Rückblick auf die letzte Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Rückblick auf die letzte Vorlesung"

Transkript

1 Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung 1 Lineare Differentialgleichungen höherer Ordnung 2 Bestimmung des Fundamentalsystems 3 Alternative Verfahren 4 Superpositionsprinzip

2 Lineare Differentialgleichungen höherer Ordnung Gegeben sei eine skalare, lineare Differentialgleichung n ter Ordnung: L[y] = y (n) (t) + a n 1 (t)y (n 1) (t) + + a 0 (t)y(t) = h(t) wobei a k (t), k = 0,,n 1 stetige Funktionen auf R seien Gleichungen dieser Art lassen sich stets als lineare Differentialgleichungssysteme d dt y 1 y 2 y n = a 0 a 1 a n 1 y 1 y 2 y n (3) Lineare Differentialgleichungen höherer Ordnung II mit schreiben y k (t) := y (k 1) (t), k = 1, 2,,n

3 Die homogene Differentialgleichung Definition Ein Funktionensystem (y 1 (t),,y n (t)) heißt ein Fundamentalsystem der Differentialgleichung L[y] = h, falls die folgenden Eigenschaften erfüllt sind: 1) Die Funktion y k (t) löst die homogene Gleichung, dh L[y k ] = 0, k = 1,,n Die homogene Differentialgleichung II Definition 2) Für die Wronski Determinante W(t) = det y 1 y n y 1 y n y (n 1) 1 y n (n 1) gilt: W(t 0 ) 0 für mindestens ein t 0 R

4 Wronski Determinante Bemerkung 1) Ist W(t 0 ) 0, so gilt auch für alle t R: W(t) 0 2) Die Funktion W(t) genügt der Differentialgleichung W (t) = a n 1 (t)w(t) und daher folgt direkt W(t) = W(t 0 ) exp t a n 1 (τ)dτ Sei C(t) die zugehörige Koeffizientenmatrix vgl (3) Dann gilt n detc(t) = c ii (t) = a n 1 (t) i=1 t 0 Fundamentalsysteme und homogene Gleichung Bemerkung (Fortsetzung) 3) Ein Fundamentalsystem (y 1,,y n ) läßt sich durch Lösen der folgenden n Anfangswertaufgaben (k = 1,, n) bestimmen: L[y k ] = 0 y (i) k (t) = { 0 : i k 1 1 : i = k 1 (i = 0,,n 1) 4) Ist (y 1,,y n ) ein Fundamentalsystem, so lautet die allgemeine Lösung der inhomogenen Gleichung n y(t) = y p (t) + c k y k (t) k=1 mit einer spezielle Lösung y p (t) der inhomogenen Gleichung

5 Reduktionsverfahren Ähnlich wie den Systemem erster Ordnung kann man ein Reduktionsverfahren angeben, darauf wollen wir aber verzichten Die inhomogene Differentialgleichung Ist das Funktionensystem (y 1,,y n ) ein Fundamentalsystem, so ist die Matrix y (0) 1 y (0) n Y(t) = y (n 1) 1 y n (n 1) eine Fundamentalmatrix des zugehörigen Systems erster Ordnung Die Methode der Variation der Konstanten ergibt dann das lineare Differentialgleichungssystem:

6 Inhomogene Differentialgleichung Variation der Konstanten y (0) 1 y n (0) y (n 2) 1 y n (n 2) y (n 1) 1 y n (n 1) c 1 c n 1 c n = 0 0 h(t) Greenschen Funktion bzw Grundlösungsverfahren Gegeben sei die inhomogene Gleichung n ter Ordnung mit konstanten Koeffizienten L[y] = y (n) (t) + a n 1 y (n 1) (t) + + a 0 y(t) = h(t)

7 Greenschen Funktion bzw Grundlösungsverfahren II Satz Sei w(t) die Lösung der Anfangswertaufgabe L[w] = 0, w (k) (t 0 ) = { 0 : k = 0,,n 2 1 : k = n 1 Dann ist eine spezielle Lösung y p (t) der inhomogenen Gleichung gegeben durch y p (t) = t G(t, τ)h(τ)dτ t 0 G(t, τ) = w(t τ + t 0 ) Lineare Gleichungen n ter Ordnung mit konstanten Koeffizienten Gegeben sei die homogenen Gleichung L[y] = 0 mit a i R, i = 0,,n 1 und a n = 1 Ansatz zur Berechnung eines Fundamentalsystems: Daraus folgt y(t) = e λt (4) ( n ) L[y] = a k λ k k=0 Der Ansatz (4) liefert also eine Lösung, falls λ eine Nullstelle der so genannten charakteristischen Gleichung e λt p(λ) := n a k λ k = 0 k=0 ist

8 Charakteristische Gleichung Satz 1) Ist λ k eine r k fache reelle Nullstelle von p(λ), so existieren die folgenden Lösungen der homogenen Gleichung y k1 (t) = e λ kt y k2 (t) = t e λ kt y k,rk (t) = t r k 1 e λ kt 2) Ist λ k eine r k fache komplexe Nullstelle, λ k / R, so sind die reellen Lösungen mit λ k = α k + iβ k gegeben durch Charakteristische Gleichung II Satz (Fortsetzung) 2) Ist λ k eine r k fache komplexe Nullstelle, λ k / R, so sind die reellen Lösungen mit λ k = α k + iβ k gegeben durch y kj (t) = t j 1 e α kt cos(β k t) y lj (t) = t j 1 e α kt sin(β k t) und j = 1,,r k 3) Die nach 1) und 2) gebildeten Lösungen bilden ein Fundamentalsystem von L[y] = 0

9 Beispiel einer homogenen Gleichung Beispiel 1) Gegeben sei die homogene Gleichung vierter Ordnung y (4) + 2y + y = 0 Die zugehörige charakteristische Gleichung lautet dann: λ 4 + 2λ = 0 und besitzt die Nullstellen λ 1,2 = i, λ 3,4 = i Ein Fundamentalsystem ist daher y 1 (t) = cos t y 2 (t) = sint y 3 (t) = t cos t y 4 (t) = t sint Beispiel einer homogenen Gleichung II Beispiel (Fortsetzung) 2) Die homogenen Gleichung y 2y + y = 0 besitzt die charakteristische Gleichung λ 2 2λ + 1 = 0 mit der doppelten Nullstelle λ = 1 Die allgemeine Lösung ist daher y h (t) = c 1 e t + c 2 te t

10 Eine inhomogene Gleichung Beispiel Wir betrachten nun die inhomogene Gleichung y 2y + y = et t 2 Variation der Konstanten verwendet den Ansatz: y p (t) = c 1 (t)e t + c 2 (t)te t Gelöst werden muss dann das DGL System c 1e t + c 2te t = 0 c 1e t + c 2(1 + t)e t = et t 2 Eine inhomogene Gleichung II Beispiel (Fortsetzung) Man berechnet direkt: Eine spezielle Lösung ist daher ( y p (t) = c 1 (t) = ln t c 2 = 1 t ) ln t + 1 e t

11 Methode der Greenschen Funktion im Beispiel Beispiel Wir betrachten wieder die inhomogene Gleichung y 2y + y = et t 2 und verwenden die Methode der Greenschen Funktion: Die Lösung von w 2w + w = 0, w(1) = 0, w (1) = 1 ist gegeben durch w(t) = (t 1)e t 1 Also gilt für die Greensche Funktion G(t, τ) = w(t τ + 1) = (t τ)e t τ Methode der Greenschen Funktion im Beispiel II Beispiel (Fortsetzung) Daraus folgt y p (t) = t 1 t τ eτ (t τ)e τ 2dτ = e t ( 1 + t ln t )

12 Spezieller Ansatz bei speziellen Inhomogenität Bei Inhomogenitäten der Form m h(t) = e µt β j t j kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: 1) Ist µ keine Nullstelle der charakteristischen Gleichung p(λ): j=0 m y p (t) = e µt γ j t j j=0 mit den freien Parametern γ j 2) Ist µ eine r fache Nullstelle von p(λ): m y p (t) = e µt t r γ j t j j=0 Spezieller Ansatz Beispiel Wir betrachten die Gleichung y y = te t Die charakteristische Gleichung ist p(λ) = λ 2 1 = 0 und µ = 1 ist eine einfache Nullstelle Ansatz: y p (t) = e t (γ 0 t + γ 1 t 2 ) Einsetzen in die DGL ergibt (2(γ 0 + γ 1 ) + (γ 0 + 4γ 1 )t + γ 1 t 2 )e t (γ 0 t + γ 1 t 2 )e t = te t Umsortieren: (2(γ 0 + γ 1 ) + 4γ 1 t)e t = te t

13 Spezieller Ansatz II Beispiel (Fortsetzung) Daraus folgt γ 0 = γ 1 = 1/4 und y p (t) = t 4 (t 1)et Das Superpositionsprinzip Gegeben sei eine inhomogene DGL der Form L[y] = h(t) = h 1 (t) + h 2 (t) (5) Sind y 1 (t) und y 2 (t) spezielle Lösungen von L[y] = h 1 (t) und L[y] = h 2 (t), so ist y p (t) := y 1 (t) + y 2 (t) eine spezielle Lösung von (5) Komplexe Differentialgleichungen Ist h(t) der Real oder Imaginärteil einer komplexwertigen Funktion w(t), h(t) = Re (w(t)) bzw h(t) = Im(w(t)) und ist z(t) eine (komplexe) Lösung von L[z] = w, so ist y(t) = Re(z(t)) bzw y(t) = Im (z(t)) eine (reelle) Lösung von der DGL L[y] = h(t)

14 Anwendung des Superpositionsprinzips Beispiel Ein spezielle Lösung der inhomogenen Gleichung y + 2y + 5y = e t( ) cos t + sin(2t) ist gegeben durch ( 1 y p (t) = e t 3 cos t 1 ) 4 t cos(2t) 1) Beim Superpositionsprinzip betrachtet man die beiden Gleichungen Anwendung des Superpositionsprinzips II Beispiel (Fortsetzung) 1) y + 2y + 5y y + 2y + 5y = e t cos t = e t sin(2t) 2) Beide Gleichungen löst man durch Übergang auf komplexe Zahlen: z + 2z + 5z z + 2z + 5z = e ( 1+i)t = e ( 1+2i)t

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

9 Lineare Differentialgleichungen

9 Lineare Differentialgleichungen Mathematik für Ingenieure III, WS 29/2 Mittwoch.2 $Id: linear.tex,v.4 2/2/ :7:45 hk Exp hk $ 9 Lineare Differentialgleichungen 9.3 Differentialgleichungen mionstanten Koeffizienten Während sich allgemeine

Mehr

Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Differentialgleichungen I für Studierende der Ingenieurwissenschaften Differentialgleichungen I für Studierende der Ingenieurwissenschaften Jens Struckmeier Fachbereich Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2/2 Jens Struckmeier

Mehr

9 Lineare Differentialgleichungen

9 Lineare Differentialgleichungen $Id: lineartex,v 3 //8 ::37 hk Exp hk $ 9 Lineare Differentialgleichungen 9 Homogene lineare Differentialgleichungen Wir beschäftigen uns gerade mit den homogenen linearen Differentialgleichungen, also

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Separierbare und lineare Differentialgleichungen

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

Lineare Systeme 1. Ordnung

Lineare Systeme 1. Ordnung KAPITEL 7 Lineare Systeme. Ordnung 7. Allgemeine Aussagen über lineare Systeme. Ordnung...... 235 7.2 Homogene lineare Systeme. Ordnung mit konstanten Koeffizienten237 7.3 Inhomogenes System. Ordnung mit

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge Institut für Analysis SS 5 PD Dr. Peer Christian Kunstmann 7.9.5 Silvana Avramska-Lukarska Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Bachelor-Modulprüfung Lösungsvorschläge

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

1.5 Lineare Differentialgleichungen zweiter Ordnung

1.5 Lineare Differentialgleichungen zweiter Ordnung 16 Kapitel 1. Differentialgleichungen 1.5 Lineare Differentialgleichungen zweiter Ordnung Eine lineare Differentialgleichung zweiter Ordnung hat die Form y +a 1 (x)y +a 0 (x)y = b(x), wobei a 1,a 0,b:I

Mehr

Kapitel 4. Lineare Systeme. 4.1 Homogene Systeme

Kapitel 4. Lineare Systeme. 4.1 Homogene Systeme Kapitel 4 Lineare Systeme In diesem Kapitel werden lineare Systeme x (t) = A(t)x + b(t) (4.1) mit t I, x R n, A C(I, R n n ) und b C(I, R n ) genauer untersucht. Das Hauptinteresse gilt dabei der durch

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

Leseprobe. Michael Knorrenschild. Mathematik für Ingenieure 2. Angewandte Analysis im Bachelorstudium. ISBN (Buch):

Leseprobe. Michael Knorrenschild. Mathematik für Ingenieure 2. Angewandte Analysis im Bachelorstudium. ISBN (Buch): Leseprobe Michael Knorrenschild Mathematik für Ingenieure 2 Angewandte Analysis im Bachelorstudium ISBN (Buch): 978-3-446-41347-4 ISBN (E-Book): 978-3-446-43269-7 Weitere Informationen oder Bestellungen

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1)

29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1) 292 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System y = A y, t R, ( wobei A C n n, und wollen ein Fundamentalsystem bestimmen Grundlegende Beobachtung:

Mehr

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff.

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. 2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. a k y (k) (x) = b(x) k=0 (L) mit a 0, a 1,..., a n

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

Methode der unbestimmten Koeffizienten für lineare Differentialgleichungen zweiter Ordnung

Methode der unbestimmten Koeffizienten für lineare Differentialgleichungen zweiter Ordnung Differentialgleichungen zweiter Ordnung Für bestimmte rechte Seiten f kann eine partikuläre Lösung u der Differentialgleichung u (t) + pu (t) + qu(t) = f (t) durch einen Ansatz mit unbestimmten Koeffizienten

Mehr

Mathematik III Vorlesung 5,

Mathematik III Vorlesung 5, Mathematik III Vorlesung 5, 03.11.2006 Markus Nemetz November 2006 1 Vorbemerkung Prof. Panholzer hat die illustrierenden Beispiele aus der zur VO empfohlenen Lektüre gebracht - sie sind hier nicht angeführt.

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2016/2017 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Elementare Lösungsmethoden für

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

4.4 Lineare Differentialgleichungen höherer Ordnung

4.4 Lineare Differentialgleichungen höherer Ordnung 44 LINEARE DIFFERENTIALGLEICHUNGEN HÖHERER ORDNUNG 95 gegeben durch z (t) := e λ t, z 2 (t) := e λ 2t, z 3 (t) := te λ 2t + e λ 2t Mit S := (v, v 2, v 3 ) erhalten wir somit aus y k := Sz k für k =, 2,

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur Mathematik II sskizzen zur Klausur Mathematik II vom..7 Aufgabe Es sei die Ebene im R 3 gegeben. E = +λ 3 + µ λ,µ R (a) Geben Sie die Hesse-Normalform der Ebene E an. (b) Berechnen Sie die orthogonale Projektion Π E

Mehr

2. Elementare Lösungsmethoden

2. Elementare Lösungsmethoden H.J. Oberle Differentialgleichungen I WiSe 2012/13 2. Elementare Lösungsmethoden A. Separierbare Differentialgleichungen. Eine DGL der Form y (t) = f(t) g(y(t)) (2.1) mit stetigen Funktionen f : R D f

Mehr

Notizen zur Vorlesung Differentialgleichungen I

Notizen zur Vorlesung Differentialgleichungen I Notizen zur Vorlesung Differentialgleichungen I Henrik Schumacher TUHH, 24 Januar 217 1 Randwertaufgaben für Differentialoperatoren zweiter Ordnung Zu Funktionen a, a 1 und a 2 C [a, b]) betrachten wir

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf Aufgabe : (6 Punkte Rotiert man die Menge { (y,z R 2 y 2π,z cosy } um die z-achse, so ensteht die Fläche F R 3. Bestimmen Sie

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

Aufgabe 1 (Richtungsfeld). Zeichnen Sie das Richtungsfeld der Differentialgleichung. u = 2u 2 tu t 2 2t an den Stellen. = v , 1

Aufgabe 1 (Richtungsfeld). Zeichnen Sie das Richtungsfeld der Differentialgleichung. u = 2u 2 tu t 2 2t an den Stellen. = v , 1 Vertiefung NWI: Gewöhnliche Differentialgleichungen Wintersemester 06/07 Dozent: Dr. Denny Otten Aufgaben zur Klausurvorbereitung 5.0.07 Abgabe: nicht vorgesehen. Übung : Mo. 6-8 Uhr V5-48 Philipp Külker

Mehr

Differentialgleichungen für Ingenieure Lösung Klausur Juli

Differentialgleichungen für Ingenieure Lösung Klausur Juli Technische Universität Berlin Fakultät II Institut für Mathematik SS 0 Dozentin Dr Penn-Karras Assistentin Dr C Papenfuß Differentialgleichungen für Ingenieure Lösung Klausur Juli Rechenteil Aufgabe 8

Mehr

Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten

Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Robert Labus Wintersemester 01/013 Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Definition Ist n N eine natürliche Zahl und a k R für k = 1;...; n, dann wird die Abbildung

Mehr

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis SS 25 PD Dr. Peer Christian Kunstmann 7.9.25 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zur Bachelor-Modulprüfung Aufgabe :

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen:

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen: 23 23 Lineare Systeme Wir wollen Systeme von linearen Differentialgleichungen Ordnung über einem offenen Intervall I R untersuchen: y = y A(t + b(t, mit stetigen Abbildungen A : I M n,n (R und b : I R

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 06/07 6. Vorlesung Michael Karow Themen heute: 1. Die geschlossene Lösungsformel für lineare DGL mit konstanten Koeffizienten. 2. Die Matrixexponentialfunktion

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Vorlesung Mathematik 2 für Ingenieure (A)

Vorlesung Mathematik 2 für Ingenieure (A) 1 Vorlesung Mathematik 2 für Ingenieure (A) Sommersemester 2017 Kapitel 8: Gewöhnliche Differenzialgleichungen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke

Mehr

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Höhere Mathematik II für den Studiengang BAP Hausaufgabe 2 04.11.2008 1 Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Lösungen 1. Geben Sie die allgemeine Lösung der folgenden Differenzialgleichungen

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Frühjahr 2014 T R, M.S. 06.03.2014 Bachelor-Modulprüfung Aufgabe

Mehr

Systeme gewöhnlicher Di erentialgleichungen. Ordnung

Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme. Ordnung De nition Für eine gegebene n n-matrix A(x) =(a ij (x)) n i,j=, deren Elemente Funktionen von x sind und einer gegebenen rechten Seite

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

III. Lineare Dgln. 1 Lineares System von n Dgln, Existenz und Eindeutigkeit. y = A(t)y + b(t), y(t 0 ) = y 0 ( )

III. Lineare Dgln. 1 Lineares System von n Dgln, Existenz und Eindeutigkeit. y = A(t)y + b(t), y(t 0 ) = y 0 ( ) III. Lineare Dgln 1 Lineares System von n Dgln, Existenz und Eindeutigkeit ( ) y = A(t)y + b(t) y(t) := ( y 1 (t),...,y n (t) ), A(t) := ( a i j (t) ) n,n, y (t) := ( y 1 (t),...,y n(t) ) b(t) :=( b 1

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

Institut für Analysis WS 2017/18 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Tobias Ried, M.Sc.

Institut für Analysis WS 2017/18 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Tobias Ried, M.Sc. Institut für Analysis WS 07/8 PD Dr. Peer Christian Kunstmann 0..07 Dipl.-Math. Leonid Chaichenets Tobias Ried, M.Sc. Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 0. Übungsblatt

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

Wochenaufgaben: Teil 1

Wochenaufgaben: Teil 1 Fachrichtung Mathematik Wochenaufgaben: Teil 1 Wiederholen Sie Kapitel 13 und Abschnitt 14.1. (Fernstudenten: Teil 3, A1, A3, A5.1 bzw. Kapitel 12 und Abschnitt 13.1. meines Skriptes). 1. Was ist eine

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Analysis I. Vorlesung 29

Analysis I. Vorlesung 29 Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 29 Homogene lineare gewöhnliche Differentialgleichungen Definition 29.1. Eine Differentialgleichung der Form y = gt)y mit einer Funktion

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 8. Februar Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : (6 Punkte Die archimedische Spirale wird durch A

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Wintersemester 2013/14 T R, M.S. Bla 9 vom 07.02.2014 http://www.math.kit.edu/iana1/lehre/hm3etec2013w/

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik

Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik Prüfung in Höhere Mathematik III. September 8 Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik Aufgabe : 8 Punkte Gegeben ist A : v : Bestimmen Sie die

Mehr

45 Homogene lineare Differentialgleichungssysteme 1.Ordnung mit konstanten Koeffizienten

45 Homogene lineare Differentialgleichungssysteme 1.Ordnung mit konstanten Koeffizienten 45 Homogene lineare Differentialgleichungssysteme.Ordnung mit konstanten Koeffizienten 45. Eigenwerte von A führen zu Lösungen von y = Ay 45.2 Fundamentalmatrix von y = Ay für diagonalisierbares A 45.7

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Aufgabe ( Punkte) Sei S := {(x, y, z) R 3 : z = x 2 y 2 und x 2 + y 2 }. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b)

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Vorbemerkungen. Eine gewöhnliche Differentialgleichung ist eine Gleichung, wo neben einer gesuchten Funktion y(x) auch deren Ableitungen y, y etc. auftreten, z.b. y

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr