, x u 3 x) + ξ u 2 ξ)) 2) dξ x x2 4 3 x x x x x x x9 + 4 x 44 x Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

10 Lösungswege zu Kapitel 28 Aufgabe 289 Zunächst muss das charakteristische Polynom bestimmt werden: Also gibt es die Eigenwerte λ und λ 2,3 ± i λ pλ) det λ λ λ) λ) 2 + ) λ) λ i)λ + i) Aus den linearen Gleichungssystemen A λ j E 3 ) v O, erhalten wir die Eigenvektoren v,, ) zu λ, v 2, i, ) zu λ 2 + i, v 3, i, ) zu λ 2 i Die allgemeine komplexwertige Lösung der Differenzialgleichung ist demnach ux) c e x + c 2 i e +i)x + c 3 i e i)x für x R mit Konstanten c, c 2, c 3 C Um diese Konstanten zu bestimmen, setzen wir die Anfangswerte in die allgemeine Lösung ein und erhalten dass lineare Gleichungssystem c i i c 2 c 3 Durch Anwendung des Gauß schen Lösungsverfahrens bekommen wir die Lösung c, c 2 i)/2 und c 3 + i)/2 Insgesamt ergibt sich dadurch die Lösung Aufgabe 28 a) Mit dem Ansatz zur Reduktion der Ordnung ist ux) 2e x i + )e +i)x i )e i)x 2 i)e +i)x + + i)e i)x e x cos x sin x, x R cos x + sin x yx) zx)y x) x 2 zx) y x) z x)y x) + zx)y x) x2 z x) + 2x zx), y x) z x)y x) + 2z x)y x) + zx)y x) x 2 z x) + 4xz x) + 2 zx) Dies setzen wir in die homogene Differenzialgleichung ein: x 2 x 2 z x) + 4xz x) + 2 zx)) 3 2 xx2 z x) + 2x zx)) + x 2 zx) x 4 z x) x3 z x) Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

11 Lösungswege zu Kapitel 28 Somit erhalten wir die Differenzialgleichung xz x) 5 2 z x), die die Lösung z x) 3/2)x 5/2 besitzt Also folgt yx) x 2 zx) x 2 x 3/2 x für x> Die allgemeine Lösung der zugehörigen homogenen Differenzialgleichung ist also y h x) c x 2 + x 2 x, x > b) Mit dem Ansatz Variation der Konstanten ist y p x) Cx)x 2 + Dx) x Ableiten liefert y p x) C x) x 2 + D x) x + 2Cx)x + 2 Dx) x /2 Wir fordern nun und erhalten dann die zweite Ableitung C x) x 2 + D x) x, y p x) 2C x) x + 2 D x) x /2 + 2Cx) 4 Dx) x 3/2 Setzen wir diese Ausdrücke in die Differenzialgleichung ein, so ergibt sich nach einiger Rechnung die zweite Forderung Insgesamt ist somit das lineare Gleichungssystem x 2 x /2 zu lösen Wir erhalten Somit ist und dies liefert die partikuläre Lösung C x) 2 3 x 3 2x 3 C x) + 2 x3/2 D x) 2x 3 2 x3/2 Die allgemeine Lösung der Differenzialgleichung ist also c) Die Ableitung der allgemeinen Lösung ist ) C ) x) D x) x 3 und D x) 2 3 x3/2 Cx) 2 3 x und Dx) 4 5 x5/2, y p x) 2 3 x2 4 5 x3 2 5 x3 yx) 2 5 x3 + c x 2 + c 2 x, x > y x) 6 5 x2 + 2c x + c 2 2 x Durch Einsetzen der Anfangswerte erhalten wir das lineare Gleichungssystem c 3 4 c 2 6 mit der Lösung c und c 2 2 Somit haben wir die Lösung des Anfangswertproblems gefunden, yx) 2 5 x3 + x x, x > Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

12 2 Lösungswege zu Kapitel 28 Anwendungsprobleme Aufgabe 28 a) Ist eine der Populationen nicht vorhanden etwa y ), so liegt für die andere ein logistisches Wachstumsmodell vor, x t) k xt) X xt)) Dabei ist k eine Wachstumskonstante und X die Obergrenze für die Population Für die Population x ist die Wachstumskonstante, für die Population y ist sie /2 Die Obergrenze liegt für beide bei Der zusätzliche Term beschreibt die gegenseitige Beeinflussung der beiden Populationen Da beide auf dieselbe Ressource zugreifen und dadurch ihr Wachstum gegenseitig behindern, ist der entsprechende Koeffizient negativ b) Um diese Frage zu beantworten, stellen wir zunächst fest, wo kritische Punkte liegen Das Gleichungssystem x x 2 ) y und y 2 2 y ) 3 x hat vier verschiedene Lösungen z x, y) : z, z 2, 3/4 z 3, z 4 /2 In z sind beide Populationen ausgestorben, in z 2 und z 3 ist jeweils eine ausgestorben und in z 4 koexistieren beide Damit ist schon einmal die Frage, ob beide koexistieren können, grundsätzlich mit ja zu beantworten Um ein vollständigeres Bild zu erhalten, betrachten wir noch das Stabilitätsverhalten der Lösungen in der Nähe dieser kritischen Punkte Das Differenzialgleichungssystem wird durch die Funktion F mit x x F x, y) 2 2 xy ) 2 y 2 y2 3 xy beschrieben Deren Ableitung ist F 2x x, y) 2 y 2 x ) 3 y 2 y 3 x Für die ersten drei kritischen Punkte gilt F z ), /2 F /2 z 2 ), /6 F /2 z 3 ) /3 /2 In allen drei Fällen können die Eigenwerte direkt an der Matrix abgelesen werden In z liegen zwei positive Eigenwerte vor, es handelt sich um einen instabilen Knotenpunkt In z 2 und z 3 ist je ein Eigenwert positiv, der andere negativ Hier liegen Sattelpunkte vor, die ebenfalls instabil sind Die einzige Trajektorie, die in diese kritischen Punkte hineinführt, ist die Lösung wenn eine der beiden Populationen nicht vorhanden ist In z 4 schließlich gilt Das charakteristische Polynom ist F z 4 ) 3/4 3/8 /6 /4 λ + 3 ) λ + ) λ 2 + λ + 8 λ )λ ) Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

13 Lösungswege zu Kapitel 28 3 Beide Eigenwerte /2) ± / 8) sind negativ, also handelt es sich um einen asymptotisch stabilen Punkt Zumindest für Ausgangssituationen in einer Umgebung von z 4 gilt also, dass beide Populationen koexistieren können Die Populationen nähern sich dabei den Werten x 4 3/4 und y 4 /2 an Allgemeiner kann man sogar zeigen, dass alle Trajektorien außer denjenigen, die in die Sattelpunkte hineinlaufen, den asymptotisch stabilen Punkt z 4 als Grenzwert besitzen Wer mehr zu diesem Modell erfahren möchte, findet im Abschnitt 94 des Buches William E Boyce, Richard C DiPrima: Gewöhnliche Differenzialgleichungen Spektrum Akademischer Verlag, 2, einen guten Einstiegspunkt Aufgabe 282 In Matrixform stellt sich das Differenzialgleichungssystem dar als B ) t) α + β) γ Bt) G t) β γ Gt) Das charakteristische Polynom der Matrix berechnet sich zu Als Eigenwerte ergeben sich demnach pλ) λ + α + β)λ + γ) βγ λ 2 + α + β + γ)λ+ αγ λ /2 α + β + γ 2 α + β + γ 2 ± αγ 2 Beide Eigenwerte sind demnach reell und negativ Mit der zweiten Zeile der Matrix berechnen wir die zugehörigen Eigenvektoren v j v j,v 2j ), βv j γ + λ j )v 2j, j, 2, und daher Damit haben wir die Lösung γ + λj v j, j, 2 β für t> mit zwei Konstanten c, c 2 R Bt) c γ + λ ) e λt + c 2 γ + λ 2 ) e λ2t, Gt) c β e λ t + c 2 β e λ 2 t Da beide Eigenwerte negativ sind, liegt eine exponentielle Abnahme des Alkoholgehalts vor Ist αγ << β, so ist λ Wir haben es in diesem Fall mit einem steifen Differenzialgleichungssystem zu tun In der Anwendung bedeutet dies, dass die Ausscheidung und der Übergang vom Gewebe ins Blut sehr viel schwächer ausfallen, als der Übergang vom Blut ins Gewebe Aufgabe 283 Die Iterationen für das Euler-Verfahren können direkt durchgeführt werden Es ergibt sich k x k x k Für das Rückwärts-Euler-Verfahren lösen wir zunächst die Gleichung nach x k+ auf Es ergibt sich x k+ E 2 h A) x k x k Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

14 4 Lösungswege zu Kapitel 28 Die Iterationen können damit ausgerechnet werden und ergeben k x k x k Die Ergebnisse lassen darauf schließen, dass ein steifes Differenzialgleichungssystem vorliegt Mit der Schrittweite h ist das Euler-Verfahren für dieses System instabil, das Rückwärts-Euler-Verfahren dagegen stabil Die Stabilitätsbedingung für das Rückwärts-Euler-Verfahren lautet übrigens hλ < Diese Bedingung ist für jedes λ mit Re λ) < erfüllt Aufgabe 284 Zunächst beachten wir xu x) + u x) d xu x) ) dx Um die Variationsgleichung herzuleiten, multiplizieren wir die Differenzialgleichung mit eine Funktion v C [, ]), die außerdem v) v) erfüllt, [ xu x) ) ] vx) ux) vx) dx x 2 vx) dx Den ersten Term können wir partiell integrieren, xu x) ) vx) dx [ xu x) vx) ] xu x) v x) dx xu x) v x) dx Daher folgt [ xu x) v x) + ux) vx) ] dx x 2 vx) dx Dies ist die Variationsgleichung Die Diskretisierungspunkte sind x j j/5, j,,5 Die Hutfunktion ϕ j, j,,4, und ihre Ableitungen sind gegeben durch 5x j +, x j <x x j, ϕ j x) j + 5x, x j <x<x j+,, sonst, 5, x j <x x j, ϕ j x) 5, x j <x<x j+,, sonst Die Einträge der FEM-Matrix A a jk ) R 4 4 sind nun gegeben als a jk [ ] xϕ k x) ϕ j x) + ϕ kx) ϕ j x) dx Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

15 Lösungswege zu Kapitel 28 5 für j,k,,4 Da die Hutfunktion ϕ j außerhalb des Intervalls x j,x j+ ) null ist, verschwinden diejenigen a jk mit j k > Für die übrigen ergibt sich: a jj xj+ x j xj + + [ xϕ j x))2 + ϕ j x)) 2] dx x j x 5 2 dx + xj xj+ x j x j 5x j + ) 2 dx xj+ x j j + 5x) 2 dx x 5) 2 dx j ) + j + ) j xj+ [ ] a jj+ xϕ j x) ϕ j+ x) + ϕ j x) ϕ j+ x) dx x j xj+ + x j xj+ x j x 5) 5dx j + 5x)5x j)dx j + ) j 7 5 Wegen der Symmetrie gilt a j+ j a jj+ Die Matrix des Systems ist demnach durch A gegeben Für die rechte Seite sind noch die folgenden Integrale zu berechnen: xj x 2 ϕ j x) dx x 2 5x j + ) dx x j Somit ergibt sich die rechte Seite des LGS zu xj+ + x 2 j + 5x)dx x j ) j 2 25 j ) + j j j b Arens et al, Mathematik, ISBN: , Spektrum Akademischer Verlag, 28

Kapitel 28. Aufgaben. Verständnisfragen

Kapitel 28. Aufgaben. Verständnisfragen Kapitel 28 Aufgaben Verständnisfragen Aufgabe 28. Geben Sie bei den folgenden linearen Systemen den Typ des kritischen Punktes (, ) an. Welche Stabilitätseigenschaften liegen vor? (a) x 2 (t) = x(t), (b)

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur Mathematik II sskizzen zur Klausur Mathematik II vom..7 Aufgabe Es sei die Ebene im R 3 gegeben. E = +λ 3 + µ λ,µ R (a) Geben Sie die Hesse-Normalform der Ebene E an. (b) Berechnen Sie die orthogonale Projektion Π E

Mehr

1.5 Lineare Differentialgleichungen zweiter Ordnung

1.5 Lineare Differentialgleichungen zweiter Ordnung 16 Kapitel 1. Differentialgleichungen 1.5 Lineare Differentialgleichungen zweiter Ordnung Eine lineare Differentialgleichung zweiter Ordnung hat die Form y +a 1 (x)y +a 0 (x)y = b(x), wobei a 1,a 0,b:I

Mehr

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) Institut für Analysis Priv.-Doz. Dr. Peer Kunstmann Markus Antoni WS 22/23 Bachelor Modulprüfung Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Frühjahr 2014 T R, M.S. 06.03.2014 Bachelor-Modulprüfung Aufgabe

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Systeme gewöhnlicher Di erentialgleichungen. Ordnung

Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme. Ordnung De nition Für eine gegebene n n-matrix A(x) =(a ij (x)) n i,j=, deren Elemente Funktionen von x sind und einer gegebenen rechten Seite

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25. A Technische Universität Berlin Fakultät II Institut für Mathematik WS 3/4 Eppler, Richter, Scherfner, Seiler, Zorn 5. Februar 4 Februar Klausur (Rechenteil) Lösungen: Lineare Algebra für Ingenieure Name:.......................................

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 8.1 (Herbst 2002, Thema 1, Aufgabe 6) y = 3y +2x x 8.2 (Frühjahr 2005, Thema 1, Aufgabe 6) (x > 0) y(1)

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

Lineare Systeme 1. Ordnung

Lineare Systeme 1. Ordnung KAPITEL 7 Lineare Systeme. Ordnung 7. Allgemeine Aussagen über lineare Systeme. Ordnung...... 235 7.2 Homogene lineare Systeme. Ordnung mit konstanten Koeffizienten237 7.3 Inhomogenes System. Ordnung mit

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen

Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 5/6 6..5 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt

Mehr

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Höhere Mathematik II für den Studiengang BAP Hausaufgabe 2 04.11.2008 1 Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Lösungen 1. Geben Sie die allgemeine Lösung der folgenden Differenzialgleichungen

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten

Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Robert Labus Wintersemester 01/013 Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Definition Ist n N eine natürliche Zahl und a k R für k = 1;...; n, dann wird die Abbildung

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 10: Gewöhnliche Differentialgleichungen Prof. Dr. Erich Walter Farkas Mathematik I+II, 10. Diff. Gl. 1 / 59 1 Differentialgleichungen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 B Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 April Klausur (Rechenteil Lösungen Lineare Algebra für Ingenieure Name:.......................................

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Mathematik III Vorlesung 5,

Mathematik III Vorlesung 5, Mathematik III Vorlesung 5, 03.11.2006 Markus Nemetz November 2006 1 Vorbemerkung Prof. Panholzer hat die illustrierenden Beispiele aus der zur VO empfohlenen Lektüre gebracht - sie sind hier nicht angeführt.

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch:

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch: Aufgabe 8 Punkte Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R des folgenden linearen Gleichungssystems: 4x + x + 3x 3 =, x + ax 3 =, ax + x 3 =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge Institut für Analysis SS 5 PD Dr. Peer Christian Kunstmann 7.9.5 Silvana Avramska-Lukarska Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Bachelor-Modulprüfung Lösungsvorschläge

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Vorbemerkungen. Eine gewöhnliche Differentialgleichung ist eine Gleichung, wo neben einer gesuchten Funktion y(x) auch deren Ableitungen y, y etc. auftreten, z.b. y

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr