Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Größe: px
Ab Seite anzeigen:

Download "Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25."

Transkript

1 A Technische Universität Berlin Fakultät II Institut für Mathematik WS 3/4 Eppler, Richter, Scherfner, Seiler, Zorn 5. Februar 4 Februar Klausur (Rechenteil) Lösungen: Lineare Algebra für Ingenieure Name: Vorname: Matr.Nr.: Studiengang: Falls Ihr Studiengang Hausaufgaben fordert: In welchem Semester haben Sie die erreicht? Neben einem handbeschriebenen A4 Blatt mit Notizen sind keine Hilfsmittel zugelassen. Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden. Dieser Teil der Klausur umfasst die Rechenaufgaben. Geben Sie immer den vollständigen Rechenweg an. Die Bearbeitungszeit beträgt eine Stunde. Die Gesamtklausur ist mit 3 von 8 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens von 4 Punkten erreicht werden. Korrektur 3 4 Σ. Aufgabe 9 Punkte Es sei folgende Matrix gegeben: A : (i) Berechnen Sie mit Hilfe des Gauÿalgorithmus die Inverse von A und überprüfen Sie das Ergebnis durch eine Rechnung explizit.

2 .Z:.. 3.Z:. 3..Z: Z: 3. Daraus liest man auf der rechten Seite die Inverse ab: A Wir machen die Probe: AA Bemerkung: Es muss vorher nicht (etwa mit Hilfe der Determinante) geprüft werden, ob A invertierbar ist, da man dann mit Hilfe des Gauÿalgorithmus nicht links die Einheitsmatrix hätte erzeugen können. (ii) Lösen Siemit Hilfe der in (i) berechneten Inversen die Gleichung A x. 3 Da wir nun wissen, dass A invertierbar ist, können wir die eindeutige Lösung des gegebenen Gleichungssystems berechnen: x A Aufgabe 9 Punkte Sei der Vektorraum R 4 mit dem Standardskalarprodukt gegeben, d.h. für x x x x 3 x 4, y R 4 ist das Skalarprodukt x, y : x y + x y + x 3 y 3 + x 4 y 4. Und seien die Vektoren v :, v :, v 3 : gegeben. y y y 3 y 4

3 (i) Zeigen Sie, dass v, v, v 3 linear unabhängig sind. Die Vektoren sind linear unabhängig, wenn die Gleichung λ v + λ v + λ 3 v 3 () nur die Lösung λ λ λ 3 besitzt. Die Gleichung () ist äquivalent zu folgendem linearen Gleichungssystem, in dem als Spalten der Matrix die Vektoren v, v, v 3 stehen: λ λ () λ 3 }{{} :A Wir lösen dieses lineare Gleichungssystem, indem wir den Gauÿalgorithmus auf A anwenden: 3.Z:3...Z:...Z:. 4. vertauschen Aus dieser Zeilenstufenform lesen wir für das lineare Gleichungssysstems () als eindeutige Lösung ab: λ λ λ 3. Damit ist gezeigt, dass v, v, v 3 linear unabhängig sind. (ii) Berechnen Sie mit Hilfe des Schmidtschen Orthonormalisierungsverfahrens eine Orthonormalbasis des von v, v, v 3 aufgespannten Teilraumes von R 4. Da wir in (i) die lineare Unabhängigkeit der Vektoren v, v, v 3 gezeigt haben, können wir den Algorithmus aus dem Skript direkt anwenden. (Im folgenden bezeichnet die aus dem Standardskalarprodukt induzierte Norm.) Wir erhalten: Wir berechnen den Zähler: v v, w w w v v w v v, w w v v, w w, Dieser Vektor hat die Norm, so dass wir als nächsten Vektor der gesuchten Orthonormalbasis erhalten: w

4 Wir berechnen den Zähler: v 3 v 3, w w v 3, w w w 3 v 3 v 3, w w v 3, w w v 3 v 3, w w v 3, w w Dieser Vektor hat die Norm. Wir erhalten daher schlieÿlich: w 3,, 4 3. Aufgabe Punkte Gegeben sei die lineare Abbildung A : R 3 R 3 mit x A x und A :. 3 3 (i) Berechnen Sie das charakteristische Polynom von A und bestimmen Sie die Eigenwerte von A. Für das charakteristische Polynom von A gilt: p A (λ) det(a λe 3 ) ( λ) det ( λ) 3 3 ( λ) ( λ) ( λ) ( λ 3 + 3λ 4 ) Da die Eigenwerte von A die Nullstellen des charakteristischen Polynoms von A sind, lesen wir für sie aus der vorletzen Gleichung ab: λ (algebraische Vielfachheit: ) λ (algebraische Vielfachheit: )

5 (ii) Bestimmen Sie zu jedem Eigenwert den zugehörigen Eigenraum. Der Eigenraum zu einem Eigenwert λ ist der Kern von A λe 3. Wir lösen also das entsprechende homogene lineare Gleichungssystem. λ : Wir müssen (A E 3 ) x lösen. A E 3 Hieraus lesen wir sofort für den Eigenraum ab: Eigenraum(A, ) span{, } Dieser Eigenraum hat Dimension (geometrische Vielfachheit: ). λ : Wir müssen (A ( )E 3 ) x lösen. Es gilt: A ( )E 3 Darauf wenden wir den Gauÿalgorithmus an: Hieraus lesen wir sofort für den Eigenraum ab: Eigenraum(A, ) span{ } Dieser Eigenraum hat Dimension (geometrische Vielfachheit: ). (iii) Zeigen Sie, dass A diagonalisierbar ist. In (i) haben wir die Eigenwerte und ihre algebraischen Vielfachheiten bestimmt. In (ii) haben wir die zugehörigen Eigenräume bestimmt und ihre Dimensionen abgelesen. Es stimmen jeweils die geometrischen und algebraischen Vielfachheiten überein. Auÿerdem zerel das charakteristische Polynom vollständig. Daher bilden die gefundenen Basen der Eigenräume zusammen eine Basis des R 3 aus Eigenvektoren. (Man kann auch argumentieren, dass Eigenvektoren zu verschiedenen Eigenvektoren linear unabhängig sind, so dass die oben bei den Eigenräumen angegebenen Eigenvektoren linear unabhängig sind. Damit haben wir eine Basis des R 3 aus Eigenvektoren.) Daher ist A diagonalisierbar. (iv) Geben Sie eine zugehörige Diagonalmatrix an. (Es ist keine lange Rechnung nötig!) Bezüglich einer Basis aus Eigenvektoren hat die Matrixdarstellung Diagonalgestalt, wobei auf der Diagonalen die Eigenwerte stehen. Bezüglich der oben gefundenen Basis aus Eigenvektoren lautet die zugehörige Diagonalmatrix:,, D

6 4. Aufgabe Punkte Gegeben sei die lineare inhomogene Dierentialgleichung mit den Anfangswerten d x (t) x(t) sin(t) (für alle t R) (3) dt x(), dx dt (). (4) (i) Leiten Sie mit dem Exponentialansatz die charakteristische Gleichung für die zu (3) gehörende homogene Dierentialgleichung her. Die zu (3) gehörende homogene Dierentialgleichung lautet: d x (t) x(t) (für alle t R) (5) dt Wir machen den Exponentialansatz für eine Lösung der homogenen DGL: Nun berechnen wir die Ableitungen: dx dt (t) λeλt, x(t) e λt d x dt (t) λ e λt Nun setzen wir den Ansatz in die homogene DGL (5) ein: d x (t) x(t) dt (für alle t R) (6) λ e λt e λt (für alle t R) (7) e λt (λ ) (für alle t R) (8) λ (9) Die letzte Gleichung ist die charakteristische Gleichung. (ii) Bestimmen Sie die Lösungsgesamtheit der homogenen Dierentialgleichung. Aus der in (i) gefundenen charakteristischen Gleichung lesen wir ihre Lösungen ab: λ, λ Da wir zwei reelle verschiedenen Nullstellen gefunden haben, können wir sofort zwei linear unabhängige Lösungen der homogenen DGL (5) ablesen: x (t) e t, x (t) e t Die allgemeine Lösung der homogenen DGL ist der Span von ihnen: x h (t) µ x (t) + µ x (t) µ e t + µ e t (iii) Zeigen Sie, dass durch x p (t) : sin(t) eine Lösung der inhomogenen Dierentialgleichung (3) gegeben ist. Wir berechnen die Ableitungen von x p : dx p dt (t) cos(t), Wir setzen dies in die DGL ein: d x p dt (t) sin(t) d x p dt (t) x p(t) sin(t) ( sin(t)) sin(t) Daraus lesen wir ab, dass x p tatsächlich die inhomogene DGL (3) erfüllt.

7 (iv) Bestimmen Sie die Lösungsgesamtheit der inhomogenen Dierentialgleichung (3). Die Lösungsgesamtheit der inhomogenen DGL (3) ist die Summe aus der Lösungsgesamtheit der homogenen DGL und einer Lösung der inhomogenen DGL. Die allgemeine Lösung der homogenen DGL haben wir in (ii) bestimmt. In (iii) haben wir gezeigt, dass x p einer Lösung der inhomogenen DGL ist. Damit erhalten wir als Lösungsgesamtheit der inhomoegnen DGL: x(t) x h (t) + x p (t) µ e t + µ e t sin(t) () (v) Lösen Sie das Anfangswertproblem (3), (4). Wir berechnen die Ableitung der allgemeinen Lösung (): Nun setzen wir die Anfangsbedingungen ein: dx dt (t) µ e t µ e t cos(t) x() µ + µ dx dt () µ µ Daraus erhalten wir folgendes lineare Gleichungssystem: Seine eindeutige Lösung liest man ab zu: µ + µ µ µ µ, µ Dies setzen wir in die allgemeine Lösung () ein und erhalten als Lösung des Anfangswertproblems (3), (4): x(t) et e t sin(t) (et e t sin(t)) sinh(t) sin(t)

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 B Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 April Klausur (Rechenteil Lösungen Lineare Algebra für Ingenieure Name:.......................................

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN WS 2/2 Fachbereich 3 - Mathematik Seiler / Rambau Prüfungs-/Übungsschein-Klausur (Rechenteil Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 200 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 2001 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006 Technische Universität Berlin Fakultät II Institut für Mathematik WS 5/6 Prof. Dr. Michael Scheutzow 2. Februar 26 Februar Klausur Lineare Algebra I Name:.............................. Vorname:..............................

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Vordiplomsklausur zur Linearen Algebra I

Vordiplomsklausur zur Linearen Algebra I 25.3.2002 Vordiplomsklausur zur Linearen Algebra I Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben Sie.

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice: Sommer Prof. H.-R. Künsch Gegeben sei die folgende Matrix A = 4. 4 (a) x AA T ist eine 4 4 Matrix mit ( AA T) = 4. AA T ist

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

Gruppe II Lineare Algebra

Gruppe II Lineare Algebra Pflichtbereichs Klausur in der Lehrerweiterbildung am 7.Juni 22 Bearbeiten Sie 3 der folgenden 6 Aufgaben, dabei aus jeder der beiden Gruppen (Lineare Algebra und Analysis) mindestens eine Aufgabe! Zur

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

KLAUSUR. Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) (W.Strampp) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.

KLAUSUR. Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) (W.Strampp) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr. KLAUSUR Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) 39 (WStrampp) Name: Vorname: Matr Nr/Studiengang: Versuch Nr: Für jede Aufgabe gibt es Punkte Zum Bestehen der Klausur sollten 7 Punkte erreicht

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Klausur zur Vorlesung Höhere Mathematik I

Klausur zur Vorlesung Höhere Mathematik I Name: 30. Januar 200,.00-3.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 20 min, 2 Zeitstunden Skript, Vorlesungsmitschrift Schreiben Sie bitte auf dieses Deckblatt oben rechts

Mehr

Wiederholungsklausur zur Linearen Algebra I

Wiederholungsklausur zur Linearen Algebra I Wiederholungsklausur zur Linearen Algebra I Prof. Dr. C. Löh/D. Fauser/J. Witzig 20. April 2017 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 M. Eigel R. Nabben K. Roegner M. Wojtylak.4.4 April Klausur Lineare Algebra für Ingenieure Lösungsskizze. Aufgabe 9 Punkte Gegeben

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Serie 13 Diese letzte Serie des Semesters befasst sich noch einmal mit wichtigen Themen

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur Mathematik II sskizzen zur Klausur Mathematik II vom..7 Aufgabe Es sei die Ebene im R 3 gegeben. E = +λ 3 + µ λ,µ R (a) Geben Sie die Hesse-Normalform der Ebene E an. (b) Berechnen Sie die orthogonale Projektion Π E

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Probeklausur Lineare Algebra für Physiker

Probeklausur Lineare Algebra für Physiker Fachbereich Mathematik Prof. Dr. K. Grosse-Brauckmann D. Frisch Probeklausur Lineare Algebra für Physiker SS 8 26./27.6.27 Name:..................................... Vorname:.................................

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 27 L I N E A R E A L G E B R A F Ü R T P H, U E (.64) 2. Haupttest (FR, 9..28) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil

Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil 14.2.2006 Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 3.4. Dr. Daniel Haase FS daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 4-6- U) 8 Zur Übungsstunde vom 3.4. Aufgabe (Ausgleichsrechnung) Gegeben sei das lineare Gleichungssystem

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Musterlösungen für die Nachklausur in LinAlg vom

Musterlösungen für die Nachklausur in LinAlg vom Musterlösungen für die Nachklausur in LinAlg vom 10.10.16 1. Finden Sie mindestens ) zwei Dreh )Matrizen ) M R 2 2 mit der Eigenschaft 1 0 M = : M = ± 1 1 2 ±1 1 k k 1 k 2. Sei A R 3 3 die Matrix A = 0

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Prof. Dr. E. Triesch Höhere Mathematik II WiSe 6/7 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 16 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Name a a Note Vorname Leginummer Datum 18.8.17 1 3 4 Total 1P 1P 1P 1P 1P P

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Höhere Mathematik I. Variante B

Höhere Mathematik I. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I SoSe Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter (Vorder- und Rückseite beschriftet,

Mehr

Klausur zur Vorlesung Lineare Algebra I

Klausur zur Vorlesung Lineare Algebra I Heinrich-Heine-Universität Düsseldorf 23.7.2 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 2 min Bitte

Mehr

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B R. Käppeli T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Winter 2016 Typ B Name a a Note Vorname Leginummer Datum 03.02.2017 1 2 3

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Scheinklausur zur Linearen Algebra I, WS 05/06, Nachholklausur

Scheinklausur zur Linearen Algebra I, WS 05/06, Nachholklausur Scheinklausur zur Linearen Algebra I, WS 5/6, Nachholklausur Prof. Dr. G. Hiß 6.3.26 Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Lösungshinweise zur Klausur. Mathematik für Informatiker III. (Dr. Frank Hoffmann) 18. Februar 2008

Lösungshinweise zur Klausur. Mathematik für Informatiker III. (Dr. Frank Hoffmann) 18. Februar 2008 Lösungshinweise zur Klausur Mathematik für Informatiker III (Dr. Frank Hoffmann) 8. Februar 8 Aufgabe Algebraisches I /6++ (a) Rechnen Sie zunächst nach, dass die Menge B = {,, von Vektoren eine Basis

Mehr

Klausur zur Vorlesung Lineare Algebra I

Klausur zur Vorlesung Lineare Algebra I Heinrich Heine Universität Düsseldorf 31.07.2010 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 120

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

KLAUSUR. Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) Prof. Dr. Andreas Bley Dr. Anen Lakhal

KLAUSUR. Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) Prof. Dr. Andreas Bley Dr. Anen Lakhal KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) 2..27 Prof. Dr. Andreas Bley Dr. Anen Lakhal Name: Vorname: Matr.-Nr./Studiengang: Versuch-Nr.: Für jede Aufgabe gibt es Punkte.

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Determinante und Inverse

Determinante und Inverse Vorzeigeaufgaben: Determinante und Inverse Bestimmen Sie für welche a R die folgende Matrix invertierbar ist und berechnen Sie deren Inverse: A = a cos(x) sin(x) a sin(x) cos(x) Bestimmen Sie ob folgende

Mehr

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/ Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

2. Klausur zur Linearen Algebra II

2. Klausur zur Linearen Algebra II Technische Universität Dortmund Fakultät für Mathematik Platznummer: Sommersemester 7.9.7. Klausur zur Linearen Algebra II Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen: Prüfen Sie

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 26 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64) 2. Haupttest (FR, 2..27) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Name a a Note Vorname Leginummer Datum 19.08.2016 1 2 3 4 5 6 Total 7P 11P 10P 11P

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder Gruppe A Scheinklausur 2. Teil 15.2.2002 Lineare Algebra I WS 2001 Prof. Dr. G. Hiß Name: Matrikelnummer: Kreuzen Sie bei jeder Frage entweder Ja oder Nein oder nichts an. Auswertung der Multiple-Choice-Aufgaben:

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung

Mehr

Übungsblatt 13. Lineare Algebra I für Informatiker, Dr. Frank Lübeck, SS 2010

Übungsblatt 13. Lineare Algebra I für Informatiker, Dr. Frank Lübeck, SS 2010 Übungsblatt 3 Lineare Algebra I für Informatiker, Dr Frank Lübeck, SS Für Matrikelnummer: 9787 Abgabezeitpunkt: Do Jul :: CEST Dieses Blatt wurde erstellt: Do 5 Jul 8:47:36 CEST Diese Übung besteht aus

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Klausur zu Lineare Algebra I für Informatiker, SS 07

Klausur zu Lineare Algebra I für Informatiker, SS 07 Deckblatt 9.9.7 (. Termin), Gruppe A Klausur zu Lineare Algebra I für Informatiker, SS 7 B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur in Lineare Algebra I Dr. Timo Hanke, Lehrstuhl D für Mathematik,

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Prof Dr O Sander Höhere Mathematik I WiSe / 4 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder-

Mehr

Höhere Mathematik I. Variante D

Höhere Mathematik I. Variante D Lehrstuhl II für Mathematik Prof Dr E Triesch Prof Dr O Sander Höhere Mathematik I WiSe / 4 Variante D Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder-

Mehr